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Abstract. Information inside visual and LiDAR data is well comple-
mentary derived from the fine-grained texture of images and massive
geometric information in point clouds. However, it remains challenging
to explore effective visual-LiDAR fusion, mainly due to the intrinsic data
structure inconsistency between two modalities: Image pixels are regu-
lar and dense, but LiDAR points are unordered and sparse. To address
the problem, we propose a local-to-global fusion network (DVLO) with
bi-directional structure alignment. To obtain locally fused features, we
project points onto the image plane as cluster centers and cluster im-
age pixels around each center. Image pixels are pre-organized as pseudo
points for image-to-point structure alignment. Then, we convert points to
pseudo images by cylindrical projection (point-to-image structure align-
ment) and perform adaptive global feature fusion between point features
and local fused features. Our method achieves state-of-the-art perfor-
mance on KITTI odometry and FlyingThings3D scene flow datasets
compared to both single-modal and multi-modal methods. Codes are
released at https://github.com/IRMVLab/DVLO.

Keywords: Visual-LiDAR Odometry · Multi-Modal Fusion · Local-to-
Global Fusion · Bi-Directional Structure Alignment

1 Introduction

Visual/LiDAR odometry is a fundamental task in the field of computer vision
and robotics, which estimates the relative pose transformation between two
consecutive images or point clouds. It is widely applied in autonomous driv-
ing [19,55,62,71], SLAM [8,9,61,72], navigation [33–35] etc. Recently, the multi-
modal odometry [15, 57, 73] has gained increasing attention because it can take
advantage of complementary information from different modalities and possess
the strong robustness for asymmetric sensor degradation [10].
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Fig. 1: Different fusion strategies for images and points. Most previous works only
perform the fusion globally [53] or locally [73]. Our DVLO designs a local-to-global
fusion strategy that facilitates the interaction of global information while preserving
local fine-grained information. Furthermore, a bi-directional structure alignment is de-
signed to maximize the inter-modality complementarity.

Previous visual-LiDAR odometry works can be classified into two categories:
traditional methods [15, 16, 57, 64] and learning-based methods [51, 53, 73]. Tra-
ditional methods accomplish the odometry task through a pipeline consisting
of feature extraction, frame-to-frame feature matching, motion estimation, and
optimization [64]. However, these methods suffer from inaccurate pose estima-
tion because of the poor quality and low resolution of extracted features [57].
With the development of deep learning, some methods [17,53] attempt to utilize
CNN-based methods for visual-LiDAR fusion and pose estimation. However, the
receptive field of feature fusion is limited by the stride and kernel size of CNN. To
enlarge the receptive field for multi-modal fusion, attention-based methods are
recently proposed, which leverage the cross-attention mechanism for the multi-
modal fusion [51, 73]. Attention-based methods can fuse multi-modal features
globally and establish the cross-frame association with larger receptive fields
because of their long-range dependencies. However, due to the quadratic compu-
tational complexity, attention-based methods commonly require larger computa-
tional consumption and longer inference time [37], which challenges the real-time
applications [51]. Moreover, previous learning-based methods mostly adopt the
only feature-level fusion strategy as illustrated in Fig. 1 a), which fails to capture
fine-grained pixel-to-point correspondences [29]. Recently, some networks [27,73]
design point-to-image projection and local feature aggregation as in Fig. 1 b).
However, their performances are still limited by the intrinsic data structure mis-
alignment between sparse LiDAR points and dense camera pixels [29].

To address these problems, we propose a novel local-to-global fusion network
(DVLO) with bi-directional structure alignment in Fig. 1 c). Our fusion mod-
ule consists of two parts: 1) An image is first viewed as a set of pseudo points
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inspired by [38] for fine-grained local fusion with LiDAR points (image-to-point
structure alignment). 2) Point clouds are also converted into pseudo images by
cylindrical projection for global adaptive fusion (point-to-image structure align-
ment). Specifically, a novel clustering-based local fusion module (Local Fuser)
is designed to perform local fine-grained feature fusion. We first project LiDAR
points onto the image plane based on their coordinate calibration matrices to find
the corresponding pixels as cluster centers. Meanwhile, for the image-to-point
structure alignment, image pixels are reshaped as a set of pseudo points [38].
Then, within a certain scope of each cluster center, we aggregate pseudo point
features to generate the local fused features based on the similarities to the clus-
ter centers dynamically. In the global fusion module, we project point clouds
onto the cylindrical surface to obtain pseudo images. Then, an adaptive fusion
mechanism is leveraged to merge the above local fused image features and point
(pseudo image) features for global fusion. It is worth noting that our fusion
module is hierarchically utilized at multi-scale feature maps between images and
points. The local fusion module can provide more fine-grained point-to-pixel cor-
respondence information, while the global fusion has a larger receptive field and
achieves more global information interaction.

Overall, our contributions are as follows:

1. We propose a local-to-global fusion odometry network with bi-directional
structure alignment. We cluster image pixels viewed as a set of pseudo points
for local fusion with LiDAR points. Point clouds are also converted into
pseudo images through cylindrical projection for global adaptive fusion.

2. A pure clustering-based fusion module is designed to obtain the fine-grained
local fused features. To the best of our knowledge, our method is the first
deep clustering-based multi-modal fusion attempt, serving as an effective
and efficient fusion strategy alternative apart from CNN and transformer.

3. Extensive experiments on the KITTI odometry dataset [13,14] demonstrate
that our method outperforms all recent deep LiDAR, visual, and visual-
LiDAR fusion odometry works on most sequences. Furthermore, our fusion
strategy can generalize well to other multi-modal tasks, like scene flow esti-
mation, even surpassing recent SOTA method CamLiRAFT [29].

2 Related Work

Deep Visual Odometry. Recently, learning-based methods have shown im-
pressive performance in the visual odometry field [21, 22, 40, 45, 56]. The pio-
neering work [22] uses deep neural networks for odometry estimation with the
prediction of both speed and direction for individual images. PoseNet [21] ini-
tially employs Convolution Neural Networks (CNNs) to extract features from
the input image and then estimate the pose. DeepVO [56] applies deep recurrent
neural networks to capture the temporal dynamics and interdependency informa-
tion of sequences, thereby facilitating the estimation of ego-motion. Li et al . [25]
utilize the knowledge distillation technique based on pre-trained visual-LiDAR
odometry as a teacher for guiding the training of the visual odometry. Deng
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et al . [10] propose a long-term visual SLAM system with map prediction and
dynamics removal. NeRF-VO [40] improves the geometric accuracy of the scene
representation by optimizing a set of keyframe poses and the underlying dense
geometry through training the radiance field with volume rendering [59,60].

Deep LiDAR Odometry. In contrast to visual odometry, deep LiDAR odom-
etry is still a challenging task because of the large number, irregularity, and
sparsity of raw LiDAR points [5, 54, 69]. Nicolai et al . [41] first introduce the
deep learning technique into LiDAR odometry. They project 3D LiDAR points
onto the 2D plane to obtain 2D depth images, and then employ 2D learning
methods for pose estimation. DeepPCO [58] projects point clouds to panoramic
depth images and applies two sub-networks to estimate the translation and ro-
tation respectively. LO-Net [26] also converts points to 2D format by projection
and uses the normal of each 3D point and dynamical masks to further improve
the performance. PWCLO [55] introduces the PWC [50] structure for the LiDAR
odometry task, which hierarchically refines estimated poses by an iterative warp-
refinement module. EfficientLO [54] proposes a projection-aware operator for im-
proving the efficiency of LiDAR odometry. TransLO [30] designs a window-based
masked point transformer to enhance global feature embeddings and remove out-
liers. DELO [1] introduces partial optimal transportation of LiDAR descriptors
and predictive uncertainty for robust pose estimation. NeRF-LOAM [7] applies
a neural radiation field to the LiDAR odometry system, showing excellent gen-
eralization capabilities across various environments.

Viusal-LiDAR Odometry. Recently, there has been an increasing focus on
visual-LiDAR odometry, which takes advantage of both 2D texture and 3D geo-
metric features. Existing visual-LiDAR odometry can be classified into two cat-
egories: traditional methods and learning-based methods. For traditional meth-
ods, V-LOAM [67] leverages the high-frequency estimated poses from visual
odometry as a motion prior for the low-frequency LiDAR odometry, resulting
in refined motion estimation. LIMO [15] utilizes depth information derived from
LiDAR points to alleviate the scale uncertainty that is intrinsic to monocular
visual odometry. PL-LOAM [16] provides a pure visual motion tracking method
and a novel scale correction algorithm. DV-LOAM [57] is a SLAM framework
including a two-stage direct visual odometry module, a LiDAR mapping module
with considerations of dynamic objects, and a parallel global and local search
loop closure detection module. SDV-LOAM [64] combines the semi-direct visual
odometry with an adaptive sweep-to-map LiDAR odometry to tackle the chal-
lenges of 3D-2D depth correlation. For learning-based methods, MVL-SLAM [3]
employs the RCNN network architecture, fusing RGB images and multi-channel
depth images from 3D LiDAR points. LIP-Loc [48] proposes a pre-training strat-
egy for cross-modal localization, which utilizes contrastive learning to jointly
train image and point encoders. However, the problem of natural data structure
inconsistency between points and images has not been fully considered before. To
the best of our knowledge, our work is the first visual-LiDAR odometry network
with bi-directional structure alignment.
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Fig. 2: The pipeline of our proposed DVLO. We propose a novel Local-to-Global
(LoGo) fusion module, which consists of a clustering-based Local Fuser and an adap-
tive Global Fuser. The pose is initially regressed from the cost volume of the coarsest
fused features and then refined iteratively from fused features in shallower layers.

3 Methodology

3.1 Overall Architecture

The overall architecture of our proposed DVLO is illustrated in Fig. 2. Given
two point clouds PCS , PCT ∈ RN×3 and their corresponding monocular camera
images IS , IT ∈ RH×W×3 from a pair of consecutive frames, the goal of our
odometry is to estimate the relative pose including both rotation quaternion
q ∈ R4 and translation vector t ∈ R3 between two frames.

In detail, we first feed the camera images and LiDAR points into the hierar-
chical feature extraction module in Sec. 3.2 to obtain multi-level image features
and point features. Then, in Sec. 3.3 and Sec. 3.4, we delve into the details
of our designed local-to-global fusion module. Finally, poses are estimated and
iteratively refined from fused features as in Sec. 3.5.

3.2 Hierarchical Feature Extraction

Point Feature Extraction. Due to the irregularity and sparsity of the raw
point clouds, we first project them onto a cylindrical surface [30, 54] to orderly



6 J. Liu et al.

organize points. Their corresponding 2D positions are:

u = arctan 2 (y/x) /∆θ, (1)

v = arcsin
(
z/

√
x2 + y2 + z2

)
/∆ϕ, (2)

where x, y, z are the raw 3D coordinates of point cloud. u, v are the corresponding
2D pixel positions on the projected pseudo image. ∆θ and ∆ϕ are horizontal and
vertical resolutions of the LiDAR sensor, respectively. To make the best use of
geometric information of raw 3D points, we fill each projected 2D position with
its corresponding original 3D coordinates. In this case, LiDAR points can not
only be converted into the pseudo image structure [26] for better alignment and
global feature fusion with images in Sec. 3.4, but also retain the original 3D
geometric information for effective feature extraction. Then, pseudo images of
size HP ×WP × 3 in Fig. 2 will be fed into the hierarchical feature extraction
module [54] to extract multi-level point features FP ∈ RHP×WP×D, where D is
the number of channels of the pseudo image features.
Image Feature Extraction. Given the camera images I ∈ RH×W×3, we utilize
the convolution-based feature pyramid in [17] to extract image features FI ∈
RHI×WI×C , where HI , WI are the height and width of the feature map. C is the
number of channels of the image features.

3.3 Local Fuser Module

Inspired by Context Clusters [38] which proposes a generic clustering-based vi-
sual backbone viewing images as a set of points, we extend it and propose a novel
clustering-based feature fusion module (Local Fuser) without any CNN or trans-
former. The module can locally merge more fine-grained 2D texture from images
and geometric features from points within each cluster as shown in Fig. 3. Our
clustering-based method also maintains high efficiency, where the total inference
time is only half of the attention-based methods as in Tab. 7.
From Image to Pseudo Points. Given image features FI ∈ RHI×WI×C ,
we first reshape them as a collection of pseudo points Fpp ∈ RM×C , where
M = HI × WI is the number of pseudo points. In this case, images have the
same data structure as LiDAR points, which facilitates the local pixel-to-point
correspondence establishment and further clustering-based feature aggregation.
Pseudo Point Clustering. We first project LiDAR points onto the image plane
to obtain their corresponding 2D coordinates x′ and y′ in the image coordinate
system as cluster centers. The center feature Fc ∈ RN×C is computed by the
bilinear interpolation on FI based on x′, y′. Then, we divide all pseudo points
into several clusters according to the pair-wise cosine similarities between center
features Fc and pseudo point features Fpp. Here, we allocate each pseudo point
to the most similar center, resulting in N clusters. For efficiency, following Swin
Transformer [37], we use the region partition while computing similarity.
Local Feature Aggregation. Following [38], we aggregate all pseudo point
features within the same cluster based on the similarities to the cluster center
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Fig. 3: Our designed Local-to-Global (LoGo) Fusion module. We project points onto
the image plane based on the coordinate system transformation matrix as cluster cen-
ters and convert the image into a set of pseudo points. Then, we locally aggregate
pseudo point features based on the similarities to each cluster center.

dynamically. Given the cluster which contains k pseudo points around the i-th
cluster center, the local fused feature F i

L ∈ R1×C is calculated by:

F i
L =

1

X

F i
c +

k∑
j=1

sigmoid (αsij + β) · F j
pp

 , (3)

X = 1 +

k∑
j=1

sigmoid (αsij + β) , (4)

where F j
pp is the j-th pseudo point’s feature. sij is the similarity score between

the j-th pseudo point and i-th cluster center. α and β are learnable scalars
to scale and shift the similarity. sigmoid (·) is a sigmoid function to re-scale the
similarity to (0, 1). X is the normalization factor. Since we project LiDAR points
onto the image plane as cluster centers and aggregate features for each center,
local fused feature FL ∈ RN×C has the same dimension with original LiDAR
points. Therefore, we can also reshape the local fused feature FL like a pseudo
image with the size of HP ×WP × C as the input of the Global Fuser module.

3.4 Global Fuser Module

Since local feature fusion is only conducted within a partitioned region, the above
Local Fuser module has a limited receptive field. To expand the receptive field for
sufficient feature fusion, we introduce the global adaptive fusion mechanism [43]
between local fused feature FL and point (pseudo image) feature FP as shown in
Fig. 3. Our Global Fuser can enable the global information interaction between
two modalities, which facilitates to recognize dynamics and occlusion because
they introduce inconsistent global motions [31].
From Points to Pseudo Image. We convert the sparse LiDAR points to struc-
tured pseudo images by the cylindrical projection in Sec. 3.2. In this case, point
feature FP has the size of HP ×WP ×D. This process reorganizes the origi-
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nally sparse unstructured points as dense structured pseudo images, enabling
the following dense feature map fusion with image features.
Adaptive Fusion. Given the local fused features FL ∈ RHP×WP×C and point
features FP ∈ RHP×WP×D, we perform the adaptive global fusion as:

AP = sigmoid(MLP (FP )), (5)
AL = sigmoid(MLP (FL)), (6)

FG =
AP ⊙ FP +AL ⊙ FL

Ap +AL
, (7)

where AP and AL are the adaptive weights for point (pseudo image) features
and local fused features, which are obtained by the sigmoid function and MLP
layers. ⊙ represents the element-wise product. We then reshape the global fused
feature FG back to the size of N×D as the input of the iterative pose estimation.

3.5 Iterative Pose Estimation

Following [54, 55], we use the attentive cost volume to generate the coarse em-
bedding features E ∈ RN×D by associating global fused features F 3

GS and F 3
GT

of two frames in the coarsest layer. The embedding features contain the correla-
tion information between two consecutive frames. Then, we utilize the weighting
embedding mask M on the embedding features E to regress the pose transfor-
mation. The weighting embedding mask M is calculated by:

M = softmax(MLP (E ⊕ F 3
GS)), (8)

where M ∈ RN×D is the learnable masks. F 3
GS ∈ RN×D is the global fused

features in the source frame. Then, the quaternion q ∈ R4 and translation vector
t ∈ R3 are generated by weighting embedding features and FC layers:

q =
FC(E ⊙M)

|FC(E ⊙M)|
, (9)

t = FC(E ⊙M). (10)

After the initial estimation q and t, we refine them by the iterative refinement
module in [55] to get the final pose. The refined quaternion ql and translation
vector tl of the l layer can be calculated by:

ql = ∆qlql+1, (11)

[0, tl] = ∆ql[0, tl+1](∆ql)−1 + [0, ∆tl], (12)

where pose residuals ∆ql and ∆tl can be obtained by the similar process in the
coarsest layer following Eq. (9) and Eq. (10).
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Table 1: Comparison with different odometry networks on the KITTI odometry
dataset [13]. trel and rrel mean the average sequence translational RMSE (%) and
the average sequence rotational RMSE (◦/100m) respectively on 00-10 subsequences
in the length of 100, 200, ..., 800m. The best results are bold, and the second best
results are underlined. ∗ represents the model is trained on the 00-08 sequences.

Method 00 01 02 03 04 05 06 07 08 09 10 mean (07-10)
trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

Visual Odometry Methods:

SfMLearner∗ [70] 21.32 6.19 22.41 2.79 24.10 4.18 12.56 4.52 4.32 3.28 12.99 4.66 15.55 5.58 12.61 6.31 10.66 3.75 11.32 4.07 15.25 4.06 12.46 4.55
MLM-SFM∗ [49] 2.04 0.48 – – 1.50 0.35 3.37 0.21 1.43 0.23 2.19 0.38 2.09 0.81 – – 2.37 0.44 1.76 0.47 2.12 0.85 2.08 0.59
DFVO∗ [65] 2.01 0.79 61.17 18.96 2.46 0.79 3.27 0.89 0.79 0.56 1.50 0.74 1.95 0.76 2.28 1.16 2.11 0.74 3.21 0.59 2.89 0.97 2.62 0.87
Cho et al . ∗ [6] 1.77 0.79 64.38 16.87 2.62 0.74 3.06 0.89 0.65 0.55 1.31 0.74 1.60 0.56 1.06 0.67 2.28 0.76 2.66 0.53 2.95 0.95 2.24 0.73

LiDAR Odometry Methods:

LO-Net [26] 1.47 0.72 1.36 0.47 1.52 0.71 1.03 0.66 0.51 0.65 1.04 0.69 0.71 0.50 1.70 0.89 2.12 0.77 1.37 0.58 1.80 0.93 1.75 0.79
PWCLO [55] 0.89 0.43 1.11 0.42 1.87 0.76 1.42 0.92 1.15 0.94 1.34 0.71 0.60 0.38 1.16 1.00 1.68 0.72 0.88 0.46 2.14 0.71 1.47 0.72
DELO [1] 1.43 0.81 2.19 0.57 1.48 0.52 1.38 1.10 2.45 1.70 1.27 0.64 0.83 0.35 0.58 0.41 1.36 0.64 1.23 0.57 1.53 0.90 1.18 0.63
TransLO [30] 0.85 0.38 1.16 0.45 0.88 0.34 1.00 0.71 0.34 0.18 0.63 0.41 0.73 0.31 0.55 0.43 1.29 0.50 0.95 0.46 1.18 0.61 0.99 0.50
EfficientLO [54] 0.80 0.37 0.91 0.40 0.94 0.32 0.51 0.43 0.38 0.30 0.57 0.33 0.36 0.23 0.37 0.26 1.22 0.48 0.87 0.38 0.91 0.50 0.86 0.41

Multimodal Odometry Methods:

An et al . ∗ [3] 2.53 0.79 3.76 0.80 3.95 1.05 2.75 1.39 1.81 1.48 3.49 0.79 1.84 0.83 3.27 1.51 2.75 1.61 3.70 1.83 4.65 0.51 3.59 1.37
H-VLO∗ [4] 1.75 0.62 43.2 0.46 2.32 0.60 2.52 0.47 0.73 0.36 0.85 0.35 0.75 0.30 0.79 0.48 1.35 0.38 1.89 0.34 1.39 0.52 1.36 0.43
Ours 0.80 0.35 0.85 0.33 0.81 0.29 0.59 0.36 0.26 0.13 0.41 0.23 0.33 0.17 0.46 0.33 1.09 0.44 0.85 0.36 0.88 0.46 0.82 0.41

3.6 Loss Function

Our network outputs ql and tl from four layers will be involved to calculate the
supervised loss Ll [54, 55]. The training loss function of l-th layer is:

Ll =
∥∥tgt − tl

∥∥ exp(−kx) + kx +
∥∥qgt − ql

∥∥
2
exp(−kq) + kq, (13)

where tgt and qgt are the ground truth translation and quaternion, respectively.
kx and kq are the learnable scalars to scale the loss. ∥·∥ and ∥·∥2 are the L1 and
L2 norm, respectively. Then, the total training loss is:

L =

L∑
l=1

αlLl, (14)

where L is the total number of layers (set as 4), and αl is a hyperparameter
representing the weight of l layer.

4 Experiment

4.1 KITTI Odometry Dataset

We evaluate our DVLO on the KITTI odometry dataset [13], which is a widely
used benchmark for the evaluation of odometry and SLAM system. The dataset
consists of 22 sequences of LiDAR point clouds and their corresponding stereo
images. In this paper, we only use the monocular left camera image for the
fusion with the LiDAR sensor. Since the ground truth pose (trajectory) is only
available for sequences 00-10, we utilize these sequences for training and testing.
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Table 2: Comparison with traditional visual-LiDAR odometry on KITTI 00-10 se-
quences. Our DVLO is trained on 00-06 sequences. The best results for each sequence
are bold, and the second best results are underlined.

Method 00 01 02 03 04 05 06 07 08 09 10 Mean(00-10)
trel trel trel trel trel trel trel trel trel trel trel trel

V-LOAM [67] – – – – – – – – – 1.74 1.01 1.38
DVL-SLAM [46] 0.93 1.47 1.11 0.92 0.67 0.82 0.92 1.26 1.32 0.66 0.70 0.98
PL-LOAM [16] 0.99 1.87 1.38 0.65 0.42 0.72 0.61 0.56 1.27 1.06 0.83 0.94
Ours 0.80 0.85 0.81 0.59 0.26 0.41 0.33 0.46 1.09 0.85 0.88 0.67

Table 3: Comparison with learning-based multi-modal odometry on KITTI 09-10
sequences. Our DVLO is trained on 00-06 sequences while other models are trained on
00-08 sequences. The best results are bold, and the second best results are underlined.

Method Modalities 09 10 Mean (09-10)
trel rrel trel rrel trel rrel

Self-VLO [24] visual+LiDAR 2.58 1.13 2.67 1.28 2.62 1.21
H-VLO [4] visual+LiDAR 1.89 0.34 1.39 0.52 1.64 0.43
SelfVIO [2] visual+inertial 1.95 1.15 1.81 1.30 1.88 1.23
VIOLearner [44] visual+inertial 1.82 1.08 1.74 1.38 1.78 1.23
Ours visual+LiDAR 0.85 0.36 0.88 0.46 0.87 0.41

4.2 Implementation Details

Data Preprocessing. We directly input all LiDAR points without downsam-
pling. The projected pseudo image size is set in line with the range of the LiDAR
sensor as 64 × 1800. We pad the camera images to a uniform size of 384 × 1280.
Since there is a large spatial range difference between the camera and LiDAR,
we design a fusion mask to indicate which point can be fused with the image.
Parameters. Experiments are conducted on an NVIDIA RTX 4090 GPU with
PyTorch 1.10.1. We use Adam optimizer with β1 = 0.9, β2 = 0.999. The initial
learning rate is set to 0.001 and exponentially decays every 200000 steps until
0.00001. Batch size is 8. αl for four layers are 1.6, 0.8, 0.4, and 0.2. Initial values
of learnable parameters kx and kq are set as 0.0 and -2.5, respectively.
Evaluation Metrics. We follow protocols of PWCLO [55] to evaluate our
method with two metrics: (1) Average sequence translational RMSE (%). (2)
Average sequence rotational RMSE (◦/100m).

4.3 Quantitative Results

Comparison with Visual/LiDAR Odometry. We compare our method with
some representative visual odometry (VO) or LiDAR odometry (LO) networks
for the comprehensive comparison. Following the settings in [55], we train our
model on 00-06 sequences. Quantitative results on the KITTI dataset are listed
in Tab. 1, which shows that our DVLO outperforms all these works on most
sequences. Compared with deep visual odometry, e.g ., DFVO [65] and Cho et
al . [6], our method’s mean errors trel and rrel on sequence 07-10 have a 63.4% and
a 43.8% decline, respectively. Notably, even though these VO methods are mostly
trained on larger data (00-08), our method still outperforms them by a large
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Table 4: Average inference time of different multi-modal odometry methods on the
sequence 07-10 of KITTI odometry dataset.

Method DV-LOAM [57] PL-LOAM [16] OKVIS-S [23] Shu et al . [47] Ours

Inference Time 167 ms 200 ms 143 ms 100ms 98.5 ms

a）2D trajectory of seq.00 b）2D trajectory of seq.03 c）2D trajectory of seq.05

e）3D trajectory of seq.02 f）3D trajectory of seq.06 g）3D trajectory of seq.08

d）2D trajectory of seq.07

h）3D trajectory of seq.09

Fig. 4: Trajectory of our estimated pose. This figure shows both 2D and 3D trajectories
of our network and also the ground truth one on the KITTI dataset.

margin. Compared with deep LiDAR odometry, our DVLO even outperforms
the recent SOTA method EfficientLO [54] on most sequences. Compared with
EfficientLO, our method has a competitive 0.41 ◦/100m rotation error. Moreover,
our mean translation error trel on testing sequences has a 4.9% decline compared
with theirs. The experiment results prove the effectiveness and great potential
for our visual-LiDAR fusion design.
Comparison with Traditional Multi-Modal Odometry. We compare the
performance between our method and previous traditional multi-modal odom-
etry works on the whole KITTI sequences (00-10). The results are shown in
Tab. 2, which demonstrates that our DVLO outperforms all these works on
most sequences. Compared with PL-LOAM [16], our method’s mean translation
error trel on sequence 00-10 has a 28.7% decline.
Comparison with Learning-based Multi-Modal Odometry. Because most
deep multi-modal fusion odometry methods are trained on the 00-08 sequences
and tested on the 09-10 sequences, we also compare the performance between
our DVLO and other learning-based multi-modal odometry works on the 09-10
sequences. The results are shown in Tab. 1 and Tab. 3. Notably, even though
our model is only trained on the 00-06 sequences, our method still outperforms
H-VLO on most sequences where our method has a 47.0% lower trel and 2.3%
lower rrel, which proves the superiority of our proposed fusion strategy.
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a) 2D trajectory of seq.07 b) 3D trajectory of seq.07 c) Translation and Rotation Errors

Fig. 5: Trajectory results of LOAM and ours on the KITTI sequence 07 with ground
truth. Our performance is better than LOAM both without and with mapping.

Fig. 6: Visualization of our designed local clustering-based fusion mechanism within
a certain cluster. Red points indicate the 2D positions of cluster centers. The yellow
regions are clustered pixels around each center.

4.4 Runtime Analysis

Efficiency is another extremely significant factor in real-time SLAM systems. As
shown in Tab. 4, we compare the runtime of our DVLO with other multi-modal
odometry methods. Since the LiDAR points in the KITTI dataset are captured
at a 10Hz frequency, previous multi-modal methods [16,23,47,57] rarely satisfy
the real-time application requirements (under 100 ms). However, our method has
only 98.5 ms inference time, which has the potential for real-time application.

4.5 Visualization Results.

In this section, we visualize 2D and 3D trajectories based on our estimated pose
in Fig. 4. The figure shows that our odometry can well track the trajectory of
the ground truth. We also conduct experiments to compare trajectory accuracy
and estimation errors between the classical method LOAM [66] and ours. Vi-
sualization results are shown in Fig. 5. Even though our designed odometry is
only the front end of the SLAM system without mapping, our method achieves
better localization performance than LOAM with mapping.
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Table 5: Comparison with previous scene flow estimation works on the “val” split of
the FlyingThings3D subset [39]. “RGB” and “XYZ” denote the image and point cloud
respectively. The best results are bold.

Method Reference Input 2D Metrics 3D Metrics
EPE2D ACC1px EPE3D ACC.05

FlowNet2 [18] CVPR’17 RGB 5.05 72.8 % - -
PWC-Net [50] CVPR’18 RGB 6.55 64.3 % - -
RAFT [52] ECCV’20 RGB 3.12 81.1 % - -

FlowNet3D [36] CVPR’19 XYZ - - 0.214 18.2 %
PointPWC [63] ECCV’20 XYZ - - 0.195 -
OGSF-Net [42] CVPR’21 XYZ - - 0.163 -

CamLiFlow [28] CVPR’22 RGB+XYZ 2.18 84.3 % 0.061 85.6 %
DELFlow [43] ICCV’23 RGB+XYZ 2.02 85.9 % 0.058 86.7 %
CamLiRAFT [29] TPAMI’23 RGB+XYZ 1.73 87.5 % 0.049 88.4 %

Ours — RGB+XYZ 1.69 87.6 % 0.048 88.6 %

HPLFlowNet PointPWC-Net FLOT Ours

Fig. 7: Visualization of our estimated scene flow. Blue points are the source points.
Green and red points respectively indicate the correct and wrong estimated target ones.

To illustrate the clustering mechanism in our designed local fusion module,
we also visualize the clustered pixels around specific cluster centers. As in Fig. 6,
pixels with similar texture information (yellow regions) are accurately clustered
by the point-wise cosine similarity calculation with the cluster centers (red dots).

4.6 Generalization to Scene Flow Estimation Task

It is worth noting that our design can serve as a generic fusion module, which
generalizes well to other tasks. Here, we extend our fusion module to the scene
flow estimation task [11,12,20,29,32,36,68]. As shown in Tab. 5, our method sur-
passes all recent SOTA multi-modal scene flow networks on the FlyingThings3D
dataset [39] in terms of both 2D and 3D metrics. Our method even consistently
outperforms CamLiRAFT [29], which is specially designed for the multi-modal
scene flow task. The experiment results demonstrate the strong generalization
and universal application capabilities of our method. We also visualize the esti-
mated flow in Fig. 7.

4.7 Ablation Study

In this section, extensive ablation studies are conducted to assess the significance
of our designed components.
Without Local Fuser. We remove the Local Fuser module from our network
and directly fuse the image and point features using the Global Fuser module.
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Table 6: Significance of Local Fuser (LoF) and Global Fuser (GoF) in our local-to-
global fusion network. The best results for each sequence are bold.

07 08 09 10 Mean (07-10)LoF GoF
trel rrel trel rrel trel rrel trel rrel trel rrel

√
0.48 0.34 1.11 0.50 1.11 0.50 1.02 0.54 0.93 0.47√
0.68 0.45 1.30 0.52 1.00 0.49 1.02 0.55 1.00 0.50√ √
0.46 0.34 1.09 0.44 0.85 0.36 0.88 0.48 0.82 0.41

Table 7: Ablation studies of different local fusion strategies. Our clustering-based local
fusion strategy can achieve the highest accuracy with half inference time compared with
attention-based ones. The best results in accuracy and efficiency are bold.

Method 07 08 09 10 Mean (07-10) Inference Time
trel rrel trel rrel trel rrel trel rrel trel rrel

Attention-based [37] 0.44 0.34 1.14 0.57 1.25 0.48 1.00 0.49 0.96 0.47 183.76 ms
Convolution-based [17] 0.50 0.37 1.25 0.50 1.14 0.58 1.06 0.56 0.99 0.50 87.24 ms
Clustering-based 0.46 0.34 1.09 0.44 0.85 0.36 0.88 0.48 0.82 0.41 98.50 ms

The results in Tab. 6 show that the performance of our model drops signifi-
cantly without Local Fuser. This demonstrates the importance of the Local Fuser
module since local point-to-pixel correspondences can merge more fine-grained
features from different modalities.
Without Global Fuser. We remove the Global Fuser module and directly use
the local fused features for pose estimation. Results in Tab. 6 demonstrate that
the limited receptive field of the Local Fuser module can not enable sufficient
global information interaction, which leads to about 13.4% higher trel and 14.6%
higher rrel. The global modeling ability of Global Fuser can help to recognize
outliers that are harmful to pose regression [31].
Local Fusion Strategy. We compare the performance of different local fusion
strategies. The results in Tab. 7 show that our clustering-based local fusion strat-
egy outperforms the convolution-based [17] and attention-based [37] strategy in
accuracy. Also, clustering-based fusion has a gratifying efficiency, where the to-
tal inference time is slightly higher than convolution-based fusion and half of
attention-based fusion methods.

5 Conclusion

In this paper, we propose a novel local-to-global fusion network with the bi-
directional structure alignment for visual-LiDAR odometry. A clustering-based
local fusion module is designed to provide fine-grained multi-modal feature ex-
change. Furthermore, an adaptive global fusion is designed to achieve global in-
formation interaction. Comprehensive experiments show that our DVLO achieves
state-of-the-art performance in terms of both accuracy and efficiency. Our fusion
module can also serve as a rather generic fusion strategy, which generalizes well
onto the multi-modal scene flow estimation task. We leave the generalization
experiments on more multi-modal tasks for future work.
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