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Fig. 1: Perception capability of CLIP for the authenticity-forgery attributes of images.

1 Perception Capability of CLIP for Forgery

In Figure[I] we illustrate the perception capability of the frozen CLIP regarding
the authenticity-forgery attributes of images and the performance using different
prompts. It can be observed that for each image, a semantically relevant prompt
related to the concepts of authentic or forged can achieve high scores in the CLIP
space. This indicates the potential of CLIP in distinguishing between forged
and authentic images. However, achieving this with fixed discrete prompts is
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not straightforward. For instance, in the case of a real image (the first image
in the first row of Figure [1]), replacing a similar concept like “authentic” with
“real” results in a significant increase in CLIP scores. Conversely, in the opposite
case (the second image in the first row of Figure |1), “authentic” becomes the
most suitable prompt. This suggests that the optimal prompt may vary for each
image due to the diversity of forged images. Therefore, finding precise words or
sentences to uniformly describe the authenticity-forgery attributes of images is
challenging, and prompt engineering is labor-intensive and time-consuming to
annotate each image. Given these considerations, we employ learnable prompts
to describe the authenticity-forgery attributes of images and achieve optimal
performance.

2 Baseline Models of the Manuscript

In the manuscript, our method is compared with various baseline models. They
are described as follows.

RGB-N [19]: This model adopts a two-stream Faster R-CNN network, in-
cluding an RGB stream and a noise stream, to discover tampering features and
noise inconsistency within an image separately.

ManTraNet [18|: This model leverages an end-to-end network, which ex-
tracts image manipulation trace features and identifies anomalous regions by
assessing how different a local feature is from its reference features.

SPAN |6]: This model constructs a pyramid of local self-attention blocks to
model the relationship between image patches at multiple scales.

PSCCNet [9]: This model processes the image in a two-path procedure: a
top-down path that extracts local and global features and a bottom-up path
that detects whether the input image is manipulated.

ObjectFormer [15]: This model extracts high-frequency features of the im-
ages and combines them with RGB features as multimodal patch embeddings to
capture subtle manipulation traces in the RGB domain.

HiFi-Net |4]: This model introduces a hierarchical fine-grained approach
to IFDL representation learning. Specifically, it conducts fine-grained classifica-
tion at various levels, leveraging their hierarchical dependencies for enhanced
performance.

SAFL-Net |14]: This model constrains a feature extractor to learn semantic-
agnostic features by designing specific modules with corresponding auxiliary
tasks. Meanwhile, it leverages boundary supervision to identify inconsistencies
in the features around the tampered boundary and design a feature conversion
structure to ensure the coherence of the auxiliary task and the primary task.

3 More Ablation Studies

3.1 Prompt initialization

To mitigate the difficulty of finding an accurate vector in a continuous semantic
space to measure the concept of authenticity-forgery, we use a pair of discrete
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prompts as initializations for learnable prompts. We try three sets of prompt
words: “Untouched/Manipulated”, “Authentic/Forged”, and “Real/Fake”. The re-
sults on the CASTA dataset using these three sets of prompt words as initializa-
tions and random initialization are shown in Table [l It can be observed that
using discrete prompts as initialization is better than random initialization, and
employing “Real /Fake” is an appropriate choice.

Table 1: Results on CASIA dataset using different prompt initialization. The image-
level F1 score (%) for the detection task and the pixel-level F1 score (%) for the
localization task are reported.
Random initialization Untouched/Manipulated Authentic/Forged Real/Fake
Detection 92.1 95.2 94.9 98.75
Localization 74.2 75.1 75.3 77.90

3.2 Comparison with the Linear Probe

To further validate the effectiveness of our method, we replace prompt learning
and the text encoder with the linear probe. Specifically, following [13|, we feed
the features outputted by the image encoder into a linear classifier for training.
This approach referred to as the linear probe, replaces the text-image similarity
calculation in our method for forgery detection. As shown in Table[2] our method
not only outperforms the linear probe in image-level detection performance but
also excels in pixel-level localization performance. This indicates that the prompt
learning in our method not only facilitates forgery detection by leveraging CLIP
priors but also refines localization through the guidance of learnable prompts.

Table 2: Comparison with the linear probe on the CASIA and COVER datasets.
‘Image’ refers to image-level AUC (%), and ‘Pixel’ refers to pixel-level AUC (%).

Linear Probe Ours

Image (CASIA) 98.7 99.8
Pixel (CASIA) 889  91.3
Image (COVER) 61.5 73.2
Pixel (COVER) 951  98.2

3.3 Ablation on localization decoder

Since the localization decoder is not the primary contribution of this paper, we
use a simple U-shaped decoder. To further explore the impact of this localiza-
tion decoder on performance, we conduct ablation experiments. In Table [3] we
design the following variants: replacing FiLM of the decoder with concatena-
tion (w/o FiLM), using convolution blocks instead of transformer blocks (w/o
transformer), and omitting skip connections (w/o U-Net). It is evident that our
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approach is the optimal choice. Furthermore, compared to the variants in Ta-
ble 4 of the manuscript, modifications to the decoder design do not result in
significant performance degradation. This indicates that the impact of decoder
design on performance is relatively small compared to the core components of
our method, IDPL and FENA.

Table 3: Ablation results of our scheme using different variants of localization de-
coders. Pixel-level AUC (%)and F1 scores (%) are reported.

CASIA  NISTI16
AUC F1 AUC F1
w/o FiLM 89.1 71.5 95.6 85.1
w/o transformer| 90.4 75.1 97.9 88.2
w/o U-Net |89.6 74.3 97.2 87.6
Ours 91.3 77.9 99.8 89.3

Variants

4 More Experimental Setups

Pre-training Data For splicing, we employ the MS COCO [8] to generate
spliced images, where one annotated region is randomly selected per image and
pasted into a different image after several transformations. We adopt the same
transformation as |1], including the scale, rotation, shift, and luminance changes.
Since the spliced region is not always an object, we create random outlines using
the Bezier curve [10] and fill them to create splicing masks. For copy-move, the
datasets from MS COCO and [17] are adopted. For removal, we adopt the SOTA
inpainting method [7] to fill one annotated region that is randomly removed
from each chosen MS COCO image. We randomly add Gaussian noise or apply
the JPEG compression algorithm to the generated data to resemble the visual
quality of images in realistic scenarios. It is worth noting that our method of
synthesizing datasets follows the previous seminal works [9}(15].

Testing Datasets Our test dataset includes CASIA |2]|, Coverage [16], Columbia
[5], Nist Nimble 2016 (NIST16) 3] and IMD20 [11]. Specifically, CASIA, which
contains two types of tampered images (splicing and copy-move), is widely used
in the image forgery domain. Coverage provides 100 images, and all of them are
generated by copy-move tampering technique. Columbia consists of 180 splicing
images, whose size ranges from 757 x 568 to 1152 x 568. NIST16 is a high-quality
dataset. IMD20 collects real-life manipulated images from Internet, and involves
all three manipulations as well.

Evaluation Metrics To quantify the localization performance, following pre-
vious works [6,[15], we use pixel-level Area Under Curve (AUC) and F1 score
on manipulation masks. To evaluate detection performance, we use image-level
AUC and F1 score. To further measure the miss detection rate and false alarm
rate, we report specificity and sensitivity on some challenging datasets. Since
binary masks are required to compute F1 scores, we adopt the Equal Error Rate
(EER) threshold to binarize them.
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Implementation details The input images are resized to 512 x 512. In this
work, the backbone is CLIP ViT-B/16 [13|. We enable CLIP to accept different
image sizes by interpolating the positional embeddings. Implemented by Py-
Torch, our model is trained with NVIDIA V100. We use Adam as the optimizer,
and the learning rate decays from 10™* to 10~7. We train 100 epochs with a
batch size of 8, and the learning rate decays by 10 times every 30 epochs.

5 Limitations and Discussions

The proposed model achieves excellent results on several datasets and performs
well in generalizability as well as in resolving false alarms. However, challenges
remain when facing complex scenarios, such as the hybrid lossy operations em-
ployed by online social networks and the forged image containing multiple tam-
pered regions. The former affects the robustness of the network, while the latter
impacts the accuracy of forgery localization. Therefore, our next step will be to
handle these real-world complex scenarios better.

In addition, some visual artifacts introduced by image editing are less per-
ceptible in the RGB domain but become noticeable in the frequency domain |12].
However, directly incorporating frequency domain information faces challenges
in our approach. This is because frequency domain information, such as the
Fourier domain, differs significantly from spatial domain information, presenting
a larger disparity than that between noise and RGB domains. This substantial
difference results in a mismatch between the CLIP prior and frequency domain
information. Hence, introducing frequency domain information in CLIP-IFDL
is a direction to be explored in future work, for example, through strategies
involving signal modulation.
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