A Appendix

The supplementary materials are organized as follows. First, in section [A.1] we
provide some limitations of our method. Then, in section [A22] we present the
extra experiments of illustrating the capability of our SEED, applying differ-
ent backbones, varying the score threshold 7 for quality query selection in DQS
and the distinct grids in DGA on the Waymo validation set [6] with 20% train-
ing data, respectively. Besides, we explore the impact of different numbers of
SEED decoder layers on detection performance. In section [A23] we present the
comparisons of several variant attention operations for query interaction. In sec-
tion [AZ4] we discuss the differences of our proposed DQS and DGA with the
existing related methods. Finally, we provide the analysis of visualization, in-
cluding the learned attention map of DGA and the 3D detection results under
different settings in section [A-5]

A.1 Limitation

Our method mainly improves the detection head based on the DETR, paradigm
for 3D object detection. Therefore, the advanced 3D detectors that focus on
enhancing the representation ability of 3D backbone are orthogonal to SEED. In
the future, we plan to apply our SEED to more powerful 3D backbones on more
datasets to further explore the scalability of our method. Besides, we observe
that SEED may fail to detect some distant and small 3D objects, but they are
clearly visible in 2D camera images. Therefore, exploiting the complementarity
of multiple modalities (i.e., 3D point clouds, and 2D camera images) to detect
these challenging objects is also our next step.

A.2 Extra Experiments

Table 1: Effectiveness of our SEED. For a fair comparison, we adopt 100%
Waymo training data for all models. The results are evaluated by the metric of
mAP/mAPH (L2).

Methods ‘ Detection Head ‘ mAP/mAPH (L2) ‘ FLOPs (G) ‘ Params ( \1) ‘ Latency (ms)
SECOND |9] Anchor-based 61.0/57.2 91.2 33.3
CenterPoint [10] Center-based 68.2/65.8 141.2 44.0
PV-RCNN-+ |5] Rol-based 71.7/69.5 166.6 lG l 149.0
VoxelNeXt |3 Center-based 72.2/70.1 624.9 29.3 124.7
TransFusion |1] DETR-based —/64.9 96.8 7.9 70.5
ConQueR |12 DETR-based 70.3/67.7 167.3 15.1 99.1
FocalFormer3D |2 DETR-based 71.5/69.0 144.9 19.4 97.2
SEED-S (Ours) DETR-based 73.1/70.8 168.7 12.8 74.2
SEED-L (Ours) DETR-based 75.5/73.5 648.1 33.1 163.8

Capability of our SEED. To verify the capability of our SEED, we adopt the
small version SEED-S with the same 3D backbone as CenterPoint [10] for a fair



comparison with existing representative 3D object detection methods, including
anchor-based [9], center-based [10], Rol-based [5| and DETR-based |1}2,|12] de-
tectors. We conduct the comparisons of these methods in terms of performance,
FLOPs, parameters, and latency, shown in Table[I] Note that the main difference
between these methods is the design of the detection head. Moreover, we evalu-
ate the running speed of all approaches on one NVIDIA GeForce RTX 3090 with
a batch size of 1 according to their corresponding official open-source code for a
fair comparison. Compared with SECOND [9] and CenterPoint [10], our SEED-S
has a slower running speed, but our performance greatly exceeds them with 13.6
and 5.0 mAPH /L2, respectively. Furthermore, benefiting from the well-designed
DQS module for selecting high-quality queries and the superior DGA operation
for effective feature interaction, the detection performance of our SEED-S even
outperforms PV-RCNN++ [5] of 1.3 mAPH/L2 with 2x faster running speed.
However, existing DETR-based methods still fall behind PV-RCNN++ in terms
of detection performance. The above experimental results effectively illustrate
the powerful capability of our SEED.

Table 2: Effectiveness of our SEED on different backbones on the Waymo validation
set [6] with 20% training data. We use mAP/mAPH (L2) for evaluating the detection
performance. * means our reproduced performance from the official code.

3D AP/APH (L2 mAP/mAPH
Methods Vehicle ‘ Ped/estrian( ‘) Cyclist (L2)
CenterPoint-Pillar [10] 62.2/61.7 65.1/55.0 63.0/61.5 63.4/59.4
+SEED Detection Head 67.0/66.5 71.3/62.0 65.8/64.5 68.0/64.3
CenterPoint [10] 63.2/62.7 64.3/58.2 66.1/64.9 64.5/61.9
+SEED Detection Head 68.5/68.1 72.1/66.5 71.2/70.0 70.6/68.2
DSVT-Pillarx |8 69.7/69.2 74.9/68.0 70.7/69.6 71.8/68.9
1+ SEED Detection Head 71.7/71.3 75.4/68.7 73.0/71.8 73.4/70.6
HEDNetx [11] 70.8/70.3 75.0/70.3 73.6/72.6 73.1/71.1
+SEED Detection Head 72.4/72.0 76.3/71.3 74.9/73.8 74.5/72.4

Effectiveness of our SEED with Different Backbones. Note that our
SEED focuses on the design of detection head based on the DETR paradigm.
Therefore, to verify the effectiveness of our SEED, we decorate our SEED detec-
tion head with different backbones, including CenterPoint-Pillar (pillar-based) [10],
CenterPoint (voxel-based) [10], DSVT-Pillar [8] and HEDNet [11]. In Table
we present the corresponding detection results on the Waymo validation set [6]
with 20% training data. We clearly observe that our approach yields consistent
performance improvement under different backbones, proving the generality of
our SEED detection head.

Effect of 7 for Quality Query Selection. To explore the effect of the clas-
sification score threshold 7 in formula (4) of the main paper for quality query
selection, we set different score thresholds of 7 = 0.0, 7 = 0.2, and 7 = 0.3, whose
results are summarized in Table When the score threshold is set as 0.0, we
find there is a drastic drop in detection performance. Since the predicted object



Table 3: The effect of different classification score thresholds for quality query selection
in dual query selection (DQS). We use mAP/mAPH (L2) for evaluating the detection
performance.

3D AP/APH (L2) mAP/mAPH
i Vehicle | Pedestrian | Cyclist (L2)
0.0 66.6/66.2 70.1/64.5 69.1/67.8 68.6/66.2
0.2 68.5/68.1 72.1/66.5 71.2/70.0 70.6/68.2
0.3 68.7/68.2 71.9/66.4 71.0/69.8 70.5/68.1

Table 4: Effectiveness of our SEED. The results are evaluated by the metric of
mAP/mAPH (L1 and L2). We evaluate the latency of our SEED for different gird
sizes on one NVIDIA GeForce RTX 3090 with a batch size of 1.

Grids | mAP/mAPH (L1) | mAP/mAPH (L2) | Latency (ms)
3x3 76.7/74.1 70.3/67.8 73.1
5x5 77.0/74.4 70.6/68.2 74.2
TxT 77.1/74.5 70.7/68.3 77.8

Table 5: The effect of the number of SEED decoder layers in transformer decoder
for 3D detection performance. We use mAP/mAPH (L2) to evaluate the detection
performance.

Laver 3D AP/APH (L2) mAP/mAPH
ayers Vehicle ‘ Pedestrian ‘ Cyclist (L2)
1 66.8/66.2 69.4/62.0 69.2/67.8 68.5/65.3
68.4/68.0 71.5/65.6 70.9/69.7 70.3/67.8
6 68.5/68.1 72.1/66.5 71.2/70.0 70.6/68.2

score is close to 0.0, it is more likely to be considered a background object. At
this time, the estimated localization scores that are mainly for foreground ob-
jects rather than background objects are unreasonable, leading to selecting out
poor queries in the stage of quality query selection. Therefore, setting a proper
score threshold (e.g., 0.2 or 0.3) to eliminate the negative impact of background
objects for quality query selection in DQS is necessary.

Ablation for Distinct Grids. As shown in Table 4} we conduct experiments
of varying grid sizes in DGA to investigate their impact on the detection per-
formance and latency. With increasing the grid sizes (3 x 3 — 5 x 5), the
detection performance of our SEED can be consistently improved in terms of
mAP/mAPH (L2). However, the corresponding computational costs are also in-
creasing due to more sampled features being performed for query interaction,
leading to more latency. Therefore, in our paper, we choose a proper grid size of
5 x 5 as default to trade off the detection performance and latency.

Number of SEED Decoder Layers. To analyze the effect of different num-
bers of SEED decoder layers on detection performance, we provide the exper-
imental results in Table o} When only one SEED decoder layer is applied in



Table 6: The comparison of different query selection in terms of latency.

Query Selection Methods ‘ mAP / mAPH (L2) ‘ Latency (ms)
TransFusion |1]| (Heatmap-based) 67.5 / 65.0 2.5
ConQueR |12 (Top-N) 69.1 / 66.8 7.3
SEED (DQS) 70.6 / 68.2 10.0

the transformer decoder to extract contextual features of point clouds, a rela-
tively poor detection performance with 65.3 mAPH/L2 is obtained. In contrast,
stacking three SEED decoder layers brings an obvious performance gain with
2.5 mAPH/L2 thanks to their more powerful feature extraction capabilities. In-
tuitively, stacking more SEED decoder layers is beneficial. Therefore, in this
paper, we adopt the commonly used six SEED decoder layers in the transformer
decoder, which produces a better result with 68.2 mAPH /L2 than the settings
of using fewer decoder layers (i.e., 65.3 mAPH /L2 for one decoder layer or 67.8
mAPH/L2 for three decoder layers).

Latency of Different Query Selection. In Table[6] we provide the latency of
different query selection methods. We can observe that our DQS with high per-
formance does not bring significant latency compared with the Top-N method.

A.3 Different Attention Operations

To clearly illustrate the difference between our proposed deformable grid atten-
tion (DGA) and existing representative attention operations (i,e, global atten-
tion [7], deformable attention [13] and box attention [4]), we present the simple
schematic diagrams of these methods as shown in Figure 1] For the global atten-
tion in Figurell| (a), each query implements feature interaction with all features
(as key and value). This operation usually brings unacceptable computational
costs, especially for using high-resolution feature maps as keys or values. There-
fore, the local attention operations including the deformable attention, the box
attention, and our DGA in Figure[] (b) (c) (d) are more proper to perform query
interaction than the global attention in point clouds. Specifically, deformable at-
tention is good at capturing the crucial regions of objects in a flexible receptive
filed manner, but the learned offsets without geometric prior information as ref-
erence are difficult to predict accurately. The box attention operation can make
use of geometric information of some regular objects (e.g., Vehicle), but it re-
quires a precise box regression, and its receptive field is not as flexible as the
deformable attention. In contrast, our deformable grid attention has the advan-
tages of both the flexible receptive field of deformable attention and the rich
geometric information of the box attention, which can enable the network to
focus on relevant regions and capture more informative features even for objects
with diverse shapes.
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(a) Global Attention (b) Deformable Attention (c) Box Attention (d) DGA (Ours)

Fig. 1: Comparison of deformable gird attention (DGA) with other attention opera-
tions. The orange points represent the sampling features, the yellow points represent
the reference points, and the green arrows represent the predicted offsets. Note that
global attention adopts a global manner for query interaction, that is, treating all fea-
tures as sampling features.

Table 7: Comparison of our SEED and FocalFormer3D. * indicates the deformable
attention in FocalFormer3D

DQS‘multi-stage‘mAP/mAPH (L2)

- B 67.5/65.0 Method |mAP/mAPH (L2)
v 68.2/65.5 Deformable Attention 69.9/67.5

v - 70.6/68.2 Deformable Attentionx 70.0/67.6

v v 70.9/68.3 DGA (Ours) 70.6/68.2

(a) Comparison for query selection. (b) Comparison for query interaction.

A.4 Discussion

DQS wvs. Multi-stages to Select Queries. Actually, our DQS not only uses a
foreground query selection module to select coarse queries with a high recall, but
also leverages a quality query selection module to obtain high-quality queries.
However, FocalFormer3D primarily utilizes multi-stage foreground scores to
obtain queries with higher recall, but it overlooks the importance of query quality
for box localization. Furthermore, we present a comparison between our DQS
and the multi-stage approach in Table [7a] We observe that DQS achieves much
better performance (68.2 vs. 65.5), which indicates the importance of selecting
high-quality queries. In Table [7a] we also integrate this multi-stage strategy into
our DQS, which brings a subtle gain of 0.1 mAPH/L2.

DGA wvs. Deformable Attention in FocalFormer3D. Here, we discuss
the difference between our proposed DGA and deformable attention in Focal-
Former3D |2| for query interaction. In fact, FocalFormer3D adopts the same de-
formable attention with deformable DETR . The only difference with is
that FocalFormer3D uses the enhanced queries by combining the Rol features for
feature interaction instead of the original queries. In contrast, our DGA is a new
deformable attention, which uniformly divides each reference box into grids as
the reference points and then utilizes the predicted offsets to achieve a flexible re-
ceptive field. In Table[7h] we provide the comparison with FocalFormer3D, whose
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Fig. 2: Comparison of attention map without DGA (a) and with DGA (b) on the
Waymo validation set. Green boxes are the ground truths. The circle represents the
position of the attention, and its corresponding color means the weight of the attention.
After utilizing DGA, SEED can capture the geometric information of 3D objects in a
flexible receptive field and achieve better query interaction.

Fig. 3: Comparison of detection results without DQS (a) and with DQS (b) on the
Waymo validation set. Blue and green boxes are the prediction and ground truths,
respectively. After utilizing DQS, our SEED can successfully detect some hard objects
and reduce some false positives, which are highlighted by red circles.

performance (67.6 mAPH/L2) is still inferior to our DGA (68.2 mAPH/L2). Ad-
ditionally, we provide a clear illustration of the difference between our DGA and
deformable attention in Figure [I]
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Fig. 4: Qualitative results of SEED on the Waymo validation set. Blue and green
boxes are the predictions and ground truths, respectively. Besides, we highlight the
false positive with a red circle.

A.5 Visualization

Visualization of Learned Attention Map. As shown in Figure[2] we present
the visualization of learned attention maps under the settings of our SEED with
DGA (b) and without DGA (a) (i.e., box attention [4]). In the first column,
we can observe that DGA captures the key regions even if there is no accurate
proposal box as a reference, benefiting from its flexible receptive field. In the
second column, we find that DGA produces higher attention weight on objects
than the manner without DGA. In the third column, our DGA not only has good
robustness in estimating the direction angle but also focuses on key features, such
as the boundary and center of the object. The above visualizations effectively
demonstrate the superiority of our DGA for query interaction.

Comparisons for w/ and w/o DQS. To verify the effectiveness of our DQS,
we visualize the detection results of our SEED with DQS and without DQS (i.e.,
directly select Top Ny queries in one step) on the Waymo validation set, which
is depicted in Figure[3] In the first column, our method can accurately locate all
objects and distinguish a False Positive (FP). Besides, as shown in the second
column of Figure 3] we observe that our SEED with DQS can pick out some
high-quality queries for accurate localization. Finally, surprisingly, our method
has the ability to detect a hard distant object even with some occlusions, as
shown in the third column of Figure [3] These interesting phenomena illustrate
the effectiveness of our approach.

Visualization for SEED. We visualize the qualitative results of SEED on the
Waymo validation set, which is shown in Figure[d] Benefiting from the dual query
selection for high-quality query selection and the deformable grid attention for
effective query interaction, our SEED can detect 3D objects well on large-scale
point clouds. Besides, in Figure @ (d), we carefully find that there are several



False Positives (e.g., Pedestrian) in the distant areas. Therefore, we plan to
utilize the complementarity of multiple modalities (i.e., 3D point clouds, and
2D camera images) to distinguish these challenging objects in the future.
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