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Abstract. We present CLIP-IFDL, a novel image forgery detection and
localization (IFDL) model that harnesses the power of Contrastive Lan-
guage Image Pre-Training (CLIP). However, directly incorporating CLIP
in forgery detection poses challenges, given its lack of specific prompts
and forgery consciousness. To overcome these challenges, we tailor the
CLIP model for forgery detection and localization leveraging a noise-
assisted prompt learning framework. This framework comprises instance-
aware dual-stream prompt learning and a forgery-enhanced noise adapter.
We initially create a pair of learnable prompts as negative-positive sam-
ples in place of discrete prompts, then fine-tune these prompts based on
each image’s features and categories. Additionally, we constrain the text-
image similarity between the prompts and their corresponding images
to update the prompts. Moreover, We design a forgery-enhanced noise
adapter that augments the image encoder’s forgery perceptual ability
via multi-domain fusion and zero linear layers. By doing so, our method
not only extracts pertinent features but also benefits from the gener-
alizability of the open-world CLIP prior. Comprehensive tests indicate
that our method outperforms existing ones in terms of accuracy and
generalizability while effectively reducing false alarms.

Keywords: Image forgery detection and localization · CLIP · Prompt
learning

1 Introduction

The rapid evolution of media technology and editing tools has made image ma-
nipulation increasingly commonplace. Risks associated with these manipulated
images cut across various sectors, including copyright watermark removal, gen-
eration of fake news, and evidence falsification in court proceedings [35, 66, 67].
Consequently, the field of Image Forgery Detection and Localization (IFDL) has
gained increased attention, aiming to determine if images have been altered and
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(a) Previous methods. (b) Our proposed method.

Fig. 1: Comparison between previous methods and our proposed method. (a) Previous
methods train all parameters and perform detection based on localization predictions.
(b) Our method leverages priors brought by CLIP and utilizes prompt learning and
noise adapters to perform detection and localization relatively independently.

identify the altered regions. However, with the fast-paced advancement of image
forgery techniques, such as diffusion models [21,40,45,48,49], IFDL faces an on-
going challenge to keep pace with new forgery types. Meanwhile, false alarms on
authentic images can also disrupt media distribution, leading to negative conse-
quences. Thus, it is crucial to develop accurate and generalized IFDL methods.

Deep learning has significantly advanced Image Forgery Detection and Local-
ization (IFDL). For example, RGB-N [73] uses noise features from a steganalysis-
rich model filter layer to detect inconsistencies between genuine and tampered
regions. MVSS-Net [7] leverages noise views and boundary artifacts to learn
multi-view features, while ObjectFormer [55] detects subtle alterations from the
high-frequency parts of images. However, these methods often underperform in
real-world applications. While superior to traditional ones, learning-based meth-
ods may struggle with out-of-distribution detection, i.e., handling images tam-
pered with in ways different from those in the training set. Furthermore, most
advanced methods prioritize forgery localization, treating detection as a sub-
sequent task [10, 19, 74] based on global integrity scores derived from forgery
localization predictions [24, 47, 62], as shown in Figure 1. This approach often
results in poor detection accuracy and high false alarm rates [19]. In a realistic
setting, forged images are relatively rare [19], and the high rate of false alarms
for real images can create more problems than the algorithms solve. Thus, there
is a pressing need for methods that can accurately detect and localize forgeries
while minimizing false alarms.

In this work, we investigate the potential of Contrastive Language-Image
Pre-Training (CLIP) [43] to enhance IFDL. This is because CLIP has shown
significant capabilities in zero-shot image recognition [43,71] and the perception
of abstract concepts [54]. Furthermore, we find that CLIP has the potential to
discriminate between authentic and forged images (See supplementary material).
We aim to leverage these extensive visual-language priors encapsulated in the
CLIP model for forgery detection and localization, with the ultimate goal of
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improving generalization and minimizing false alarms. However, directly apply-
ing CLIP to IFDL presents challenges. First, abstract semantic prompts like
“fake” and “real” are difficult to accurately correlate with each image, making it
tough to find a universal prompt capable of handling various types of forgeries.
Second, the CLIP prior is derived from 400 million image-text pairs primarily
composed of real images; meanwhile, CLIP appears to be insensitive to local
object regions [27]. This results in the insufficient local perceptual capability of
CLIP’s image encoder for forgery.

To address the challenges of applying CLIP to IFDL, we propose a novel
noise-assisted prompt learning framework named CLIP-IFDL. This framework
addresses the challenges through instance-aware dual-stream prompt learning
(IDPL) and forgery-enhanced noise adapter (FENA). For the prompt finding
issue, IDPL first establishes a pair of learnable prompts as positive and negative
sample pairs to replace discrete prompts, then adjusts the prompts in a doubly
learnable manner based on the category and visual features of each image. On
this basis, we update the prompts and conduct forgery detection by constraining
the text-image similarity between the prompt pair and the corresponding im-
ages in the CLIP latent space. To tackle the issue of local forgery perception, we
design the FENA, which enhances CLIP’s perception of local forgeries through
multi-domain fusion, zero-linear layers, and memory mechanisms. Through mu-
tual enhancement, CLIP-IFDL achieves accurate and generalized image forgery
detection and localization, effectively reducing false alarms on authentic images.

Our contributions are as follows:

– We introduce a novel method for image forgery detection and localization,
CLIP-IFDL, leveraging the perceptual capability of CLIP.

– We propose instance-aware dual-stream prompt learning, finding accurate
prompts to describe the authenticity-forgery attributes based on the category
and visual features of each image.

– We develop a forgery-enhanced noise adapter to enhance the network’s per-
ception of local forgeries while avoiding catastrophic forgetting of CLIP pri-
ors caused by extensive fine-tuning.

Extensive experiments on several representative benchmarks demonstrate that
our method surpasses state-of-the-art methods in terms of accuracy, generaliza-
tion, and false alarm mitigation.

2 Related Works

2.1 Image Forgery Detection and Localization

Most early works propose to detect a specific type of forgery, including splicing
[2,4,9,11,24,28,38,59,69], copy-move [8,15,25,57,60,61], and removal [1,58,64,75].
While these methods demonstrate satisfactory performance in detecting specific
types of forgery, they exhibit limitations in practical applications due to the
prevalence of unknown and diverse forgery types. Consequently, recent studies
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have emphasized the need for an approach to tackle multiple forgery types with
one model. RGB-N [73] introduces a dual-stream network, where one stream ex-
tracts RGB features to capture visual artifacts, and the other stream leverages
noise features to model the inconsistencies between tampered and untouched
regions for image forgery localization. ManTra-net [62] leverages an end-to-end
network, which extracts image manipulation trace features and identifies anoma-
lous regions by assessing how different a local feature is from its reference fea-
tures. SPAN [23] attempts to model the spatial correlation via local self-attention
blocks and pyramid propagation. MVSS-Net [7] has designed an edge-supervised
branch that uses edge residual blocks to capture fine-grained boundary detail in
a shallow to deep manner. ObjectFormer [55] captures forged traces from the
high-frequency part of the image to attempt image forgery localization in the
frequency domain. TruFor [19] outputs a reliability map to reduce false alarms
and allow for a large scale analysis, which is important in forensic applications.
ERMPC [31] proposes a two-step coarse-to-fine framework to explicitly model
the inconsistency between the forged and authentic regions with edge informa-
tion. In this work, we exploit the perceptual capabilities of CLIP and prompt
learning to explore the potential of visual language priors for image forgery de-
tection and localization, thereby improving performance.

2.2 CLIP Extensions and Prompting

CLIP [43] shows remarkable performance in zero-shot classification, thanks to
the knowledge learned from 400 million carefully curated image-text pairs. Mul-
tiple derivative works across different sub-fields have emerged, such as object
detection [29,65], image segmentation [37,46,70], image enhancement [34], image
editing [42]. In addition to high-level semantic information, recent research [54]
shows that the rich visual language priors encapsulated in CLIP can also be
used to assess the quality and abstract perception of images in a zero-shot man-
ner. These studies inspired us to exploit CLIP for image forgery detection and
localization. Prompt engineering is popularized by the success of the GPT se-
ries [5, 44]. In the NLP domain, various prompt design approaches have been
proposed recently, with one type focusing on prompt engineering by mining or
generating proper discrete prompts [16,26,50]. Besides, continuous prompts cir-
cumvent the restriction from pre-trained language models and are adopted on
NLP tasks [17, 30, 33]. For vision, CLIP finds the design of prompts matters
for downstream tasks, so it improves the performance of visual classification
by adding the prefix "a photo of" before the object name. Based on CLIP,
CoOp [71] proposes Contextual Optimization, a method specifically designed
to adapt CLIP-like visual language models for downstream image recognition.
In contrast, our method accurately extracts abstract real-fake image represen-
tations through adaptive prompt learning for each image, instead of high-level
semantic information in CLIP.
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Fig. 2: An overview of the proposed framework CLIP-IFDL. The input is a suspicious
image (H×W×3), and the output is a predicted mask (H×W×1), which localizes the
forged regions. We perform forgery detection by calculating the text-image similarity
between the prompt pair and the corresponding images in the CLIP latent space. The
feature branch consists of the class token and the visual token. Instance-aware Dual-
stream Prompt Learning is shown in Figure 3.

3 Methodology

3.1 Overview

Existing methods face the problems of poor generalization and high false alarm
rate. CLIP demonstrates excellent zero-shot perception capabilities for distin-
guishing between authentic and forged image attributes, holding potential for ad-
dressing the aforementioned issues. Therefore, we propose CLIP-IFDL based on
CLIP. Figure 2 is an overview of the framework. We freeze CLIP’s image and text
encoders to maintain priors. Building upon this, we devise Instance-aware Dual-
stream Prompt Learning (IDPL) and Forgery-enhanced Noise Adapter (FENA)
to leverage CLIP’s potential in the field of IFDL. IDPL adaptively seeks suit-
able prompts for each image based on its category and visual features, addressing
the challenge of accurately describing abstract forgery concepts with prompts.
FENA aims to alleviate CLIP’s insufficient perception of local forgeries. It ex-
plores the organic integration of adapters, cross-domain attention mechanisms,
and memory mechanisms to incorporate noise containing forgery information
into the frozen CLIP, thereby promoting forgery localization.

Formally, the input image is represented as X ∈ RH×W×3, where H and
W represent the height and width of the image. In practice, this CLIP image
encoder uses the ViT-base [13] structure, which has 12 layers. The output fea-
tures of each layer of the encoder are

{
G1

r, G
2
r, · · · , G12

r

}
, and G0

r denotes the
stem layer. The output of the final layer of the image encoder and the output
of the text encoder are fed together into IDPL to perform forgery detection
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Fig. 3: Instance-aware Dual-stream Prompt Learning. FENA denotes the forgery-
enhanced noise adapter.

while facilitating semantic representation of authenticity-forgery attributes. The
proposed FENA introduces forgery information into the k-th layer of the image
encoder to enhance the image feature, denoted as Ĝk

r , through the noise fea-
ture extractor and the noise adapter. In our work, k ∈ {0, 3, 6, 9, 12}. Finally,
the enhanced image features Ĝk

r and the text embedding output by IDPL are
jointly fed into a classical decoder to output the predicted forgery localization
map Gout ∈ RH×W×1.

3.2 Instance-aware Dual-stream Prompt Learning

Unlike semantic segmentation and object detection, the authenticity-forgery at-
tribute is not high-level semantic information but a relatively abstract concept,
which makes using discrete prompts like CLIP [43] unable to obtain accurate re-
sults for IFDL. Furthermore, the forgery traces may be different for each image,
therefore we propose Instance-aware Dual-stream Prompt Learning (IDPL), as
shown in Figure 3.

First, we employ learnable vectors as prompts in a continuous space to rep-
resent authenticity-forgery attributes. Given an authentic image Xa ∈ RH×W×3

and a forged image Xf ∈ RH×W×3, we set two learnable vectors Va ∈ RN×512

and Vf ∈ RN×512, respectively. N represents the number of embedded tokens
in each prompt. It is worth noting that these two learnable vectors are not ran-
domly initialized, but use words as the initialization vector, that is, Va, and Vf
are initialized by using the embedding of the two words "real" and "fake". Initi-
ating the process with a thoughtfully curated set of discrete prompts simplifies
the challenge of finding a precise vector within the continuous semantic space
for the assessment of abstract concepts.

Then, we use dual-stream learning to adjust the prompts from coarse to fine.
It contains a prompt adjustment network (PANet) and an embedding adjustment
network (EANet). PANet adjusts the initial prompt based on the image category,
which is written as:

Pi = Vi + PAN(Cx) , (1)
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where Cx is the CLS token of the feature Ĝ12
r output by the last layer of the

CLIP-based encoder for the input X, Pi = {Pa, Pf} are the prompts after ini-
tial adjustment, and PAN denotes PANet. In our work, PANet is a two-layer
bottleneck structure (Linear-ReLU-Linear), in which the hidden layer reduces
the input dimension by 16 times. Then, Pi is fed into a frozen text encoder
to obtain text embedding Ψtext (Pi), which contains CLIP prior. Next, EANet
is used to adjust the text embedding. Specifically, we take the text embedding
Ψtext (Pi) as the query and feed it together with the image features Ĝ12

r into the
EANet, composed of a transformer decoder, to search for visual clues related to
authenticity-forgery attributes. Then, a residual connection is used to obtain Ti.
The process is calculated as

Ti = Ψtext (Pi) + αEAN
(
Ψtext (Pi) , Ĝ

12
r

)
, (2)

where Ψtext is the frozen text encoder, α is a learnable parameter and EAN is
EANet. In practice, it is the Transformer decoder [53]. For α, we initialize with
very small values (e.g., 10−3) to prevent image features from overshadowing the
prompt in the early training stages, avoiding the direct loss of prompt informa-
tion. In short, IDPL not only improves prompts for each image in the category
but also looks for relevant clues in image features to further adjust prompts.
Meanwhile, this design also builds a bridge between the image encoder and the
prompting, which is beneficial to the optimization of the entire framework.

After obtaining Ti = {Ta, Tf}, we calculate the image-text similarity ρ in the
CLIP content space, as shown in Figure 2:

ρ =
exp(cos(Cx, Ta))∑

i∈{a,f} exp(cos(Cx, Ti))
, (3)

where cos (·, ·) denotes cosine similarity. Based on this, we then use the binary
cross-entropy loss Lcls to distinguish authentic and forged images to optimize
the learnable parameters of the prompts. The process can be formulated by:

Lcls = −(y · log(ρ)) + (1− y) · log(1− ρ), (4)

where y is the label of the current image. We assigned the label ‘1’ to the
authentic image and the label ‘0’ to the forged image. This is to ensure that
with the network’s optimization, the distance between the authentic image Xa

and the prompt Ta becomes closer.

4 Forgery-enhanced Noise Adapter

To maintain the open-world CLIP prior, we freeze the parameters of CLIP. How-
ever, the knowledge of CLIP comes from 400 million image-text pairs, primarily
consisting of natural images. Additionally, CLIP seems to be insensitive to local
object regions [27]. These factors result in the insufficient perception of local
forgeries by the image encoder of CLIP, leading to inadequate pixel-level local-
ization capability. Using noise information enables the discovery of tampering
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traces that are nearly invisible in the RGB domain, thereby yielding strong
forgery detection performance [3,7,31,56,62,73]. However, it is inappropriate to
directly introduce noise information into the CLIP encoder due to the informa-
tion gap between noise and RGB. Therefore we propose the Forgery-enhanced
Noise Adapter (FENA), which consists of the noise feature extractor and the
customized noise adapter, as shown in Figure 2.

First, following [7], we use BayarConv [62] to obtain the noise feature Gn.
For the sake of parameter efficiency and alignment with the image features of
CLIP, we use ViT-small [52] as the backbone of the noise feature extractor. It has
twelve layers, and the output features of each layer are set to

{
G1

n, G
2
n, · · · , G12

n

}
.

In particular, we use G0
n to represent the feature before inputting the first layer,

i.e., the feature of stem layer.
To reduce the computational cost, we do not feed noise information into

each layer of the image encoder. Following [63], we select {0, 3, 6, 9, 12} layers.
We then incorporate the noise features into the image encoder using the noise
adapter. It is worth noting that we do not directly add conditions to the frozen
backbone network, which is different from the conventional adapter [39, 68]. In-
stead, we introduce a fusion strategy to bridge the gap between noise and RGB
while exploring forgery information. In practice, we utilize the cross attention to
perform the fusion of two information to obtain Gk

f :

Gk
f = softmax((WqG

k
r )(WkG

k
n)

T )WvG
k
n, (5)

where k ∈ {0, 3, 6, 9, 12}. Wq, Wk and Wv are all weight matrixes, and softmax is
the softmax function. We explore the role of the fusion strategy for the adapter,
and replacing it with a complex fusion module may have better performance.
Furthermore, to facilitate the signal flow across iterative stages, we also introduce
a simple persistent memory mechanism [6,72] to augment information represen-
tation by leveraging memory in the fusion space. The process can be written as

Gk
m =

{
Gk

f k = 0

ψ(Cat(Gk
f , G

k−3
m )) k ∈ {3, 6, 9, 12} ,

(6)

where ψ denotes the linear layer and Cat denotes the concatenation. Then,
inspired by [68], we connect Gk

m and Gk
r with the zero linear layer φk, which is

the linear layer with both weight and bias initialized to 0. It is computed as:

Ĝk
r = Gk

r + φk
(
Gk

m

)
, k ∈ {0, 3, 6, 9, 12} (7)

where Ĝk
r is the K-layer feature of the image encoder that has been operated

by the adapter. φk protects the backbone by eliminating the random noise used
as a gradient in the initial training step. We explore the organic integration
of adapters, cross-domain attention mechanisms, and memory mechanisms to
design FENA. It efficiently enhances CLIP’s sensitivity to local forgeries while
avoiding the disruption of CLIP’s priors. Therefore, FENA represents an effective
approach for leveraging CLIP’s potential in the field of image forgery localization,
contributing significantly to the community.
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4.1 Forgery Localization Decoder

Following [36, 37], we employ a U-Net shaped decoder for forgery localization.
As shown in Figure 2, we feed the image features Ĝk

r , k ∈ {0, 3, 6, 9, 12} to the
decoder before each transformer block. For network efficiency, we utilize a small
decoder proposed by [37], comprising merely 1.12M parameters. In addition, to
make full use of text information to enhance the network’s forgery localization
performance, we use Feature-wise Linear Modulation (FiLM) [14] to input the
text features Ti to the decoder. FiLM applies feature-wise affine transformation
to its input, allowing the modulation of image features by text features, which
can be expressed as

FiLM(Ĝ12
r ) = γ(Ti)⊙ Ĝ12

r + β(Ti), (8)

where γ and β are both linear layers, and ⊙ is the Hadamard product. Ĝ12
r is

the image feature and Ti is the text feature after the prompt learning. Finally,
with the help of multi-level image features and the text feature, the decoder can
obtain a predicted forgery localization map Gout ∈ RH×W×1.

4.2 Optimization

As shown in Figure 2, the loss function of our method consists of two components:
detection loss and localization loss. We compute the forgery detection loss Lcls

relying on the similarity between the image and the learned text embedding in
the CLIP content space, as shown in Sec. 3.2. This is distinct from the majority of
previous methods, which convert pixel-level localization predictions into binary
detection results, introducing a higher risk of false alarms on authentic images [7].
The localization loss of our method is derived from the final prediction Gout and
the ground-truth mask Y ∈ RH×W×1. The overall loss function is written as:

L = λ1Lloc (Y,Gout) + λ2Lcls (9)

where Lloc denotes the Dice loss and λ1, λ2 are the parameters to balance the
two terms in the loss function. It is worth noting that the detection loss and
localization loss of our method are relatively independent, and there is no fixed
sequential relationship between them, which alleviates false alarms on authentic
images. However, they both contribute to optimizing the extraction of forgery
features, ensuring their mutual promotion.

5 Experiments

5.1 Experimental Setup

Pre-training Data We create a sizable image tampering dataset and use it
to pre-train our model. This dataset includes three categories: 1) splicing, 2)
copy-move, and 3) removal. Details can be found in the supplementary material.
Testing Datasets Following [36, 55], we evaluate our model on CASIA [12],
Coverage [57], Columbia [22], NIST16 [18] and IMD20 [41]. Specifically, IMD20
collects real-life manipulated images from Internet. We apply the same train-
ing/testing splits as [23,55] to fine-tune our model for fair comparisons.
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Fig. 4: Visualization of the predicted manipulation mask by different methods. From
top to bottom, we show forged images, GT masks, and predictions of ManTraNet,
SPAN, PSCC-Net, HiFi-Net and ours.

5.2 Image Forgery Localization

Following SPAN [23] and ObjectFormer [55], our model is compared with other
state-of-the-art methods under two settings: 1) training on the synthetic dataset
and evaluating on the full test datasets, and 2) fine-tuning the pre-trained model
on the training split of test datasets and evaluating on their test split. It’s worth
noting that in both stages, the main CLIP model remains frozen.
Pre-trained Model Table 1a shows the localization performance of pre-trained
models for different methods on five datasets under pixel-level AUC. We compare
our CLIP-IFDL with MantraNet [62], SPAN [23], PSCCNet [36], ObjectFormer
[55], HiFi-Net [20] and SAFL-Net [51] when evaluating pre-trained models.

The pre-trained CLIP-IFDL achieves the best localization performance on
Coverage, CASIA, NIST16 and IMD20 and ranks third on Columbia. In partic-

Table 1: Image forgery detection and localization results. (a) Localization perfor-
mance of the pre-train model. (b) Localization performance of the fine-tuned model.
(c) Detection performance on CASIA-D dataset. [Key: Best; Second Best].

Localization Data Columbia Coverage CASIA NIST16 IMD20
Metric: AUC(%) – Pre-trained

ManTraNet 64K 82.4 81.9 81.7 79.5 74.8
SPAN 96K 93.6 92.2 79.7 84.0 75.0

PSCCNet 100K 98.2 84.7 82.9 85.5 80.6
ObjectFormer 62K 95.5 92.8 84.3 87.2 82.1

HiFi-Net 100K 98.3 93.2 85.8 87.0 82.9
SAFL-Net 48K 96.9 93.5 90.9 88.8 96.5

Ours 60K 97.6 94.3 92.5 89.7 97.8

(a)

Localization Coverage CASIA NIST16
Metric: AUC(%) / F1(%) – Fine-tuned

RGB-N 81.7/43.7 79.5/40.8 93.7/72.2
SPAN 93.7/55.8 83.8/38.2 96.1/58.2

PSCCNet 94.1/72.3 87.5/55.4 99.6/81.9
ObjectFormer 95.7/75.8 88.2/57.9 99.6/82.4

HiFi-Net 96.1/80.1 88.5/61.6 98.9/85.0
SAFL-Net 97.0/80.3 90.8/74.0 99.7/87.9

Ours 98.2/81.3 91.3/77.9 99.8/89.3

(b)

Detection AUC(%) F1(%)
ManTraNet 59.94 56.69

SPAN 67.33 63.48
PSCC 99.65 97.12

ObjectFormer 99.70 97.34
HiFi-Net 99.50 97.40
SAFL-Net 99.50 98.40

Ours 99.83 98.75

(c)
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Table 2: Comparison of detection results on challenging datasets.

Method COVER IMD20
AUC Spe. Sen. F1 AUC Spe. Sen. F1

ManTraNet 0.500 0.0 100.0 0.0 0.500 0.0 100.0 0.0
SPAN 0.500 0.0 100.0 0.0 0.500 0.0 100.0 0.0
PSCC 0.658 91.0 19.0 31.4 0.631 92.0 20.9 34.1

ObjectFormer 0.534 33.0 57.0 41.8 0.510 30.2 56.2 39.3
HiFi-Net 0.513 93.0 7.0 13.0 0.469 97.8 1.4 2.8
SAFL-Net 0.653 53.0 47.0 49.8 0.612 54.3 50.0 52.1

Ours 0.732 70.0 61.0 65.2 0.678 73.9 68.7 71.2

ular, CLIP-IFDL achieves a 97.8 % performance on the IMD20, which consists
of real-life images. It indicates that our method not only possesses the superior
ability to capture tampering traces but also generalizes well to realistic scenarios.

We fail to achieve the best performance on Columbia, falling behind HiFi-Net
0.7 % and under AUC. We contend that the explanation may be that the distri-
bution of their synthesized training data closely resembles that of the Columbia
dataset. This is further supported by the results in Table 1b, which show that
CLIP-IFDL performs better than HiFi-Net in terms of both AUC and F1 scores.
Fine-tuned Model The network weights of the pretrained model are used to
initiate the fine-tuned models that will be trained on the training split of Cover-
age, CASIA, and NIST16 datasets, respectively. We evaluate the fine-tuned mod-
els of different methods in Table 1b. As for AUC and F1, our model achieves sig-
nificant performance gains. This validates that our method can precisely capture
various subtle manipulation traces through instance-aware dual-stream prompt
learning and forgery-enhanced noise adapter.

5.3 Image Forgery Detection

To demonstrate the image-level discrimination capability of the network, we also
consider the forgery detection task. Following ObjectFormer [55], we conduct ex-
perimental comparisons on the CASIA-D dataset introduced by [36]. As shown
in Table 1c, our method has excellent detection performance. To further measure
the miss detection rate and false alarm rate, we conduct additional comparisons
on challenging datasets such as Coverage [57] and IMD20 [41] in Table 2. Spe
denotes specificity, where higher values imply fewer false alarms for authentic
images, while Sen stands for sensitivity, indicating fewer missed forgeries detec-
tion. Our method once again ranks among the top performers, obtaining high
specificity while ensuring F1. This indicates that CLIP-IFDL effectively miti-
gates false alarms, leveraging a relatively independent detection paradigm along
with CLIP priors. Our method also performs well in AUC, demonstrating its
capability to accurately distinguish between forged and genuine images.
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Table 3: The performance on NIST16 under various distortions. AUC scores are re-
ported (in %), (Blur: GaussianBlur, Noise: GaussianNoise, Compress: JPEGCompress.)

Distortion SPAN ObjectFormer HiFi-Net SAFL-Net Ours

no distortion 83.95 87.18 87.0 88.79 89.68
Resize(0.78×) 83.24 87.17 86.9 88.39 89.31 ↓0.37
Resize(0.25×) 80.32 86.33 86.5 86.92 87.93 ↓1.75
Blur(k = 3) 83.10 85.97 86.1 88.13 89.14 ↓0.54
Blur(k = 15) 79.15 80.26 81.0 87.68 88.56 ↓1.12
Noise(σ = 3) 75.17 79.58 81.9 / 89.13 ↓0.45
Noise(σ = 15) 67.28 78.15 79.5 / 86.75 ↓2.83

Compress(q = 100) 83.59 86.37 86.5 88.56 89.58 ↓0.10
Compress(q = 50) 80.68 86.24 86.0 88.07 88.93 ↓0.65

5.4 Robustness Evaluation

To analyze the robustness of our model for localization, we follow the distortion
settings in [55] to degrade the raw forged images from NIST16. These distortion
types include resizing images to different scales (Resize), applying Gaussian blur
with a kernel size k (GaussianBlur), adding Gaussian noise with a standard
deviation σ (GaussianNoise), and performing JPEG compression with a quality
factor q (JPEGCompress). We compare the forgery localization performance
(AUC scores) of our pre-trained models with SPAN and ObjectFormer on these
corrupted data, and report the results in Table 3. Our model demonstrates better
robustness against various distortion techniques. It is worth noting that JPEG
compression is commonly performed when uploading images to social media.
And our model performs significantly better on compressed images.

5.5 Ablation Study

In this section, we conduct experiments to demonstrate the effectiveness of our
method. The instance-aware dual-stream prompt learning (IDPL) is designed
to find accurate prompts describing the authenticity-forgery attributes of each
image thus facilitating the utilization of CLIP priors. It consists of the prompt
adjustment network (PANet) and the embedding adjustment network (EANet).
PANet adaptively adjusts the prompts according to the category of each image,
while EANet looks for relevant clues for authenticity-forgery attributes in image
features to adjust the embedding of the prompt. The forgery-enhanced noise
adapter (FENA) is designed to enhance CLIP’s perception of forgery.

Table 4: Ablation results using differ-
ent variants of our scheme.

Variants CASIA NIST16
AUC F1 AUC F1

baseline 76.2 45.7 81.3 70.5
w/o PANet 83.3 50.8 84.4 74.2
w/o EANet 84.2 51.1 88.9 77.6
w/o FENA 88.6 57.1 94.9 83.2

Ours 91.3 77.9 99.8 89.3

Table 5: The effect of different un-
freezing strategies.

Unfreezing CASIA NIST16 IMD20
a 83.1 80.3 75.4
b 83.4 82.6 86.7
c 87.3 83.4 90.1

Ours 92.5 89.7 97.8
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Fig. 5: Visualization of IDPL and FENA. From left to right, we display the forged
images, masks, GradCAM of the feature map without (w/o) IDPL and without FENA
and with both, and predictions.

To evaluate the effectiveness of PANet, EANet and FENA, we remove them
separately from our method and evaluate the forgery localization performance
as shown in Table 4. The baseline denotes that we solely employ CLIP and
forgery localization decoder, with two learnable vectors as prompts. It can be
seen that without PANet, the AUC scores decrease by 8.70 % on CASIA and
15.43 % on NIST16, while without EANet, the AUC scores decrease by 7.77 % on
CASIA and 10.92 % on NIST16. Besides, when FENA is discarded, performance
degradation is also observed in Table 4, i.e., 4.91 % in terms of AUC and 6.83 %
in terms of F1 on NIST16. The performance drop by removing PANet or EANet
is more pronounced compared to removing FENA, indicating the significance of
instance-aware prompt learning in facilitating localization tasks.

In Table 5, we compare the results of various unfreezing strategies on three
datasets to validate the contribution of the prior brought by the frozen CLIP to
the generalization performance. "Ours" represents the pre-trained CLIP-IFDL
model to reflect generalization. "a" denotes unfreezing all CLIP parameters, "b"
denotes unfreezing CLIP’s image encoder, and "c" denotes unfreezing CLIP’s
text encoder. It can be observed that unfreezing all parameters leads to forgetting
the CLIP prior, resulting in poorer generalization. Moreover, unfreezing either
the image or text encoder degrades the network’s performance on the real-life
dataset IMD20. This indicates that the prior from frozen CLIP contributes to
the network’s generalization to realistic scenarios.

5.6 Visualization Results

Qualitative results As shown in Figure 4, we provide predicted masks of var-
ious methods. Since the source codes of ObjectFormer [55] and SAFL-Net [51]
are not available, their predictions are not available. The results demonstrate
that our method could not only locate the tampering regions more accurately
but also develop sharp boundaries. It benefits from the ability of our model to
effectively distinguish between the two regions with the help of CLIP prior and
noise adapter.
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Fig. 6: More visualization results on Faceshifter and CocoGlide.

Visualization of IDPL To verify the effect of the instance-aware dual-stream
prompt learning (IDPL), we show the change of features with and without the
prompt learning in Figure 5. It can be seen that IDPL can improve the accuracy
of forgery localization. The network without IDPL will make false judgments
about objects that are similar to the forgery.
Visualization of FENA We show the change of features with and without
the forgery-enhanced noise adapter (FENA) in Figure 5. It is clear that FENA
facilitates the learning of forgery features and obtains more accurate contours of
forged regions.
Visualization on other challenging datasets To further validate the robust
generalization of our method, our models are also compared visually on two
challenging out-of-distribution datasets. These two datasets are face tampering
images Faceshifter [32] and diffusion-based tampering images CocoGlide [19],
respectively, and both of them have very different types of forgery than our
training set. As shown in Figure 6, our method still achieves the best visualization
results. This fully illustrates the strong generalization of our method to detect
unseen forgeries.

6 Conclusion

In this paper, we propose a novel paradigm for image forgery detection and
localization CLIP-IFDL, by leveraging the potential of CLIP. This method not
only leverages the open-world CLIP prior to distinguish between forged and
authentic images but also identifies forged regions, enhancing generalization and
reducing false alarms. Initially, we create a learnable prompt pair, updating it by
aligning the text-image similarity in the CLIP latent space. Moreover, we design
a forgery-enhanced noise adapter that enhances the perceptual ability of the
image encoder for forgery. To our knowledge, this is the first attempt to utilize
prompt learning and the CLIP prior for IFDL. Extensive experiments on several
representative benchmarks demonstrate that our method outperforms existing
methods in terms of accuracy, generalization, and false alarm mitigation.
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