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In this supplementary material, we provide additional details about our net-
work and show more experimental results of the proposed methods. In Sec. 1,
we illustrate more implementation details of our network, including the feature
extraction pyramid and our Local-to-Global Fusion (LoGo Fusion) module. In
Sec. 2, we give the details about data augmentation, coordinate transformation,
and fusion mask. In Sec. 3, we provide a graphical demonstration of our LoGo
Fusion. In Sec. 4, we compare our method with other deep visual odometry
methods on the KITTI odometry dataset [1]. In Sec. 5, we show more trajectory
visualization results on KITTI 00-10 sequences.

1 Network Settings

As illustrated in Tab. 1 and Tab. 2, more implementation details of our network
are shown. Tab. 1 includes settings of our point and image feature extraction
pyramid in each layer. For our Local-to-Global fusion (LoGo Fusion), we retain
the feature channels of extracted point features FP ∈ RD and image features
FI ∈ RC to be the same (C = D). The extracted features are then fed into our
LoGo Fusion module. Therefore, the "input dim" of our Local and Global Fuser
should be the same as the channels of extracted features as shown in Tab. 2.

2 Data Preprocessing

Data Augmentation. Far points at the edge of point cloud frames are com-
monly considered outliers, which undermine the final accuracy. Thus, we filter
these outliers and maintain points within a 30m × 30m square space before the
point feature extraction. For the robustness of the network, we also augment
the training dataset with a matrix Taug, which is generated by random rotation
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Table 1: Implementation details of our feature extraction pyramid. In the
point feature extraction pyramid, ‘N’ indicates the number of selected neighbor points
in down-sampling. ‘MLP’ represents the output dimension of each MLP layer. ‘Sample
rate’ is the stride in point feature down-sampling. In the image feature extraction
pyramid, ‘Stride’ includes the stride sizes in each 2D convolutional layer. We set the
feature channels of extracted point features and image features to be the same.

Layer N MLP Sample rate

Point Feature Extraction Pyramid

Layer 0 32 [8,8,16] 1/32
Layer 1 32 [16,16,32] 1/4
Layer 2 16 [32,32,64] 1/4
Layer 3 16 [64,64,128] 1/2

Layer Input Dim Output Dim Stride

Image Feature Extraction Pyramid

Layer 0 3 16 [2,3]
Layer 1 16 32 [1,2]
Layer 2 32 64 [1,2]
Layer 3 64 128 [1,2]

Table 2: Implementation details of our LoGo Fusion. ‘Input dim’ and ‘Output
dim’ respectively represent the input and output channels.

Layer Input Dim Output Dim

Local Fuser

Layer 0 16 16
Layer 1 32 32
Layer 2 64 64
Layer 3 128 128

Global Fuser

Layer 0 16 16
Layer 1 32 32
Layer 2 64 64
Layer 3 128 128

angles following a Gaussian distribution. Finally, the input point clouds PC are
as follows:

PCf = Taug · PC (where x < 30m, y < 30m) , (1)

where PC is the raw point cloud from the KITTI training dataset. PCf is the
final point cloud. The final point cloud is then fed into the network for point
feature extraction.

Coordinate Transformation. In order to fuse the underlying multi-modal
information and merge corresponding image features in a local region, we need
to transfer the raw point cloud coordinates to the image coordinate system to
obtain 2D coordinates Y for the feature gathering. In the transformation process,
we calculate the transformation matrix Tl2c between the LiDAR and camera
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Fig. 1: The visualization of the masked points in the whole point cloud PC. a) is the
image captured from cameras. b) shows the masked points (colored red) in the whole
point cloud PC (colored gray). c) is the masked points in the camera view.

coordinate systems by utilizing the camera intrinsic and extrinsic matrices:

Tl2c = Rr2c · Tl2r, (2)

where Tl2r represents the transformation matrix from LiDAR to reference camera
coordinates. Rr2c is the rotation matrix from the reference camera coordinate
system to the left camera coordinate system. We then apply Tl2c to the raw
point cloud coordinates to obtain the 3D coordinates X in the camera coordinate
system. After the transformation, we project X onto the image plane to obtain
the 2D coordinates Y by utilizing the projection matrix Pc2i:

Y = Pc2i ·X. (3)

Fusion Mask. However, there is a large difference in the range that can be
captured by the camera and LiDAR sensors. Cameras can only acquire images
within a limited range, while LiDAR can capture information from 360◦ in the
horizontal direction around it, resulting in a large number of points not being
able to be projected onto the image plane. In order to fully utilize the visual-
LiDAR information and preserve the 3D structure of the raw point cloud as
much as possible, we adopt divide and conquer strategy. Specially, we design a
binary fusion mask M , which can indicate which point can be projected onto
the image plane as:

M =

{
1, 0 < x′ < WI , 0 < y′ < HI

0, otherwise , (4)

where x′, y′ are 2D coordinates projected from LiDAR in the image coordinate
system. WI , HI are the width and height of the corresponding image. We utilize
this mask to indicate which point can be projected onto the image plane. We only
perform feature fusion on these points. For those which can not be projected onto
the image plane, we retain their original extracted features. The visualization of
the masked points in the whole point cloud PC is shown in Fig. 1.
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Fig. 2: Architecture of our LoGo Fusion. Our LoGo Fusion consists of two main
components: Local Fuser and Global Fuser. In Local Fuser, the image (pseudo points)
feature will be clustered and aggregated based on the cosine similarities. An MLP
layer is applied to the aggregated features to generate the local fused features FL. In
Global Fuser, adaptive weights AP and AL are obtained from FP and FL through MLP
and sigmoid activation layers. Finally, we aggregate FP and FL with AP and AL by
element-wise product ⊙ and weighted sum ⊕ to generate the global fused features FG.

3 Architecture of LoGo Fusion

In this section, we provide a graphical demonstration of our Local-to-Global
Fusion (LoGo Fusion) module. As illustrated in Fig. 2, our LoGo Fusion consists
of two main components: Local Fuser and Global Fuser. Given point features
FP , their corresponding 2D coordinates x′, y′ in the image coordinate system
and image features FI , we firstly reshape FI as a collection of pseudo points Fpp.
Then, we view points as the cluster centers and compute the center features Fc

by the bilinear interpolation on FI based on x′, y′. We divide all pseudo points
into several clusters according to the pair-wise cosine similarity matrix S between
center features Fc and pseudo point features Fpp. Finally, we aggregate all pseudo
point features Fpp within the same cluster based on the similarities to the cluster
center Fc, dynamically obtaining the local fused features FL. FL is then fed into
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Table 3: Comparison with different deep visual odometry methods on the KITTI
odometry dataset [1]. trel and rrel mean the average sequence translational RMSE (%)
and the average sequence rotational RMSE (◦/100m) respectively on 03, 04, 05, 06, 07
and 10 sequences in the length of 100, 200, ..., 800m. The best results for each sequence
are bold, and the second best results are underlined.

Method 03 04 05 06 07 10 Mean
trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

DeepVO [5] 8.49 6.90 7.19 7.00 2.62 3.60 5.42 5.80 3.91 4.60 8.11 8.80 5.96 6.00
ESP-VO [6] 6.72 6.50 6.33 6.10 3.35 4.90 7.24 7.30 3.52 5.00 9.77 10.20 6.16 6.60
GFS-VO [7] 5.44 3.30 2.91 1.30 3.27 1.60 8.50 2.70 3.37 2.30 6.32 2.30 4.97 2.30
GFS-VO-RNN [7] 6.36 3.60 5.95 2.40 5.85 2.60 14.58 5.00 5.88 2.60 7.44 3.20 7.68 3.20
BRNN [9] 4.74 3.10 3.90 2.20 6.02 2.70 9.59 2.40 5.28 2.30 7.04 3.30 6.10 2.60
BeyondTracking [8] 3.32 2.10 2.96 1.80 2.59 1.30 4.92 1.90 3.07 1.80 3.94 1.70 3.47 1.80
DAVO [2] 5.50 2.70 6.03 2.40 2.28 1.10 4.19 2.70 4.11 2.60 4.26 1.70 4.40 2.20
DeepAVO [10] 3.64 1.90 3.88 0.60 2.57 1.20 4.96 1.30 3.36 2.20 5.49 2.50 3.98 1.20
Miao et al . [3] 1.85 0.85 1.40 1.10 1.79 1.10 1.67 0.92 2.55 1.50 1.87 0.92 1.86 1.10
Ours 0.62 0.49 0.69 0.34 0.75 0.37 1.16 0.47 0.56 0.33 1.26 0.59 0.84 0.43

Table 4: Robustness comparison for sensor noise and asymmetric sensor degradation.

Method Settings 07 08 09 10 Mean(07-10)
trel rrel trel rrel trel rrel trel rrel trel rrel

EfficientLO [4] None 0.37 0.26 1.22 0.48 0.87 0.38 0.91 0.50 0.86 0.41
Ours None 0.46 0.33 1.09 0.44 0.85 0.36 0.88 0.46 0.82 0.41
EfficientLO [4] Add noise 0.41 0.29 1.35 0.54 0.97 0.43 1.12 0.52 0.96(+12%) 0.44(+7%)
Ours Add noise 0.46 0.32 1.14 0.47 0.91 0.38 0.93 0.51 0.86(+5%) 0.42(+2%)
EfficientLO [4] Drop 50 Frames 0.45 0.37 1.40 0.56 0.98 0.43 2.21 0.76 1.26(+47%) 0.53(+29%)
Ours Drop 50 Frames 0.53 0.36 1.23 0.51 0.96 0.39 1.01 0.51 0.93(+13%) 0.44(+7%)

the Global Fuser with FP . In Global Fuser, we convert the sparse LiDAR points
to structured pseudo images by the cylindrical projection. Then we apply MLP
layers and sigmoid activation function on both point (pseudo image) features
FP and local fused features FL to obtain their corresponding adaptive weights
AP , AL, respectively. Finally, we aggregate FP and FL by element-wise product
and weighted sum to generate the global fused features FG.

4 Additional Comparison Experiments

Comparison with deep visual odometry methods. Since many deep visual
odometry methods [2, 3, 5–10] are trained on 00, 02, 08 and 09 sequences and
tested on 03, 04, 05, 06, 07 and 10 sequences, we also train our DVLO accordingly
and compare our performance with them on the same testing sequences. The
results are shown in Tab. 3, demonstrating that our DVLO which utilizes visual-
LiDAR information outperforms all these pure visual odometry works on all
testing sequences. Compared with Miao et al .’s work [3], our method’s mean
errors trel and rrel on sequences 03, 04, 05, 06, 07, and 10 sequences have a 53.8%
and a 60.0% decline, respectively. The gratifying results show the effectiveness
of fusing multi-modal information to enhance the accuracy of pose estimation.

Robustness to noise and asymmetric sensor degradation. Compared
with the single-modality method [4], our multi-modal odometry has better ro-
bustness for noise and sensor drop as in Tab. 4. We add the same Gaussian noise
and sensor drop (remove consecutive 50 frames of each sequence) to LiDAR here.
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Also, another motivation is sensor complementarity since VO commonly fails in
texture-less regions and LO is highly influenced by fog and snow.

5 The visualization of Trajectories on KITTI

Although we have shown some of our trajectory visualization results, we give
a more comprehensive visualization of all sequences. Firstly, the 2D trajectory
of our network has been visualized in Fig. 3. We compare our 2D trajectories
with the ground-truth, which demonstrates that our trajectory can track the 2D
ground-truth path well on all sequences.

Additionally, we also compare the 3D trajectories of our network and the
ground truth in Fig. 4. It’s shown that our odometry has high accuracy and can
track the 3D ground-truth path well.
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Fig. 3: The 2D trajectory of ground-truth and ours. Comprehensive 2D trajectory
results are shown here on 00-10 sequences.
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Fig. 4: The 3D trajectory of ground-truth and ours. Comprehensive 3D trajectory
results are shown here on 00-10 sequences.
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