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Abstract. Audio-visual segmentation (AVS) is an emerging task that
aims to accurately segment sounding objects based on audio-visual cues.
The success of AVS learning systems depends on the effectiveness of
cross-modal interaction. Such a requirement can be naturally fulfilled by
leveraging transformer-based segmentation architecture due to its inher-
ent ability to capture long-range dependencies and flexibility in handling
different modalities. However, the inherent training issues of transformer-
based methods, such as the low efficacy of cross-attention and unsta-
ble bipartite matching, can be amplified in AVS, particularly when the
learned audio query does not provide a clear semantic clue. In this paper,
we address these two issues with the new Class-conditional Prompting
Machine (CPM). CPM improves the bipartite matching with a learning
strategy combining class-agnostic queries with class-conditional queries.
The efficacy of cross-modal attention is upgraded with new learning ob-
jectives for the audio, visual and joint modalities. We conduct exper-
iments on AVS benchmarks, demonstrating that our method achieves
state-of-the-art (SOTA) segmentation accuracy4.

Keywords: Audio-visual Learning · Segmentation · Multi-modal Learn-
ing

1 Introduction

The recognition and integration of auditory and visual data are fundamental to
human cognitive processes, playing a critical role in facilitating meaningful com-
munication [44]. Audio-visual segmentation (AVS) is an emerging cross-modal
reasoning task that mimics such cognitive processes, aiming to localize visual
objects based on audio-visual cues. AVS has many applications, such as the
automatic localisation and identification of sounding objects to improve the ac-
cessibility of videos for the blind and visually impaired [34]. A major challenge
in AVS is achieving effective cross-modal interaction between sound and visual
4 This project is supported by the Australian Research Council (ARC) through grant

FT190100525.
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Fig. 1: Comparing conventional AVS methods [7, 14] with our CPM approach, CPM
inherits the class-agnostic query from transformer-based methods and integrates class-
conditional prompts sampled from the learned joint-modal data distribution to achieve
three objectives: 1) learn disentangled audio partitioning, 2) facilitate semantic-guided
object identification, and 3) promote more explicit audio-visual contrastive learning.

objects [46]. Many AVS methods [7, 37, 57] generally adopt a traditional per-
pixel classification framework [8,52], utilising early fusion strategies (e.g., cross-
attention fusion [49]) together with an FCN decoder [4,35] to make predictions.
Such per-pixel design has achieved good performance, but it tends to under-
utilise the audio data due to its lower informativeness compared with the visual
data [7,46]. Contrastive learning can mitigate this issue by matching informative
audio-visual pairs [7]. However, another critical limitation of the per-pixel design
is its failure to capture instance-level visual information, resulting in inconsistent
segmentation predictions within or between frames in a video sequence [52].

These two issues have been addressed by transformer-based AVS methods
designed to capture instance-level information and to rely on more effective con-
trastive learning [14, 24, 28, 30, 31, 52, 54]. Nevertheless, these AVS approaches
still show slow convergence and relatively poor accuracy [23, 33, 55], primar-
ily attributed to the low efficacy of the cross-attention [48] and the unstable
bipartite matching [23]. Solutions for these problems are based on integrated
masked-attention [8], which focuses on features around predicted segments, and
anchor de-noising [23] to reconstruct the noisy ground-truth bounding box de-
tection. However, these solutions may not work well in AVS because of the weak
constraint provided by global audio features that contain a mixture of sound
sources [14, 26, 30] resulting in more instability during training. It is worth not-
ing that all methods above have the common issue of relying on class-agnostic
prompts that provide little guidance to the bipartite matching process, thereby
reducing training efficacy.

In this paper, we introduce the Class-conditional Prompting Machine (CPM),
an audio-visual segmentation training approach that leverages class-conditional
prompts to enhance bipartite matching stability and improve cross-modal at-
tention efficacy. To enhance bipartite matching, we introduce a novel learning
method, combining class-agnostic queries [8,14,26] with class-conditional queries,
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sampled from our iteratively updated generative model of class-specific embed-
dings, with the former queries matched to ground-truth labels using the Hungar-
ian Algorithm [1], followed by individual processing of class-conditional queries
in two modalities. To improve cross-modal attention efficacy, new learning ob-
jectives are proposed for both audio and visual modalities. In the audio modal-
ity (audio conditional prompting, denoted as ACP), the original spectrogram
is corrupted with auditory off-the-screen noise and class-conditional queries are
employed to reconstruct the original spectrogram, while in the visual modality
(visual conditional prompting, denoted as VCP), noisy class-conditional queries
sampled from our generative model are used to probe semantically similar con-
tent in the image space. To further upgrade the performance of cross-modal at-
tention, we introduce a new prompting-based audio-visual contrastive learning
(PCL) task, guided by class-specific queries to densely constrain the cross-modal
representations. To summarise, our main contributions are:

– A new AVS training approach to enhance bipartite matching stability and
enhance the efficacy of cross-modal attention. Our core innovation lies in the
development of a Class-conditional Prompting Machine (CPM).

– To improve the bipartite matching, we propose a new AVS learning strategy
that combines class-agnostic queries with class-conditional queries, sampled
from our iteratively updated generative model of class-specific embeddings.

– The efficacy of cross-modal attention is upgraded with new learning objec-
tives for the audio, visual and joint modalities. For audio, we present ACP
that perturbs the original spectrogram and uses class-conditional queries
to reconstruct the spectrogram; for visual, we introduce VCP that ex-
plores noisy class-conditional queries sampled from our generative model
to probe the corresponding semantic in visual feature map. To enhance the
cross-modal attention efficacy further, we propose PCL, consisting of a new
prompting-based joint (audio-visual) contrastive learning task.

We firstly show the effectiveness of our CPM model through rigorous evalua-
tion on established benchmarks such as AVSBench-Objects [57] and AVSBench-
Semantics [56]. Furthermore, we extend our evaluation by including VPO syn-
thetic benchmarks [7], aiming to enhance our comprehension of AVS methods’
capacity to capture audio-visual correlations. Our findings across these bench-
marks consistently demonstrate that our approach yields better classification
accuracy compared to existing methods.

2 Related Works

2.1 Transformer-based architecture

Transformer-based methods have shown promising performance in detection [1]
and segmentation [8,9] benchmarks. The fundamental concept is to leverage the
object query to probe image features from the output of transformer encoders
and bipartite graph matching to perform set-based box/mask prediction. It is
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also evidenced that such a framework can benefit multi-modal learning due to
its attention mechanism and flexibility in data modelling [53]. Despite its suc-
cessful application in various domains [1, 8], such frameworks have also been
reported to exhibit a poorer convergence rate compared to traditional CNN-
based methods [8,23,33]. In exploring the reasons behind the poor convergence,
previous studies have emphasized enhancing the interpretability of the learnable
query [33, 39] (often referring to them as anchor points/boxes). Alternatively,
the utilisation of denoising methods [23, 55] has also been adopted to facilitate
the learning of bounding box offset [23] and improve the utilisation of the trans-
former decoder layers [55]. Furthermore, masked attention has proven effective
in enhancing both convergence rate and model performance [8]. The successful
implementation of denoising methods and masked attention mechanisms has in-
spired us to devise a mitigation strategy for bipartite matching that promotes
improved cross-modal understanding within the cross-attention process.

2.2 Audio-visual Segmentation (AVS)

Audio-visual Segmentation is a dense classification task or detection of sounding
visual objects in videos, using image sequences and audio cues. Zhou et al. [57]
introduced the AVSBench-Object and AVSBench-Semantics benchmarks [56],
which enable the evaluations of single-source and multi-source AVS tasks for
salient and multi-class object segmentation. To address concerns related to the
high annotation cost and dataset diversity, Chen et al. [7] introduced a cost-
effective strategy to build a relatively unbiased AVS dataset, named Visual
Post-production (VPO). Mainstream AVS methods use audio as the reference
query [7, 14, 19, 24, 29–32] or prompt [43, 51]. For example, some methods adopt
MaskFormer [9] or segment anything model (SAM) [22] to perform image seg-
mentation using audio queries or encoded audio prompts and cross-attention
layers. These methods benefit from the attention mechanism’s ability and mask-
classification’s features to capture long-range dependencies and enhance im-
age segmentation ability [9], spatial-temporal reasoning [24] and task-related
features [14, 24, 29, 30, 37, 57]. The adaptation of the Maskformer-based frame-
work for AVS relies on methods to encourage the audio-visual semantic align-
ment [24,30,31,54]. Such strategy mitigates the poor audio semantic information
caused by modality imbalance [5] and learns disentangled multi-modal represen-
tations [26, 54] via vector quantization [15] and bidirectional attention mecha-
nism. Even though the query-based transformer architecture [1] has shown great
success in semantic segmentation tasks, certain weaknesses such as low efficacy
of cross-attention and unstable bipartite matching process [23] are still only par-
tially addressed. These two issues may be exacerbated in AVS due to the poor
audio semantic information.

2.3 Audio-visual Contrastive Learning

Contrastive Learning has shown promising results in audio-visual learning (AVL)
methods [2, 7, 18, 40, 41]. These methods bring together augmented representa-
tions from the same instance as positives while separating representation pairs
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from different instances as negatives within a batch. A reported issue with cur-
rent AVL contrastive learning is its reliance on self-supervision [6] to connect
audio and visual representations of the same class. To overcome this issue,
CAVP [7] propose a supervised contrastive learning [21, 25, 50] method that
mines informative contrastive pairs from arbitrary audio-visual pairings to con-
strain the learning of audio-visual embeddings. Nevertheless, these previous ap-
proaches predominantly leverage global audio representations, thereby limiting
the model’s capacity to discern individual audio sources. Consequently, this con-
straint reduces the model’s effectiveness in scenarios involving multiple sound
sources. In our work, we employ class-specific queries to retrieve the correspond-
ing audio representations, which facilitates a more explicit form of contrastive
learning between audio and visual modalities.

3 Method

We denote a multi-class audio-visual dataset as D = {(ai,xi,yi, ti))}|D|
i=1, where

xi ∈ X ⊂ RH×W×3 is an RGB image with resolution H×W , a ∈ A ⊂ RT×F de-
notes the magnitude spectrogram of the audio data with T time and F frequency
bins, yi ∈ Y ⊂ {0, 1}H×W×C denotes the pixel-level ground truth for the C
classes (the background class is included in these C classes), and ti ∈ Y ⊂ {0, 1}C
is a multi-label ground truth audio annotation. We use Mask2former [8] as the
segmentation framework.

3.1 Preliminaries using Class-agnostic Queries

Like other Maskformer-based methods [14,30,31,52], we aim to learn the param-
eters θ ∈ Θ for the model fθ : X ×A → [0, 1]H×W×C , which comprises the image
and audio backbones that extract features with ua = fγ(a) and uv = fϕ(x), re-
spectively, where γ, ϕ ∈ θ, and ua,uv ∈ U , with U denoting a unified feature
space. A set of learnable query features (comprising the object query feature
and positional query embeddings) are defined as the joint-modal output em-
beddings similar to the Perceiver model [20]. We define the class-agnostic query
feature as q ∈ Q ⊂ RN×Dq , where N denotes the number of class-agnostic
queries, and Dq represents the dimensionality of the feature space. As depicted
in Fig. 2, given q, we aim to group pixels with matched semantic information
from ua and uv through consecutive transformer decoder layers [8,49] and gen-
erate N mask embeddings q̃ ∈ Q and pixel embeddings ũv ∈ RH×W×Dq . Then,
the model independently predicts the embeddings into N set of class predic-
tions (via Softmax(·)) and mask predictions (via Sigmoid(·)) denoted as Epred =
{(mi,pi)}Ni=1, where m ∈ M ⊂ {0, 1}H×W and p ∈ P ⊂ {0, 1}C . We denote
the ground-truth set derived from the training set D with Egt = {(mgt

i ,p
gt
i )}N

gt

i=1.
During training, we use the Hungarian algorithm to perform optimal matching
between Epred and Egt [1,8] to facilitate the label assignment. Since |Epred| > |Egt|,
we pad Egt with no-object class ∅ to achieve one-to-one matching [8].

The loss ℓ to train the model fθ(.) includes a cross-entropy query classification
loss ℓce, and a binary mask loss ℓmask = ℓfocal+ℓdice, which combines a focal loss
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Fig. 2: Illustration of our CPM method. Starting with a scene with a mixture of sound
sources including Male, Female and Guitar, the training alternates between the use of
learnable class-agnostic queries, and queries sampled from a list of class-specific query
features from the GMM, denoted as zmale, zfemale and zguitar. The overall training
objective is composed of three learning tasks: 1) in audio conditional prompting (ACP),
we aim to use zmale, zfemale and zguitar to recover the original magnitude spectrogram
ai from the noise spectrogram (i.e., ai + aj) that is corrupted by another Dog audio
signal aj ; 2) a visual conditional prompting (VCP) that aim to probe the corresponding
pixels w.r.t to the class-specific query features; and 3) a contrastive learning task that
target to densely constrain the audio and visual representations. For training, both the
CPM Workflow, indicated by the orange arrow, and the Class-agnostic Workflow,
marked by the black arrow, are utilized. However, only the Class-agnostic Workflow
is used for inference.

ℓfocal and a dice loss ℓdice [8,14,30]. The overall training loss for the class-agnostic
query feature is defined as ℓagn = ℓce+ℓmask. During testing, p and m are merged
via the multiplication argmaxi:ci ̸=∅ p(ci) · mi, where ci is the class label with
maximum likelihood ci = argmaxc∈{1,...,C,∅} pi(c) for each probability-mask
pair indexed by i.

3.2 Class-conditional Prompting Machine (CPM)

The proposed CPM training builds upon the class-agnostic training method
from Sec. 3.1 by introducing a new training stage based on class-conditional
prompting. This allows the probing of both the magnitude spectrogram and
the image feature map, aiming to mitigate unstable training issues and improve
cross-attention efficacy. In some cases, the prompts can be manually crafted (i.e.,
text label, bounding box) based on domain knowledge or specific task require-
ments [22]. Prompts can also be automatically learned to form a fixed set of
prototypical embeddings for each class [42]. However, it is impossible to man-
ually define class conditional prompts in high-dimensional latent spaces, and
using a limited-size set of learned prompts may fail to capture the compre-
hensive distribution of class-specific prompts. Hence, it is desirable that these
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class-specific prompts can be sampled from a generative model [3,27]. that com-
prehensively represents the respective class. We adopt the Gaussian Mixture
Models (GMMs) as such generative model [45], which improves the intra-class
variability and increases robustness to class imbalances when compared to the
alternative approaches mentioned before. Before delving into the methodology
of the CPM, we first introduce the generation process of the class-conditional
query features.

Class Conditional Distribution Modelling (CCDM) Instead of construct-
ing a posterior p(c|q̃) with Softmax classifier for the mask embeddings q̃, the
generative classifier employs the Bayes rule for label prediction, estimating the
class-conditional distribution p(q̃|c) alongside the class prior p(c) [27], with:

p(c|q̃) = p(q̃|c)p(c)∑
c′ p(q̃|c′)p(c′)

, (1)

where the class probability prior p(c) is uniform. To enable GMM modelling
in Maskformer architecture [8, 9], we replace the p = Softmax(q̃) activation
function with fGMM(q̃) = p(c|q̃) defined in (1) which maps the input mask
embeddings q̃ to probability data density over C classes. Assuming that after
the Hungarian matching between the predictions set {(mi,pi)}Ni=1 and y, we get
a new one-to-one matched ground-truth set ỹ w.r.t each prediction by padding
the y with no-object class ∅. Subsequently, we can form the GMM training
dataset F = {(q̃n, ỹn)}Fn=1 by pairing the mask embeddings with the assigned
label. In our method, the goal of GMM is to model the data distribution of the
joint-modal mask embedding q̃ for each class C in the Dq-dimensional space by
employing a weighted mixture of M multivariate Gaussians, defined as follows:

p(q̃|c) =
M∑
m=1

p(m|c;πc)p(q̃|c,m;µc,Σc) =

M∑
m=1

πcmN (q̃;µcm,Σcm), (2)

where
∑
m πcm = 1 represents the mixing coefficients, µcm ∈ RDq denotes the

mean vector, and Σcm ∈ RDq×Dq is the covariance matrix. The optimisation of
the GMM parameters is performed by the Expectation Maximisation (EM) algo-
rithm [10]. In the E-step, we iterate through F , computing the responsibilities
using the current parameters of the GMM for each class c:

γ(t)c,n(m) =
π

(t−1)
cm N (q̃n;µ

(t−1)
cm ,Σ

(t−1)
cm )∑M

m′=1 π
(t−1)
cm′ N (q̃n;µ

(t−1)
cm′ ,Σ

(t−1)
cm′ )

. (3)

We re-estimate the parameters using the calculated responsibility in the M-step.

µ(t)
cm =

1

N
(t)
cm

∑
(q̃n,ỹn)∈Fc

γ(t)c,n(m) q̃, π(t)
cm =

N
(t)
cm

|F|
,

Σ(t)
cm =

1

N
(t)
cm

∑
(q̃n,ỹn)∈Fc

γ(t)c,n(m) (q̃n − µ(t)
cm)(q̃n − µ(t)

cm)T,

(4)
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where N (t)
cm =

∑
(q̃n,ỹn)∈Fc

γ
(t)
c,n(m). We maintain an external memory bank con-

taining GMM training samples, defined above with the set F , and the GMM
parameters are robustly estimated with momentum [27].

Audio Conditional Prompting (ACP) Motivated by the concept of “mix-
and-separate” [13, 18], we design the ACP process to improve cross-attention
interaction for the dense audio feature representations. We consider an off-the-
screen noise dataset Dr = {(aj)}|Dr|

j=1 . For each training iteration, we sample
a clean audio sample ai from the D and an off-the-screen noisy audio sample
aj from Dr to build the mixture of magnitude spectrogram ap = ai + aj . The
whole ACP process is illustrated in the first section of Fig. 2. Before delving into
the audio recovery process, we first sample a set of class-conditional prompts
zk ∼ {N (µk,Σk)}k∈K (where K = {k|ti(k) = 1} represent the indices for
ground truth labels) via the GMM model from the last iteration according to
the target semantic classes ti that we want to recover. The major process of the
audio recovery process shares a similar concept with the visual part described
in Sec. 3.1; the difference is that we use the joint-modal mask embeddings z̃k to
search the semantically similar sound source on the decoded dense audio feature
map ũa and generate their corresponding mask predictions {ma

k|k ∈ K}.
The learning objective of the ACP process is to encourage the consistency

between the predicted masks ma
k with the derived ground-truth spectrogram

ratio mask ai

ap
. The AVS datasets generally do not provide the separated sound

source data for each semantic class (i.e., in Fig. 2, we do not have the ground-
truth audio data of Male, Female and Guitar), hence we adopted a summation
operation over the predicted masks to integrate all mixed sound sources. Finally,
a Sigmoid activation function σ(·) is applied to constrain the prediction into a
binary mask. We denoted the mean squared error (MSE) loss of the ACP process
as follows:

ℓACP =

∥∥∥∥∥σ
(∑
k∈K

ma
k

)
− ai

ap

∥∥∥∥∥
2

. (5)

Visual Conditional Prompting (VCP) The VCP module is processed si-
multaneously with ACP. The design of VCP aims to bypass bipartite matching
via the generated class-conditional prompts zk to ease the model training as it
can provide a more stable learning target for each query feature to mitigate the
instability brought by the bipartite matching with the class-agnostic queries.
Given a set of class-conditional prompts derived from the ground-truth image
labels, our training objective of VCP is to correctly segment the corresponding
image regions as well as successfully classify these prompts after the consecutive
transformer decoder layers. The loss function is similar to ℓagn in Sec. 3.1, where
we replace q with zk, denoted as ℓVCP = ℓce + ℓmask (6).

Prompting-based Contrastive Learning (PCL) The ability to learn dis-
criminative feature representation is critical for the audio-visual system. One
limitation of the previous audio-visual contrastive learning methods [7,36] is that
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they can only leverage the global audio representation due to the lack of class con-
ditional prompts for class-specific feature disentanglement. By taking advantage
of class-conditional distribution modelling, we can overcome this limitation by
utilising the predicted spectrogram saliency mask sak = σ(ma

k) and its associated
class label k of each sound source, denoted as {sak|sak ∈ M ⊆ [0, 1]T×F , k ∈ K}.
To disentangle the class-specific representations for the audio feature map, we
iteratively apply the masked average pooling (MAP) [47,58] to ua based on |K|
saliency masks sak for the feature extraction process. We first threshold sak and
convert it to a binary mask via s̃ak = 1(sak > s̄ak), where s̄ak represent the mean
value of the saliency mask. Then, for the k-th category, we extract its region-level
mean feature f(k) ∈ RDq by MAP defined as follows:

f(k) =

∑
ψ∈Ψ s̃akua(ψ)∑

ψ s̃ak
, (7)

where Ψ is the lattice of size T × F . We combine the f(k) with the ground-
truth class label k to form the anchor set Eanch = {(f(k), k)|f(k) ∈ U , k ∈ K},
with U denoting the audio and visual feature spaces defined in Sec. 3.1. Since
the pixel-level label y is available, we can directly form the visual contrastive
set Econt = {(uv(ω),yv(ω))|uv(ω) ∈ U ,y(ω) ∈ Y}. Hence, we can derive the
positive and negative sets as:

P(uv(ω)) = {uv(ω)|uv(ω) ∈ U ,y(ω, k) = 1},
N (uv(ω)) = {uv(ω)|uv(ω) ∈ U ,y(ω, k) = 0}.

(8)

Adopting the supervised InfoNCE [21] as the objective function to pull the an-
chor f ∈ Eanch and respective positive visual features closer while repelling an-
chors and their negative visual features, we define the following loss:

ℓPCL(f) =
1

|P(uv(ω))|
∑

fp∈P(uv(ω))

− log
exp (f · fp/τ)

exp (f · fp/τ) +
∑

fn∈N (uv(ω))
exp (f · fn/τ)

, (9)

where f is an anchor feature, and τ is the temperature hyperparameter The
combination of all sub-objective ℓACP, ℓVCP and ℓPCL form the CPM loss ℓCPM =
ℓACP + ℓVCP + ℓPCL.

Overall training The overall training objective is ℓ = ℓagn+λℓCPM, where
λ is the weight coefficient.

4 Experiments

4.1 Implementation Details

Evaluation Protocols We utilize standard evaluation protocols from AVS-
Bench datasets [56, 57] for single-source (SS) and multi-source (MS) scenarios
with binary labels, as well as for AVSBench-Semantics with multi-class labels.
Image sizes are standardized to 224 × 224 for fair comparison. Additionally, we
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Table 1: Quantitative (mIoU, Fβ) audio-visual segmentation results (%) for the AVS-
Bench test sets [56,57] (resized to 224×224) with ResNet50 [17] backbone. Best results
in bold, 2nd best underlined. Improvements against the 2nd best are in the last row.

Eval. Methods Method AVSBench-Obj.(SS) AVSBench-Obj.(MS) AVSBench-S
mIoU ↑ Fβ ↑ mIoU ↑ Fβ ↑ mIoU ↑ Fβ ↑

Per-image
[56,57]

TPAVI [57] 72.79 84.80 47.88 57.80 20.18 25.20
AVSBG [16] 74.13 85.40 44.95 56.80 - -

ECMVAE [37] 76.33 86.50 48.69 60.70 - -
DiffusionAVS [36] 75.80 86.90 49.77 62.10 - -

CATR [24] 74.80 86.60 52.80 65.30 - -
AuTR [31] 75.00 85.20 49.40 61.20 - -

AQFormer [19] 77.00 86.40 55.70 66.90 - -
AVSegFormer [14] 76.54 84.80 49.53 62.80 24.93 29.30

AVSC [29] 77.02 85.24 49.58 61.51 - -
BAVS [30] 77.96 85.29 50.23 62.37 24.68 29.63
AVSAC [5] 76.90 86.95 53.95 65.81 25.43 29.71
QSD [26] 77.60 86.00 59.60 63.50 46.60 -

COMBO [54] 81.70 90.10 54.50 66.60 33.30 37.30

Per-dataset [12]
AVSegFormer* [14] 79.80 91.41 53.28 64.76 41.64 55.05

CAVP [7] 85.77 92.86 62.39 73.62 44.70 57.76
CPM 87.64 93.53 65.22 75.22 48.39 64.01

adopt the original image resolution for testing, following [7], to demonstrate op-
timal model performance. Evaluation is extended to the Visual Post-production
(VPO) benchmark [7] for challenging cases. We employ mean Intersection over
Union (mIoU) [11] and Fβ score with β2 = 0.3 [38, 57] to assess segmentation
quality, precision, and recall performance at pixel level. Models are stratified
into CNN-based pre-pixel classification and transformer-based mask classifica-
tion to demonstrate architectural capabilities. Official training splits are used
for AVSBench datasets [56, 57] and VPO [7], with results reported on the re-
spective testing sets. Training is performed on the entire AVSBench-Semantics
dataset, and testing is conducted on subsets as well as the entire testing set to
demonstrate partitioned model performance. For further details on training and
inference, please refer to the Supplementary Material.

Results We collected the experimental results from the existing benchmark [7]
and updated it with recent works [5,26,54]. We modified the AVSegFormer [14]
with Mask2former [8] and denoted it as AVSegFormer* in the tables to encour-
age a fair comparison with our method. Please note that Tab. 1 includes two
evaluation protocols. We employ standard semantic segmentation protocols to
compute both mIoU and Fβ same as PascalVOC, initially mentioned in [57].

4.2 Performance on Low-resolution AVSBench Videos

We adopt established methodologies [7, 30, 31, 37] for conducting performance
evaluations on down-sampled image benchmarks, such as AVSBench-Objects [57],
which includes single-source (SS) and multi-source (MS) splits with binary anno-
tations, as well as the AVSBench-Semantics dataset [56], which contains multi-
class annotations. We compare the performance of state-of-the-art (SOTA) meth-
ods with our CPM in Tab. 1 using mIoU and Fβ . The results demonstrate that
our model surpasses the second-best CAVP [7] in terms of mIoU by 1.87% on
AVSBench-Object (SS) [57], 2.83% on AVSBench-Object (MS) [57] and 1.79%
on AVSBench-Semantics [57] using the ResNet-50 [17] backbone.
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Table 2: Quantitative (mIoU, Fβ) audio-visual segmentation results (in %) for the
AVSBench-Semantic (AVSS) test sets [56] (original resolution) with ResNet50 [17]
backbone. Best results in bold, 2nd best underlined. Improvements against the 2nd

best are in the last row.

D-ResNet50 [17] Method AVSS (SS) AVSS (MS) AVSS
mIoU ↑ Fβ ↑ mIoU ↑ Fβ ↑ mIoU ↑ Fβ ↑

Per-pixel
Classification

TPAVI [57] 42.10 61.46 26.33 40.99 43.39 59.24
CAVP [7] 56.91 69.15 38.61 52.92 50.75 64.57

Transformer AVSegFormer [14] 46.25 59.76 27.21 41.38 41.48 56.21
AVSegFormer* [14] 50.52 63.75 31.40 42.81 45.80 59.16

CPM 61.71 72.94 43.11 56.28 57.25 70.54
Improvement CPM +4.80 +3.79 +4.50 +3.36 +6.50 +5.97

Table 3: Quantitative (mIoU, Fβ) audio-visual segmentation results (in %) for the
VPO test sets (original resolution) with ResNet50 [17] backbone. Best results in bold,
2nd best underlined. Improvements against the 2nd best are in the last row.

D-ResNet50 [17] Method VPO (SS) VPO (MS) VPO (MSMI)
mIoU ↑ Fβ ↑ mIoU ↑ Fβ ↑ mIoU ↑ Fβ ↑

Per-pixel
Classification

TPAVI [57] 52.75 69.54 54.30 71.95 51.73 68.85
CAVP 62.31 78.46 64.31 78.92 60.36 75.60

Transformer AVSegFormer [14] 57.55 73.03 58.33 74.28 54.22 70.39
AVSegFormer* [14] 60.51 74.81 62.91 77.33 56.24 72.67

CPM 67.09 79.88 65.91 79.90 60.55 75.58
Improvements CPM +4.78 +1.42 +1.60 +0.98 +0.19 –0.02

4.3 Performance on Original AVSBench Videos
The benchmark mentioned above adopted low-resolution benchmarks using sig-
nificantly resized input images (from 720p to 224 × 224). While this simpli-
fies model training, disregarding the original image aspect ratio can lead to
a degradation in model performance, which is not advisable for segmentation
tasks. Therefore, we follow the evaluation method outlined in [7] for training
and testing on the raw AVSBench videos. This includes using random resized
crops for training and performing frame-by-frame evaluation during testing. The
initial published version of AVSBench [57] only offers single-source and multi-
source partitioning. However, this partitioning was not conducted in the later
version [56], resulting in some cases being overlooked. We re-organised the pre-
vious SS and MS with the newly added video data, resulting in 1278 single-
source videos (AVSS-SS) and 276 multi-source videos (AVSS-MS). We compare
the results with mIoU and Fβ to demonstrate the comprehensive model perfor-
mance in Tab. 2. Our method shows a significant mIoU improvement of 4.80%
on AVSS-SS, 4.50% on AVSS-MS and +6.50% on the entire AVSS dataset. To
further demonstrate the effectiveness of our method, we show a visualisation
of 6-second video clip in Fig. 5 that displays a qualitative comparison between
TPAVI, AVSegFormer, CAVP and our CPM. Our method can successfully ap-
proximate the ground truth segmentation of the target sound source within a
group of other semantic objects.

4.4 Performance on VPO Dataset

We also compare the model performance on the VPO benchmark [7], equipped
with synthesized stereo audios. We adopted ResNet-50 [17] backbone for all
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Table 4: Ablation study of the model components on AVSBench-Semantics [31].
Method Metrics

Baseline CCDM VCP ACP PCL mIoU ↑ Fβ ↑
✔ 53.04 65.29
✔ ✔ 54.12 66.65
✔ ✔ ✔ 55.79 68.17
✔ ✔ ✔ 55.07 68.03
✔ ✔ ✔ ✔ 56.41 69.07
✔ ✔ ✔ ✔ ✔ 57.25 70.54

 Image

 GT

 Baseline

 CPM Baseline
 CCDM
 VCP
 ACP

(i)

(iii) (iv)

 Baseline
 CCDM

(ii)

(a) Visual comparison.

(Jaccard Index)

58.58

56.33

53.78

52.52

CPM

Baseline+CCDM+ACP+VCP

Baseline+CCDM

Baseline

(b) Coverage score comparison.
Fig. 3: Qualitative (3a) and quantitative (3b) comparisons between model components
in a multi-source scenario (i.e., male singing, female singing and guitar)

three subsets, and the results are shown in Tab. 3. To facilitate stereo audio
encoding, we adopt the approach outlined in [7] by adjusting the number of
input channels in the first layer to 2. Our approach surpasses the SOTA method
CAVP [7] by 4.78% and 1.60% in terms of mIoU on VPO (SS) and VPO (MS),
respectively. However, we observe a marginal improvement of 0.19% on the VPO
(MSMI) setup compared with the SS and MS subsets. The possible explanation
for this phenomenon may stem from the overly simplistic integration of stereo
audio within the transformer architecture, as the foundational AVS transformer
architectures [14, 24, 26, 30] did not account for a distinct positional encoding
scheme tailored for stereo data. We will explore the design of a dedicated stereo
AVS transformer architecture as part of our future work.

4.5 Ablation Study

Ablation of Key Components We first perform the key components anal-
ysis of CPM on AVSBench-Semantics [56] in Tab. 4. The baseline is AVSeg-
former* [14] in the 1st row. We replace the Softmax classifier in baseline with
CCDM defined in (1), and observe an mIoU improvement of +1.08%. By in-
tegrating the model with VCP (3rd row), using training loss in (6), and ACP
(4th row), using loss in (5), separately, we achieve an improvement of +1.26%
and +1.39%, respectively. Subsequently, when we apply both ACP and VCP
methods (5th row) the mIoU performance improves +2.04% compared to the
2nd row. The final row displays the complete CPM method, incorporating the
dense contrastive learning approach we introduced, which leads to an additional
mIoU improvement of +1.09%.

Ablation of Bipartite Matching Stability To study the stability of the
bipartite matching process, we design an entropy-based stability score STS to
quantify such performance on AVSBench-Semantics [56]. Intuitively, the STS
measures the average assignment consistency after bipartite matching across
all the classes. During the training process, we collect the assigned label ỹi ∈
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Fig. 4: Matching stability (STS ↓) com-
parison on AVSBench-Semantics [31]

Table 5: Ablation of GMM modelling on
AVSBench-Semantics [31].

Method mIoU ↑ Fβ ↓
Point Rep. 55.96 68.58
Dist Rep. 57.25 70.54
M mIoU Fβ

1 55.83 68.68
3 57.25 70.54
5 56.31 69.04
7 56.05 68.59

{0, ..., C}N to the class-agnostic query q̃n produced by the Hungarian algorithm
for each training image, resulting in R = [ỹ0⊕ỹ1⊕, ...,⊕ỹD], where ⊕ represents
the concatenation operator and R has size D × N . We then use the indicator
function to extract the assignment information over all semantic classes. We de-
note the resulting set as {s0, s1, ..., sc}, where sc(n) =

∑D
d 1(R(d, n) = c) for

n ∈ {1, ..., N}, which forms sc ∈ [0, 1]N after normalising it to be a probabil-
ity distribution. Finally, we calculate the stability score STS = 1

C

∑C
c=1H(sc),

where H(·) computes the entropy. We compare our CPM with AVSegformer*
over 100 training epochs as illustrated in Fig. 4. Our findings reveal that our
CPM consistently improves the stability score (showing lower average entropy)
throughout the training process in comparison to AVSegformer*, thereby val-
idating the efficacy of our approach in enhancing bipartite matching stability.
Please refer to the Supplementary Material for the Pseudo-code of STS.

Ablation of Audio Contribution While experimenting with the baseline
method mentioned above, we empirically observed that the classification after
the audio transformer decoder (i.e., fTD-A in Fig. 2) has low accuracy, with
noisy predictions. We also found that these noisy predictions are progressively
refined by the vision transformer decoder layer based solely on visual clues. Such
an observation illustrates that in some hard cases, we may fail to extract useful
semantic information from audio, leading to the model being overly reliant on
the visual content, which may cause erroneous testing predictions, as shown in
Fig. 3a-(i), (ii), (iii). To monitor the amount of valid information retained by the
query following interaction with the audio branch, we introduce a classification
coverage score. This score is computed by comparing the predictions generated
after passing through the audio transformer decoder with the ground-truth class
label, using the Jaccard index. We show qualitative results in Fig. 3a for the des-
ignated scenario and quantitative results in Fig. 3b for the AVSBench-Semantics
testing set. The comparison starts with AVSegFormer as the baseline method
with progressive addition of our proposed modules, similar to Tab. 4. Notice
that each CPM sub-module contributes to refining key semantic information
from the audio modality, as evidenced by the segmentation mask predictions
and the improvement in Jaccard indexes. This shows the effectiveness of CPM.
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 GT

Image

 TPAVI

 AVSegFormer

 CAVP

 CPM

Fig. 5: Qualitative audio-visual segmentation results on AVSBench-Semantics [56] by
TPAVI [57], AVSegFormer [14], CAVP [7] and our CPM, which can be compared with
the ground truth (GT) Ambulance of the first row.

Ablation of Distribution Representation Table 5 provides a study of the
GMM data distribution representation on AVSBench-Semantics [56]. The first
row (Point Rep.) replaces the GMM module with a linear SoftMax for the classi-
fication output, introducing a learnable C×Dq feature map (i.e., Dq-dimensional
feature embeddings for C semantic classes for the audio and visual prompting
task). The second row (Dist Rep.) shows our approach with the CCDM module,
showing that the utilisation of the distribution modelling leads to considerable
improvements of 1.29% and 1.96% on mIoU and Fβ respectively. The next rows
of Tab. 5 show a hyper-parameter analysis on the number of GMM components
(from M = 1 to M = 7 components). Results reveal that 3 GMM components
enable the best fitting for the data distribution, leading to the top performance
with a maximum improvement of 1.42% and 1.95% on mIoU and Fβ .

5 Discussion and Conclusion
We introduced CPM, a new audio-visual training method designed for the Mask-
former based framework to enhance bipartite matching stability and improve the
efficacy of cross-modal attention for audio-visual segmentation. We proposed
a class-conditional prompting learning strategy that combines class-agnostic
queries with class-conditional queries, sampled from our iteratively updated gen-
erative model. The generated class-conditional queries are utilised to probe both
the magnitude spectrogram and the image feature map, aiming to remove off-the-
screen noise and bypass bipartite matching to produce a more stable learning
process. Lastly, we extend the class-conditional queries to a new prompting-
based audio-visual contrastive learning to explicitly constrain the cross-modal
representations. SOTA results on AVS benchmarks suggest that CPM can be a
valuable resource for future AVS research.
Limitations and future work. We acknowledge that the current adaptation
of stereo audio into the transformer-based method has limitations, as it encodes
positional and semantic information jointly within the transformer block. This
contrasts with the typical approach of separately encoding these two types of in-
formation in the transformer-based framework. Our future work will concentrate
on optimizing this framework through the integration of spatial reasoning.
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