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Abstract. Diffusion models have demonstrated impressive performance
in various image generation, editing, enhancement and translation tasks.
In particular, the pre-trained text-to-image stable diffusion models pro-
vide a potential solution to the challenging realistic image super-resolution
(Real-ISR) and image stylization problems with their strong generative
priors. However, the existing methods along this line often fail to keep
faithful pixel-wise image structures. If extra skip connections between the
encoder and the decoder of a VAE are used to reproduce details, addi-
tional training in image space will be required, limiting the application to
tasks in latent space such as image stylization. In this work, we propose a
pixel-aware stable diffusion (PASD) network to achieve robust Real-ISR
and personalized image stylization. Specifically, a pixel-aware cross at-
tention module is introduced to enable diffusion models perceiving image
local structures in pixel-wise level, while a degradation removal module
is used to extract degradation insensitive features to guide the diffusion
process together with image high level information. An adjustable noise
schedule is introduced to further improve the image restoration results.
By simply replacing the base diffusion model with a stylized one, PASD
can generate diverse stylized images without collecting pairwise train-
ing data, and by shifting the base model with an aesthetic one, PASD
can bring old photos back to life. Extensive experiments in a variety
of image enhancement and stylization tasks demonstrate the effective-
ness of our proposed PASD approach. Our source codes are available at
https://github.com/yangxy/PASD/.
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1 Introduction

Real-world images often suffer from a mixture of complex degradations, such as
low resolution, blur, noise, etc., in the acquisition process. While image restora-
tion methods have achieved significant progress, especially in the era of deep
learning [8, 32], they still tend to generate over-smoothed details, partially due
to the pursue of image fidelity in the methodology design. By relaxing the con-
straint on image fidelity, realistic image super-resolution (Real-ISR) aims to re-
produce perceptually realistic image details from the degraded observation. The

https://github.com/yangxy/PASD/
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generative adversarial networks (GANs) [11] and the adversarial training strat-
egy have been widely used for Real-ISR [4, 27, 54, 67] and achieved promising
results. However, GAN-based Real-ISR methods are still limited in reproducing
rich and realistic image details and tend to generate unpleasant visual artifacts.
Meanwhile, GAN-based methods have also been widely used in various image
stylization tasks such as cartoonization and old-photo restoration. For example,
Chen et al . [6] proposed CartoonGAN to generate cartoon stylization by using
unpaired data for training. However, different models need to be trained for dif-
ferent styles. Wan et al . [49] introduced a triplet domain translation network to
restore old photos. While achieving promising results, the multi-stage procedure
of this method makes it complex to use.

Recently, denoising diffusion probabilistic models (DDPMs) have shown out-
standing performance in tasks of image generation [16], and it has become a
strong alternative to GAN due to its powerful capability in approximating diverse
and complicated distributions. With DDPM, the pre-trained text-to-image (T2I)
and text-to-video (T2V) latent diffusion models [15, 41, 43, 46] have been popu-
larly used in numerous downstream tasks [2, 45, 64]. Diffusion models have also
been adopted to solve image restoration tasks. A denoising diffusion restoration
model (DDRM) is proposed in [21] to solve inverse problem by taking advantage
of a pre-trained denoising diffusion generative model. However, DDRM assumes
a linear image degradation model, limiting its application to more practical sce-
narios such as Real-ISR. Considering that the pre-trained T2I models such as
Stable Diffusion (SD) [43] can generate high-quality natural images, Zhang and
Agrawala [64] proposed ControlNet, which enables conditional inputs like edge
maps, segmentation maps, etc., and demonstrated that the generative diffusion
priors are also powerful in conditional image synthesis. Unfortunately, Control-
Net is not suitable for pixel-wise conditional control (see Fig. 1 for an example).
Liu et al . [35] and Wang et al . [50] demonstrated that pre-trained SD priors can
be employed for image colorization and Real-ISR, respectively. However, they
resorted to a skipped connection to pass pixel-level details for image restoration,
requiring extra training in image space and limiting the model capability to tasks
performed in latent space such as image stylization.

In this work, we aim to develop a flexible model to achieve Real-ISR and
personalized stylization by using pre-trained T2I models such as SD [43], tar-
geting at reconstructing photo-realistic pixel-level structures and textures. Our
idea is to introduce pixel-aware conditional control into the diffusion process
so that robust and perceptually realistic outputs can be achieved. To this end,
we present a pixel-aware cross attention (PACA) module to perceive pixel-level
information without using any skipped connections. A degradation removal mod-
ule is employed to reduce the impact of unknown image degradations, alleviating
the burden of diffusion module to handle real-world low-quality images. We also
demonstrate that the high-level classification/detection/captioning information
extracted from the input image can further boost the Real-ISR performance. In-
spired by recent works [10,33], we present an adjustable noise schedule to further
boost the performance of Real-ISR and image stylization tasks. In particular,
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(a) LQ (b) ControlNet (c) PASD

Fig. 1: From left to right: an input LQ image, the Real-ISR outputs by ControlNet [64]
and our PASD method. One can see that the output by ControlNet has clear content
inconsistency with the input, while PASD preserves the structure well in pixel level.

the proposed method, namely pixel-aware stable diffusion (PASD), can perform
personalized stylization tasks (e.g ., caroonization and old photo restoration) by
simply shifting the base model to a personalized one. Extensive experiments
demonstrate the effectiveness and flexibility of PASD.

2 Related Work

Realistic Image Super-Resolution. Though deep learning based image super-
resolution [8, 32] has achieved significant progress, they still suffer from over-
smoothed details due to the high illness of the task by minimizing the fidelity
objectives (e.g ., PSNR, SSIM). Realistic image super-resolution (Real-ISR) aims
to reproduce perceptually photo-realistic image details by optimizing not only
the fidelity but also the perception objectives. The GAN [11] network and its ad-
versarial training strategies are widely in Real-ISR [27,54]. Basically, a generator
network is used to reconstruct the desired high-quality (HQ) image from the low-
quality (LQ) input, while a discriminator network is used to judge whether the
HQ output is perceptually realistic. In the early study, bicubic downsampling
or some simple degradations [8, 26] are used to simulate the LQ-HQ training
pairs. Cai et al . [3] collected a real-world dataset with paired LQ-HQ images
by zooming camera lens. Zhang et al . [63] and Wang et al . [52] later modeled
complex degradations by shuffling degradation types and using a high-order pro-
cess, respectively. Recently, Yang et al . [60] took the advantages of handcrafted
degradation models and generative diffusion models to synthesize realistic LQ-
HQ training pairs.

Though GAN-based models have dominated the previous research in Real-
ISR, adversarial training is unstable and the GAN-based Real-ISR methods often
bring unnatural visual artifacts. Liang et al . [30] proposed a locally discrimina-
tive learning approach to suppress the GAN-generated artifacts, yet it is difficult
to introduce additional details. Recently, inspired by the success of generative
priors in face restoration tasks [51,58], some works have been proposed to lever-
age the priors learned by diffusion models [16] and pre-trained T2I models [43]
to solve the Real-ISR problems and obtain interesting results [4, 21, 50, 57]. In
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this work, we aim to develop an SD based Real-ISR model which can achieve
pixel-level restoration of image details and textures.

Personalized Stylization. Inspired by the powerful learning capacity of
deep neural networks, Gatys et al . [9] presented an optimization based method to
transfer the style of a given artwork to a content image. This work was extended
by many following researches [19,29,66]. However, all these methods require an
extra image as style input. This problem can be alleviated by resorting to an
image-to-image framework [5, 6, 68]. Due to the lack of pairwise training data,
some works [37,59] focus on portrait stylization with the help of StyleGAN [20].
With the rapid development of SD models [43], some works [2,64] generate styl-
ized images by using proper instruction prompts, achieving impressive results.
However, these methods fail to maintain pixel-wise image structures in the styl-
ization process, and they lack the ability to mimic the appearance of subjects
in a given reference set. To meet the specific needs of different users, Ruiz et
al . [45] and Kumari et al . [25] proposed personalized stylization approaches for
T2I diffusion models. While achieving pleasant stylization results, these methods
require extra training procedures for different reference sets.

Old photo restoration, which is a challenging task due to the unknown mixed
degradations, can also be viewed as a stylization problem. Most existing works
focus on a specific issue such as crack removal [61], super-resolution [4, 52] and
facial region enhancement [51,58]. Wan et al . [49] proposed to address this prob-
lem using a novel triplet domain translation network. They narrowed the domain
gap between real old photos and synthetic ones in the compact latent space and
learned to restore old photos via latent space translation. This multi-stage ap-
proach yields interesting, yet it is unstable and is not easy to use.

Diffusion Probabilistic Models. The seminal work of DDPM [16] has
demonstrated strong capability in generating high quality natural images. Con-
sidering that DDPMs require hundreds of sampling steps in the denoising pro-
cess, Song et al . [47] proposed DDIM to accelerate the sampling speed. Follow-
ing works extend DDPM/DDIM by adapting high-order solvers [36] and distilla-
tions [38]. Rombach et al . [44] extended DDPM to latent space and demonstrated
impressive results with less computational costs. This work sparks the prosperity
of large pre-trained T2I and T2V diffusion models such as SD [43], Imagen [15].
It has been demonstrated that T2I diffusion priors are more powerful than GAN
priors in handling diverse natural images [41, 43, 46]. Kawar et al . [22] applied
complex text-guided semantic editing to real images. ControlNet [64] enables
conditional inputs, such as edge maps, segmentation maps, keypoints, etc., to
T2I models. Liu et al . [35] and Wang et al . [50] respectively utilized generative
diffusion priors to image colorization and super-resolution.

3 Pixel-Aware Stable Diffusion Network

Our method is based on generative diffusion priors. In particular, we utilize the
powerful pre-trained SD [43] model, while alternative diffusion models such as
DALLE2 [41] and Imagen [46] can also be adopted. The architecture of our
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Fig. 2: Architecture of the proposed pixel-aware stable diffusion (PASD) network.
PASD consists of several modules, including Degradation Removal, ControlNet, PACA,
ANS, and High-level Nets. During training, the encoder maps the HQ image to a latent
representation, which is then added by noise to yield a noisy latent. In testing, the LQ
image is used to generate the noisy input, while ANS is employed for flexible perception-
fidelity balance. The noisy latent is fed to the UNet along with timestep, high-level
information, and the output of ControlNet after Degradation Removal conditioned
on the LQ image. In particular, the output of ControlNet is added to the UNet via
PACA in latent space. PASD can be readily used for personalized stylization by simply
switching the base diffusion model to a personalized one.

pixel-aware stable diffusion (PASD) network is depicted in Fig. 2. One can see
that in addition to the pre-trained SD model, PASD has four main modules: a
degradation removal module to extract degradation insensitive low-level control
features, a high-level information extraction module to extract semantic control
features, an adjustable noise schedule (ANS) and a pixel-aware cross-attention
(PACA) module to perform pixel-level guidance for diffusion. In addition to the
Real-ISR task, our PASD can be readily used for personalized stylization by
simply switching the base diffusion model to a personalized one.

3.1 Degradation Removal Module

Real-world LQ images usually suffer from complex and unknown degradations.
We thus employ a degradation removal module to reduce the impact of degra-
dations and extract “clean” features from the LQ image to control the diffusion
process. As shown in Fig. 2, we adopt a pyramid network to extract multi-scale
feature maps with 1/2, 1/4 and 1/8 scaled resolutions of the input LQ image.
Intuitively, it is anticipated that these features can be used to approximate the
HQ image at the corresponding scale as close as possible so that the subsequent
diffusion module could focus on recovering realistic image details, alleviating the
burden of distinguishing image degradations. Therefore, we introduce an inter-
mediate supervision by employing a convolution layer “toRGB” to turn every
single-scale feature maps into the HQ RGB image space. We apply an L1 loss
on each resolution scale to force the reconstruction at that scale to be close to
the pyramid decomposition of the HQ image: LDR =

∑
s ||Ishq − Issr||1, where
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Ishq and Issr represent the HQ ground-truth and ISR output at scale s. Note that
this module is only required in the Real-ISR task.

3.2 Pixel-Aware Cross Attention (PACA)

The main challenge of utilizing pre-trained T2I diffusion priors for image restora-
tion tasks lies in how to enable the diffusion process be aware of image details
and textures in pixel-level. The well-known ControlNet can support task-specific
conditions (e.g ., edges, segmentation masks) well but fail for pixel-level control.
Given a feature map x ∈ Rh×w×c from U-Net, where {h,w, c} are feature height,
width and channel numbers, and a skipped feature map y ∈ Rh×w×c from Con-
trolNet, Zhang and Agrawala [64] proposed a unique type of convolution layer
Z called “zero convolution” to connect them:

x̃ = x+ Z(y), (1)

where x̃ is the output feature map. The zero convolution is easy-to-implement.
However, simply adding the feature maps from the two networks may fail to
pass pixel-level precise information, leading to structure inconsistency between
the input LQ and output HQ images. Fig. 1 shows an example. One can see that
by simply applying ControlNet to the LQ input, there are obvious structure
inconsistencies in the output image by ControlNet.

To address this problem, some methods employ a skipped connection outside
the U-Net [50] to add image details. However, this introduces additional training
in image feature domain, and limits the application of the trained network to
tasks performed in latent space (e.g ., image stylization). In this work, we intro-
duce a simple pixel-aware cross attention (PACA) to solve this issue. We reshape
x and y to x′ ∈ Rh∗w×c and y′ ∈ Rh∗w×c, and consider y′ as the context input.
The PACA (see the brown-colored block in Fig. 2) can be computed as follows:

PACA(Q,K,V) = Softmax(
QKT

√
d

) ·V, (2)

where Q, K, V are calculated according to operations to_q(x′), to_k(y′) and
to_v(y′), respectively.

The conditional feature input y′ is of length h ∗w, which equals to the total
number of pixels of latent feature x. Since feature y′ has not been converted into
the latent space by the Encoder, it preserves well the original image structures.
Therefore, our PASD model can manage to perceive pixel-wise information from
the conditional input y′ via PACA. As can be seen in the experimental result
section, with the help of PACA, the output of our PASD network can reproduce
realistic and faithful image structures and textures in pixel-level.

3.3 Adjustable Noise Schedule (ANS)

As discussed in previous works [10, 33], the noise schedule used in SD [43] suf-
fers train-test discrepancy. In training, the noise schedule leaves some residual
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signal even at the terminal diffusion timestep N , leading to non-zero signal-to-
noise ratio (SNR). This weakens the model performance at test time when we
sample from random Gaussian noise without the signal information. To address
this issue, we propose an adjustable noise schedule (ANS) by introducing signal
information from the input image at test time.

The residual signals at training stage are from the HQ ground-truth data,
which are unavailable at test time. In applications such as Real-ISR, we can
embed the input LQ latent into the initial random Gaussian noise at terminal
diffusion timestep N as a compensation:

zN =
√
ᾱNzLR +

√
1− ᾱNz, (3)

where zN , zLR, ᾱN , z are respectively the latent input at timestep N , the LQ
latent, the cumulative product of α, and the initial random Gaussian noise.
This remedy can partially alleviate the discrepancy issue and has been adopted
in [50, 57]. However, the train-test discrepancy still exists due to the different
origins of residual signals, which can harm the restoration results when the LQ
image suffers from severe degradations.

To suppress the side effect of residual signal from LQ data, we introduce
an additional Gaussian noise z′ with level ᾱa ∈ [0, 1] into Eq. (3) as: zN =√
ᾱa(

√
ᾱNzLR+

√
1− ᾱNz)+

√
1− ᾱaz

′ =
√
ᾱaᾱNzLR+

√
ᾱa − ᾱaᾱNz+

√
1− ᾱaz

′.
Since Gaussian noises z and z′ are independent, the combination of them is
equivalent to another Gaussian noise z′′. The above formula can be re-written
as follows:

zN =
√
ᾱaᾱNzLR +

√
1− ᾱaᾱNz′′. (4)

In this way, by choosing a proper value of ᾱa, we can adjust the strength of the
residual signal zLR to enable flexible perception-fidelity trade-off.

3.4 High-Level Information

Our method is based on the pre-trained SD model where text is used as the
input, while in tasks such as Real-ISR, the LQ image is available as the input.
Though some SD-based Real-ISR methods [50] adopt the null-text prompt, it
has been demonstrated that content-related captions could improve the synthesis
results [43]. As shown in Fig. 2, we employ the pre-trained ResNet [13], YOLO
[42] and BLIP [28] networks to extract image classification, object detection and
image caption information from the LQ input, and employ the CLIP [40] encoder
to convert the text information into image-level features, providing additional
semantic signal to control the diffusion process.

The classifier-free guidance [17] is adopted in our method: ϵ̃(zt, c) = ϵ(zt, c)+
ωϵ(zt, cneg), where ϵ̃(zt, c) and ϵ(zt, cneg) are conditional and unconditional ϵ-
predictions [16], c and cn are respectively the positive and negative text prompts,
zt is the latent feature at step t, and ω adjusts the guidance scale. The uncondi-
tional ϵ-prediction ϵ(zt, cneg) can be achieved with negative prompts. In practice,
we empirically combine words like “noisy”, “blurry”, “low resolution” as negative
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prompts, which play a key role to trade off mode coverage and sample quality
during inference. It is optional but could boost much the Real-ISR performance.

3.5 Application to Personalized Stylization

Personalized stylization. Thanks to the open source of SD [43] and the re-
cently developed techniques such as DreamBooth [45] and LORA [18], the com-
munity becomes highly prosperous. Contributors can upload a large amount of
personalized models finetuned on SD with self-collected data. Since PASD is
based on pretrained SD model and the pretrained weights are frozen during
model training, it is easy to replace the base model with personalized ones at
test time [12] (as illustrated in the top-right corner of Fig. 2) so that PASD can
re-target the output domain and produce stylized results.

Unlike previous methods [5,6,68] that achieve stylization ability by learning
a pixel-to-pixel mapping function using adversarial training, our PASD approach
decouples stylization generation and pixel-to-pixel mapping, opening a new door
for image stylization. By fine-tuning personalized SD models with a batch of style
images or downloading different personalized models from online communities 4,
one can easily generate various stylized results with our PASD method. In this
paper, we use cartoonization as a typical stylization task in experiments.

Old photo restoration. Apart from cartoonization, another popular family
of personalized models are the aesthetic ones, i.e., those trained on images with a
particular aesthetic taste. One typical task of this kind is old photo restoration.
By replacing the base model with an aesthetic one, PASD can improve the
quality and aesthetics of the input old photo image simultaneously, as will be
demonstrated in our experiments.

3.6 Training Strategy

In the model training, we first obtain the latent representation z0 of an HQ
image, and progressively add noise to it to yield a noisy latent zt, where t is a
randomly sampled diffusion step. Given a number of conditions such as diffusion
step t, LQ input Ilq and text prompt c, we learn a PASD network ϵθ to predict
the noise added to the noisy latent zt. The optimization objective is:

LDF−ϵ = Ez0,t,c,Ilq,ϵ∼N (0,1)

[
||ϵ− ϵθ(zt, t, c, Ilq)||22

]
. (5)

During the training of Real-ISR models, we jointly update the degradation re-
moval module. The total loss is L = LDF−ϵ + γLDR, where γ is a balancing
parameter. We simply set γ = 1 in the experiments. We freeze all the parame-
ters in pre-trained SD, and only train the newly added modules, including the
degradation removal module, ControlNet and PACA. The employed ResNet,
YOLO and BLIP and CLIP networks for high-level information extraction are
also fixed. During training, we randomly replace 50% of the text prompts with
null-text prompts. This encourages our PASD model to perceive semantic con-
tents from input LQ images as a replacement of text prompts.
4 https://civitai.com/; https://huggingface.co/

https://civitai.com/
https://huggingface.co/


Pixel-Aware Stable Diffusion 9

0 0.2 0.4 0.6 0.8 1
24

25

26

27

28

ᾱa
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4 Experiments

4.1 Experiment Setup

We adopt the Adam optimizer [24] to train PASD with a batch size of 4. The
learning rate is fixed as 5×10−5. The model is updated for 500K iterations with
8 NVIDIA Tesla 32G-V100 GPUs.

Training and testing datasets. For the Real-ISR task, we train PASD on
DIV2K [48], Flickr2K [1], OST [53], and the first 10, 000 face images from FFHQ
[20]. We employ the degradation pipeline of Real-ESRGAN [52] to synthesize
LQ-HQ training pairs. We evaluate our approach on both synthetic and real-
world datasets. The synthetic dataset is generated from the DIV2K validation set
following the Real-ESRGAN degradation pipeline. For real-world test dataset,
we use the RealSR [3] and DRealSR [55] for evaluation.

For the task of cartoonization, we simply reuse the PASD model trained for
Real-ISR task and shift the base model with stylized ones obtained from online
communities. We conduct comparisons on the first 100 face images from FFHQ
as well as the first 100 images from Flicker2K.

For the task of old photo restoration, we also adopt the pre-trained PASD
model in the task of Real-ISR. Unlike cartoonization, we replace the base model
with aesthetic ones. We collect 100 old photos from Internet for testing.

Evaluation metrics. For quantitative evaluation of Real-ISR models, we
employ the widely used perceptual metrics, including FID [14], LPIPS [65],
DISTS [7], NIQE [39], MUSIQ [23] and QAlign [56], to compare the compet-
ing Real-ISR models. The PSN and SSIM indices (evaluated on the Y channel in
YCbCr space) are also reported for reference only because they are not suitable
to evaluate generative models. For the tasks of cartoonization and old photo
restoration, we employ FID [14], MUSIQ [23] and QAlign [56] for evaluation
since the ground-truth images are unavailable.
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LQ RealESRGAN SwinIR StableSR PASD HQDiffBIR SeeSR

Fig. 5: Realistic image super-resolution results by different methods.

Table 1: The PSNR, SSIM, LPIPS, FID, DISTS, MUSIQ, NIQE and QAlign indices
of different Real-ISR models on synthesized (DIV2K) and real-world (RealSR and
DRealSR) test datasets. The best and second best scores are in bold and underscore.

Datasets Metrics RealESRGAN FeMaSR SwinIR ResShift StableSR DiffBIR SeeSR PASD

DIV2K
valid

PSNR↑ 21.9697 21.0272 21.6136 21.8165 22.3377 21.2447 21.7714 21.6494
SSIM↑ 0.6164 0.5543 0.6028 0.5589 0.6162 0.5415 0.5943 0.5543
LPIPS↓ 0.3717 0.3925 0.3931 0.4631 0.4144 0.4189 0.3577 0.3640
FID↓ 68.6481 66.2590 71.1709 55.1131 50.9362 57.7150 47.3327 50.7819

DISTS↓ 0.2092 0.1858 0.2097 0.2363 0.2191 0.1785 0.1959 0.1778
MUSIQ↑ 61.6423 60.0450 58.7220 56.3572 49.3028 66.9539 66.3071 66.1278
NIQE↓ 3.6754 3.5621 3.6044 6.6093 4.4371 2.8572 3.9528 3.3992
QAlign↑ 4.2460 3.6302 3.9947 4.1360 3.6496 4.3099 4.3146 4.3175

RealSR

PSNR↑ 25.8450 25.4330 26.0279 26.2353 26.2057 24.9872 26.5952 25.9301
SSIM↑ 0.7734 0.7540 0.7802 0.7047 0.7767 0.6812 0.7689 0.7105
LPIPS↓ 0.2729 0.2927 0.2594 0.4594 0.2565 0.3633 0.2796 0.2806
FID↓ 67.0156 63.4422 64.1658 61.6524 109.1054 55.1668 58.3206 47.3440

DISTS↓ 0.1685 0.1941 0.1609 0.2563 0.1584 0.1870 0.1859 0.1604
MUSIQ↑ 59.6881 58.7741 59.6442 53.3410 60.7065 65.5173 64.2653 65.5979
NIQE↓ 4.6781 4.7577 4.6453 7.4331 4.9309 3.6873 5.2673 4.1886
QAlign↑ 3.9186 3.6895 3.8204 3.8199 3.8686 4.0999 3.8884 4.1250

DRealSR

PSNR↑ 27.9116 26.5869 27.8427 28.2573 29.3013 27.2030 29.1033 29.0948
SSIM↑ 0.8249 0.7688 0.8209 0.7295 0.8462 0.7073 0.8278 0.7937
LPIPS↓ 0.2818 0.3374 0.2838 0.5443 0.2724 0.4639 0.2803 0.2893
FID↓ 23.1844 19.5815 24.6355 17.7943 17.6825 16.8249 16.2228 14.2049

DISTS↓ 0.1464 0.1766 0.1461 0.2715 0.1435 0.2107 0.1782 0.1429
MUSIQ↑ 35.2563 31.7808 34.6197 26.4684 33.1994 33.3549 30.5885 34.6331
NIQE↓ 4.7146 4.2176 4.5669 7.1426 5.4360 2.9683 5.3846 4.1390
QAlign↑ 4.3029 4.2651 4.2824 4.2366 4.2427 4.2492 4.2178 4.3822

In addition, for all tasks we invite 15 volunteers to conduct a user study
on 40 real-world images. Each volunteer is asked to choose the most preferred
one among the outputs of all competing methods, which are presented to the
volunteers in random order.

4.2 Effectiveness of the Adjustable Noise Schedule

We first use the task of Real-ISR to discuss the setting and advantages of our
proposed ANS. In order to find out how ᾱa affects the performance, we set
ᾱa ∈ {0, 0.1, 0.5, 1}) and perform experiments on the RealSR test dataset [3].
The curves of PSNR/QAlign versus ᾱa are plotted in Fig. 3. One can see
that the PSNR performance increases while the QAlign score decreases as ᾱa
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(b) Personalized cartoonization
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73%

DiffBIR
11%
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10%
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6%
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Fig. 6: User study results of (a) Real-ISR, (b) personalized cartoonization, and (c) old
photo restoration tasks.

grows, demonstrating that the proposed ᾱa can be employed to enable flexible
perception-fidelity trade-off. Fig. 4 visualizes Real-ISR results with different val-
ues of ᾱa. We can see that with the increase of ᾱa, PASD tends to improve
the fidelity while generate less realistic details. In practice, we choose ᾱa from
the values of ᾱn, where n ∈ {1, 2...N}, for convenience. In all of our following
experiments, we empirically set n = 900, i.e., ᾱ900 = 0.1189, to achieve a good
balance between fidelity and perception quality.

4.3 Experimental Results

Realistic image super-resolution. We compare the proposed PASD method
with two categories of Real-ISR algorithms. The first category is GAN-based
methods, including Real-ESRGAN [52], FeMaSR [4], and SwinIR [31]. The sec-
ond category is diffusion-based models, including ResShift [62], StableSR [50],
DiffBIR [34], and SeeSR [57]. The quantitative evaluation results on the test
data are presented in Tab. 1, from which we can have the following observations.

First, in term of fidelity measures PSNR/SSIM, the diffusion-based methods
are not advantageous over GAN-based methods. This is because diffusion models
have higher generative capability and hence may synthesize more perceptually
realistic but less faithful details, resulting in lower PSNR/SSIM indices. Second,
the diffusion-based methods, especially the proposed PASD, perform better than
GAN-based methods in most perception metrics. This conforms to our observa-
tion on the visual quality (see Fig. 5) of their Real-ISR output. Third, PASD
achieves the best QAlign scores, which is a no-reference image quality assessment
index based on large vision-language models, on all the three test datasets.

Fig. 5 visualizes the Real-ISR results of competing methods. It can be seen
that our PASD method can generate more realistic details with better visual
quality (see the synthesized textures in fur, flowers, leaves, feathers, sea, etc.).
Fig. 6a presents the results of subjective user study. PASD receives the most
rank-1 votes, confirming its superiority in generating realistic image details. More
visual results can be found in the supplementary material.

Personalized cartoonization. Similar to the Real-ISR task, we compare
the proposed PASD with two categories of stylization algorithms. The first cat-
egory is GAN-based methods, including CartoonGAN [6], AnimeGAN [5] and
DCTNet [37]. We re-train these models with a batch of stylized images gener-
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Table 2: The FID, MUSIQ and QAlign indices of different cartoonization models on
test data. The best and second best scores are in bold and underscore.

Datasets Metrics CartoonGAN AnimeGAN DCTNet InstructPix2Pix SD Img2img ControlNet PASD

FFHQ
FID↓ 53.7454 58.4010 50.6869 39.3259 63.0608 37.9589 37.6698

MUSIQ↑ 71.9848 70.3372 62.6950 72.9510 74.8963 74.7521 75.0221
QAlign↑ 3.6064 3.4988 3.6812 3.9030 4.0076 3.9233 3.9978

Flicker2K
FID↓ 72.5560 78.4741 81.0789 71.2098 75.5553 72.2742 70.3800

MUSIQ↑ 71.5768 72.7070 72.2595 74.1627 75.9558 72.3908 73.1320
QAlign↑ 3.7277 3.6835 3.8483 3.8842 3.9008 3.9331 3.9290

Input CartoonNet DCTNet SD Img2img ControlNet PASD

Fig. 7: Stylization (cartoonization) results by different methods on real-world images.

Input RealESRGAN FeMaSR StableSR DiffBIR PASD

Fig. 8: Old image restoration results by different methods on real-world images.

Table 3: The FID, MUSIQ and QAlign indices of different old image restoration models
on self-collected data. The best and second best scores are in bold and underscore.

Metrics RealESRGAN FeMaSR SwinIR Wan et al . StableSR DiffBIR PASD
FID↓ 265.5364 263.5393 266.9950 268.3455 264.3178 262.1837 240.2576

MUSIQ↑ 59.4676 61.2766 55.3312 32.1470 53.2194 60.3904 64.4023
QAlign↑ 3.6660 3.6347 3.8232 3.0120 3.8636 3.9191 3.9797

ated by a personalized diffusion model, i.e., ToonYou 5. The second category is
diffusion-based algorithms, including InstructPix2Pix [2], SD img2img [43] and
ControlNet [64]. We replace their base models with the personalized model for
fair comparison. Tab. 2 shows the quantitative evaluation results. It can be seen
that PASD achieves the best or second best results in most indices.

Fig. 7 shows some cartoonization results. One can see that compared with
GAN-based methods, the results of PASD is much cleaner. Compared with the
diffusion-based models, PASD can better preserve image details such as human
hair. Due to the limited space, we only present results with the style of ToonYou
here. Please note that PASD can generate various stylization results by simply

5 https://civitai.com/models/30240/toonyou

https://civitai.com/models/30240/toonyou
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HQ(h)

Fig. 9: Real-ISR results by different variants of PASD.

Table 4: Quantitative results of different variants of PASD on RealSR test dataset.

Exp. Degradation Removal High-level info Negative prompt PSNR↑ FID↓ LPIPS↓ Runtime(s)↓
(a) ✓ ✓ 26.1108 56.7890 0.3822 14.3221
(b) ✓ 27.8731 53.8988 0.3080 8.0368
(c) ✓ ✓ 27.0901 52.3380 0.2851 8.7366
(d) ✓ ✓ 27.3781 50.2502 0.2809 13.3163
(e) ✓ ✓ ✓ 25.9301 47.3440 0.2806 14.5889

switching the base diffusion model to a personalized one without any additional
training procedure. More stylization results, including the results on image col-
orization, can be found in the supplementary materials.

As in the task of Real-ISR, we also conducted a user study for subjective as-
sessment on the image stylization performance. Fig. 6b shows the results. Clearly,
PASD is preferred by most subjects.

Old photo restoration. We compare PASD with Wan et al . [49] and several
real-world SR methods, including RealESRGAN [52], FeMaSR [4], SwinIR [31],
StableSR [50], and DiffBIR [34]. We re-use the PASD model trained for Real-ISR
task but replace its base model with an aesthetic one ,i.e. majicMIX realistic 6.

Tab. 3 shows the quantitative evaluation results. It can be seen that PASD
achieves the best results in all three indices. Fig. 8 visualizes some old photo
restoration results. Compared with the competing methods, PASD can better
recover vivid image details such as human hair. Fig. 6c presents the results of
subjective user study. Clearly, PASD is preferred by the majority of subjects.
More visual results can be found in the supplementary material.

4.4 Ablation Studies

We perform a series of ablation studies of the proposed PASD network, including
the importance of PACA, the role of degradation removal module, and the role
of high-level information. We visualize the Real-ISR results of different variants
of PASD in Fig. 9, and report the quantitative results and runtime in Tab. 4.

Importance of PACA. We evaluate a variant of PASD by excluding the
PACA module from it, i.e., the features y extracted from ControlNet are simply
added to features x. As shown in Fig. 9(b), the output becomes inconsistent
6 https://civitai.com/models/43331/majicmix-realistic

https://civitai.com/models/43331/majicmix-realistic
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with the LQ input in colors and structures, etc. This verifies the importance of
PACA in perceiving pixel-wise local structures.

Role of degradation removal module. To evaluate the effect of degrada-
tion removal module, we remove the “toRGB” modules as well as the pyramid
LDR loss during model training. As can be seen in Fig. 9(c) and Tab. 4, removing
the degradation removal module leads to dirty outputs and worse PSNR, FID
and LPIPS indices.

Role of high-level information. The high-level information and nega-
tive prompt are optional but very useful for PASD. We simply replace them
with null-text prompt to evaluate their effects. As shown in Fig. 9(d), replacing
both high-level information and negative prompt with null-text prompt results
in dirty outputs with less realistic details, which is also verified by the worse
FID and LPIPS indices in Tab. 4. Abandoning high-level information leads to
over-smoothed results, as illustrated in Fig. 9(e). The output can become dirty
without negative prompt (see Fig. 9(f)). Our full model takes advantages of
both high-level information and negative prompt, and achieves a good balance
between clean-smooth and detailed-dirty outputs (see Fig. 9(g) and the best FID
score in Tab. 4).

Runtime analysis on different modules. The runtime is reported as the
average over 10 runs to process a 256×256 image on a NVIDIA Tesla 32G-V100
GPU. We use the DDIM [47] sampler for 20 steps. By comparing Exps. (a) and
(e) in Tab. 4, one can see that the degradation removal module has little effect
on the runtime. Without the negative prompt module, the runtime nearly cuts in
half because the classifier-free guidance can be removed (see Exps.(c) and (e)).
Finally, the high-level information module only increase a little the runtime (see
Exps.(d) and (e)).

5 Conclusion and Limitation

We proposed a pixel-aware diffusion network, namely PASD, for realistic im-
age restoration and personalized stylization. By introducing a pixel-aware cross
attention module, PASD succeeded in perceiving image local structures in pixel-
level and achieved robust and perceptually realistic Real-ISR results. An ad-
justable noise schedule was also proposed, which helped PASD to achieve flexi-
ble perception-fidelity trade-off during the inference stage. By replacing the base
model to a personalized one, PASD could produce diverse stylization results with
highly consistent semantic contents with the input. The proposed PASD was sim-
ple to implement, and our extensive experiments demonstrated its effectiveness
and flexibility across different tasks, showing its great potentials for handling
complex image restoration and stylization tasks.

Though PASD can achieve pixel-level enhancement, it still suffers from the
balance between fidelity and perception. In addition, it may fail to reproduce
faithful details when the input image is heavily degraded or the semantic in-
formation is inaccurate. A more robust degradation estimation module can be
designed, and more precise semantic information can be extracted to further
improve the performance of PASD, which will be considered in our future work.
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