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Abstract. The scarcity of annotated data in LiDAR point cloud under-
standing hinders effective representation learning. Consequently, scholars
have been actively investigating efficacious self-supervised pre-training
paradigms. Nevertheless, temporal information, which is inherent in the
LiDAR point cloud sequence, is consistently disregarded. To better uti-
lize this property, we propose an effective pre-training strategy, namely
Temporal Masked Auto-Encoders (T-MAE), which takes as input tem-
porally adjacent frames and learns temporal dependency. A SiamWCA
backbone, containing a Siamese encoder and a windowed cross-attention
(WCA) module, is established for the two-frame input. Considering that
the movement of an ego-vehicle alters the view of the same instance,
temporal modeling also serves as a robust and natural data augmen-
tation, enhancing the comprehension of target objects. SiamWCA is a
powerful architecture but heavily relies on annotated data. Our T-MAE
pre-training strategy alleviates its demand for annotated data. Compre-
hensive experiments demonstrate that T-MAE achieves the best per-
formance on both Waymo and ONCE datasets among competitive self-
supervised approaches.

Keywords: Self-supervised learning · LiDAR point cloud · 3D detection

1 Introduction

As deep neural networks become more complex, the available amount of labeled
data is often insufficient to adequately train huge models [14, 24], e.g ., Vision
Transformer (ViT) [15]. Consequently, there is a growing interest in exploring
self-supervised learning (SSL) approaches as a potential solution to overcome
this limitation. SSL serves as a pre-training technique with unlabeled data, ac-
celerating the convergence of the models and improving their performance for
downstream tasks [8,11,20]. The same challenge extends to the domain of point
clouds, where annotations are more costly and time-consuming to obtain [17,56].
For instance, a mere 10% and 0.8% of frames are annotated in the nuScene [4]
and ONCE [35] datasets, respectively. This challenge makes pre-training for point
cloud understanding a non-trivial endeavour.

Prior works mainly focus on synthetic and isolated objects [28,33,41,60,66–
68] and indoor scene understanding [25, 30, 34, 43, 59]. Transferring these meth-
ods to outdoor LiDAR points is challenging due to their sparsity and dynamic
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Fig. 1: T-MAE performance on
Waymo [47]. Left: Each point
triplet shows the performance differ-
ences to three models finetuned with
the same data. The triplets show fine-
tuned models with 8K, 16K, 32K la-
beled frames (left to right). Our T-
MAE pre-training outperforms both
random initialization and the SOTA
SSL method MV-JAR [58] with sig-
nificantly fewer iterations. Right: T-
MAE yields higher mAPH for pedes-
trians when finetuned with half the la-
beled data than MV-JAR.

environmental conditions. At present, most of the self-supervised methods used
for understanding point clouds in autonomous driving rely on contrastive learn-
ing [38–40, 57, 64]. These approaches model the similarity and dissimilarity be-
tween entities, such as segments [39,55] and/or points [57]. In the wake of masked
image modeling as a pretext task [24], efforts have also been devoted to the re-
construction of masked points [37,51,58,62]. The main idea is randomly masking
points or voxels and urging the network to infer the coordinates of points [62]
and/or voxels [58] or other properties, e.g ., occupancy [2,37] and curvature [51].
Nevertheless, these methodologies often operate within the confines of a single-
frame scenario, disregarding the fact that LiDAR data is typically acquired on
a frame-by-frame basis. In other words, the valuable semantic information in
temporally adjacent frames is barely exploited.

Several methods attempt to leverage temporal information [27,31, 39,55] by
incorporating multi-frame input during the self-supervised phase but their core
concepts remain grounded in contrastive learning. Specifically, the point clouds
captured at different times are treated as augmented samples of the same scene,
without including temporal correspondence into the modeling procedure.

Therefore, we propose a new self-supervised paradigm, namely T-MAE, to
exploit the accumulated observations. During the pre-training stage, the current
scan is voxelized with a high masking ratio, while the previous scan is fed en-
tirely to the encoder. Then, the pretext task is to reconstruct the current scan
by incorporating voxel embeddings of the past scan, visible voxel embeddings
of the current scan, and the position of masked voxels. This way, the proposed
windowed cross-attention module learns to incorporate historical information
into the current frame using unlabeled data. The T-MAE pre-training strat-
egy endows the network with both a powerful representation for sparse point
clouds and the capacity to strengthen the present by learning from the past. As
shown in Fig. 1, the proposed T-MAE achieves higher overall and pedestrian-
specific mAPH than the randomly initialized baseline, namely the same model
but trained from scratch. Moreover, T-MAE also outperforms state-of-the-art
MV-JAR [58] with over 1.6× to 2.4× fewer finetuning iterations.
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Our contributions are summarized as follows: 1) We propose T-MAE, a
novel and effective SSL approach for representation learning of sparse point
clouds, that learns temporal modeling in the process of reconstructing masked
points. 2) We design a SiamWCA backbone, containing a Siamese encoder and
a windowed sparse cross-attention (WCA) module, to incorporate historical in-
formation. 3) Our experiments demonstrate the efficacy of T-MAE by attaining
substantial improvements on the Waymo and ONCE datasets. Notably, T-MAE
with 5% labeled data outperforms the SOTA SSL approach MV-JAR in terms
of mAPH for pedestrians, even if MV-JAR employs 10% labeled data.

2 Related Work

Static Self-supervised Learning. SSL for point clouds is a burgeoning field
due to the scarcity of annotations. In general, the pipeline of SSL consists of
two phases. First, the network is trained using a pretext task with unlabeled
data. Second, in downstream tasks such as segmentation and detection, the pre-
trained weights are loaded to the backbone, and the backbone is attached with
task-specific heads. The resulting model is finetuned with annotated data.

The initial research efforts are primarily directed towards contrastive learn-
ing. The underlying hypothesis is that an image or 3D scene demonstrates fea-
ture equivalence even after undergoing different transformations [7, 11]. One of
the key challenges in the point cloud domain is establishing correspondences
across scenes. PointContrast [57] and DepthContrast [70] track the points while
performing different transformations. GCC-3D [31] exploit sequential informa-
tion to obtain pseudo instances and then perform contrasting on the instance
level. SegContrast [38] firstly obtains segments by an unsupervised clustering and
then contrasts segments between two transformed views. These methods allow
the network to learn equivalence regarding geometric transformations. However,
contrastive SSL approaches usually suffer from careful tuning of hyperparame-
ters and complicated pre- or post-processing to find correspondences.

The focus has shifted to reconstructing masked points, following the success
of masked image modeling [24,54]. The masking strategies remain consistent, i.e.
voxelize a point cloud into cubes followed by random masking of these cubes.
The reconstruction targets vary across papers. OccupancyMAE [37] classifies
voxels to whether they are occupied. Geo-MAE [51] infers occupancy as well as
the normal and curvature of each masked voxel. The GD-MAE’s pretext task
is to reconstruct a fixed number of points for masked voxels [62]. MV-JAR [58]
partitions the masked Voxel into two categories, necessitating the network to
either predict the coordinates of the voxels or produce the points themselves. In
this paper, we employ the same masking strategy as GD-MAE [62] but expand
the knowledge source to include both the current visible voxels and voxels from
a previous frame as a reference.
Temporal Self-supervised Learning. There are many SSL methods designed
to address temporal or spatiotemporal tasks in the video domain. MAE-ST [18]
employs a random patch masking strategy over consecutive frames. The model is
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tasked with recovering these masked patches while considering information from
adjacent frames. VideoMAE [52] retains the same reconstruction pipeline as
the pretext task but exploits a tube masking strategy. SiameseMAE [22] learns
object-centred representations with the help of cross-attention layers and an
asymmetrical masking technique on consecutive frames. There are also content-
based masking strategies, e.g ., motion-guided masking [26, 36]. The primary
concept underlying these methods is acquiring an understanding of temporal
dependency across frames through the process of reconstructing patches with
reference to consecutive frames.

While this concept is effectively used in video understanding, it is rarely ap-
plied to learn sparse point cloud representations. This is because point clouds
are typically handled on a frame-by-frame basis rather than being regarded as
a temporal sequence. For instance, when using temporally adjacent scans as in-
put during self-supervised learning, both STSSL [55] and TARL [39] use HDB-
SCAN [5] to obtain segments and apply self-supervision by minimizing the fea-
ture distance between the same segments or points of neighbour frames. While
they achieve impressive results, two issues persist 1) The use of elaborate and
time-consuming pre-processing methods to obtain segments. 2) A primary focus
on object consistency across frames rather than understanding object motion.

Unlike other approaches, we aim to reduce the reliance on complex pre-
processing techniques and focus on enabling the model to establish temporal
correspondence through self-supervised learning from unlabeled data.

3 Method

We first briefly discuss important preliminaries in Sec. 3.1 from previous works
although they mainly focus on the single-frame setting. To incorporate historical
frames, we build up our framework as in Fig. 3. The key component of the
framework, SiamWCA, is introduced in 3.2. Then, the proposed T-MAE pre-
training strategy is described in Sec. 3.3 and the corresponding windowed sparse
cross-attention (WCA) module is elaborated in Sec. 3.4.

3.1 Preliminaries

Pillar-based representation and sparse regional self-attention. The pillar-
based representation is an efficient representation introduced in PointPillars [29].
It divides 3D points into infinite-height voxels and computes pillar-wise fea-
tures. These features can be treated as a pseudo-image in a bird’s eye view. On
top of the pillar-based representation, SST [16] proposes a sparse regional self-
attention (SRA) module to address challenges in applying ViT to sparse LiDAR
points. SST divides the pillars into non-overlapping windows and then applies
self-attention within each window. The receptive field of each pillar is expanded
through a window shift operation. This window partition and shift make the
SRA module achieve a good balance of efficiency and accuracy. T-MAE and
many recent works [48,58,62] are built upon the basic SRA block.
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(a) A stationary vehicle. (b) A moving vehicle.
Fig. 2: Comparison between single- and four-frame concatenation. While sim-
ple frame concatenation generally improves point density and detection rates, it can
introduce spurious points in non-static scene parts that may degrade the detection
performance. Since we combine consecutive frames via learned cross-attention, our ap-
proach is less affected by this problem. The blue bounding boxes indicate the ground
truth for the current frame.

Reconstruction pretext task and single-frame baseline. The original
MAE [24] randomly masks patches of an image and employs a ViT to recon-
struct the image. To perform this reconstruction pretext task in the LiDAR
domain, we follow the concept of the state-of-the-art SSL method GD-MAE [62]
which operates on a single frame. The framework encompasses several key stages,
i.e. voxelization, masking, encoding, dense feature recovery, and reconstruction.
Through this pretext task, GD-MAE acquires valuable weights for the encoder,
which are later utilized for downstream tasks.
Analysis. Up to this point, a common approach has been to employ a single-
frame reconstruction pretext task for LiDAR points. However, incorporating
historical frames poses a non-trivial challenge. One straightforward approach is
to concatenate two point clouds after aligning them with ego-poses, similar to the
three-frame variant of SST [16]. However, as shown in Fig. 2, while concatenation
helps to identify static objects effectively, it introduces challenges for detectors
when dealing with moving objects. We provide quantitative results in Tab. 3. To
address this problem, we suggest learning from past data in a latent space.

3.2 Framework Overview

As illustrated in Fig. 3, the proposed framework compromises voxelization, en-
coding, windowed cross-attention, dense feature recovery and two separate heads
for pre-training and detection, respectively. This subsection elaborates on the key
components for supervised learning, e.g ., training from scratch and fine-tuning,
whereas SSL-related components are introduced in Sec. 3.3.
Temporal batch-based sampling. Consider a sequence of point clouds as an
ordered set of point clouds, denoted as P = {P1,P2, . . . ,Pt, . . . ,PT }. In this
ordered set, Pt = {(ptk)}Kk=1 is a sweep of point cloud at time t, where pk is a 3D
point pk ∈ R3 and K indicates the number of points. In our setting, two frames
are needed to feed the network. Due to the high sampling frequency of the LiDAR
system, two consecutive frames usually contain redundant duplicate information,
which is verified in Appendix Sec. S3. Conversely, when there is a substantial
time gap between two frames, their overlap may be limited, making the historical
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Fig. 3: Overview of our architecture and the proposed T-MAE pre-training.
Two frames are sampled from a sequence of point clouds and are voxelized. During
pre-training, the current frame Pt2 undergoes an additional masking process. Note
that the dashed boxes indicate operations for pre-training phase only. Next, voxel-wise
tokens are computed by a Siamese encoder. The two-way gray arrow indicates weight
sharing. The WCA module takes as input the full tokens of the previous frame and
the partial observation of the current frame and outputs enhanced tokens. The dense
feature recovery places sparse tokens back to a dense feature map and convolves the map
to fill empty locations. Subsequently, the feature map is either fed to a reconstruction
head that recovers masked points, or to a detection head predicting bounding boxes.

information less useful. Therefore, we follow TARL [39] to introduce the concept
of a temporal batch so that the interval of two frames is constrained to an
appropriate range. Specifically, we sample a batch of consecutive frames Bt =
{Pt+1,Pt+2, . . . ,Pt+n} from a sequence P. Then, two frames, Pt1 and Pt2 are
sampled from the first and last one-third of the batch, namely, t1 ∈ {t + 1, t +
2, . . . ,

⌊
t+ n

3

⌋
} and t2 ∈ {

⌈
t+ 2n+1

3

⌉
, . . . , n− 1, n}.

Alignment and voxelization. Given two frames, the previous frame Pt1 is
transformed to the coordinate system of the current frame Pt2 by their ego-
poses. The pose information is available in most datasets [4, 35, 47] or easily
obtained by means of GPS/IMU, odometry approaches [9], structure from mo-
tion (SfM) algorithms [44, 45], or SLAM systems [13]. Next, each point cloud is
divided into discrete voxels. Two linear layers map point coordinates to high-
dimensional features and a voxel-wise representation is obtained via voxel-wise
average pooling. The voxels can be regarded as pillars, owing to the infinite
height.

A Siamese encoder and windowed cross-attention (SiamWCA). A Siamese
encoder [3] is a two-branch network where both branches share the same con-
figurations and weights. In this work, it is utilized to encode the pillar-wise
representations of both frames to sparse tokens. These tokens serve as input to
the WCA module which facilitates the interaction between historical and current
tokens. The SiamWCA is elaborated in Sec. 3.4.

Dense feature recovery and detection head. Once the current tokens are
augmented with historical information, these sparse tokens are reverted to the
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x-y plane to form a dense feature map while vacant pillars are filled with zeros.
Since LiDAR points only occur on object surfaces, the object centers typically
locate at empty space, leading to inaccurate detection. We follow GD-MAE [62]
to attach four dense convolutional layers, which spread the feature from occupied
pillars to vacant regions. For the detection head, we adopt a center-based head
and use the same target assignment strategy as CenterPoint [65].

3.3 Temporal Masked Autoencoder Pre-training

Up to this point, a two-frame framework for object detection has been set up.
However, the transformer-based architecture is data-hungry. Inspired by the
SiamMAE [22] used in video understanding, we develop Temporal Masked Auto-
Encoders (T-MAE) for self-supervised learning on LiDAR points. As shown in
Fig. 3, the core idea is to reconstruct the present frame based on a full obser-
vation of the historical frame and a partial observation of the current frame.
In this way, the network is compelled to learn a powerful sparse representation
as well as the capacity to effectively model motion. After the pre-training, the
weights of the SiamWCA backbone are retained for the downstream tasks. In
the subsequent paragraphs, we elaborate on these steps.

Masking. As shown in Fig. 3, on top of the proposed SiamWCA backbone,
an additional step, namely masking, is added between the voxelization and the
encoder for the current frame. Specifically, masking is applied in a pillar-wise
manner for a high ratio of the occupied pillars, e.g ., 75%. The remaining pillars
are subsequently input into the encoder. The encoders for the two frames share
weights to ensure that the features are constrained in the same latent space. Due
to masking, the number of tokens for the current frame decreases significantly,
leading to much fewer valid windows and thus accelerating WCA during pre-
training. The dense feature recovery performs exactly the same as in Sec. 3.2
and outputs a dense feature map.

Reconstruction head. Given the dense feature map, the reconstruction head
retrieves the feature of masked pillars by their spatial location. With the pillar-
wise features, the head reconstructs the relative coordinates of points, where the
number of output points per pillar is set as KO. Eventually, the Chamfer dis-
tance is computed as the loss function between the reconstructed points and the
ground-truth points. Note that the number of points per pillar varies drastically.
Thus, a fixed number of points KGT are randomly sampled as the target for
reconstruction. In conclusion, T-MAE masks the voxelized tokens of the current
frame and compels the network to reconstruct the current frame with the full ob-
servation of the historic frame as a reference, which encourages the WCA module
to build up correspondence between frames. Note that, unlike the single-frame
baseline where only the encoder is reused for downstream tasks, the weights of
SiamWCA are fully retained for downstream tasks, which is proved to be effec-
tive as shown in Appendix Tab. S10. Therefore, the capability for building up
correspondence is also retained.
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Fig. 4: Windowed sparse cross-attention (WCA). Given the input tokens from
both Pt1 and Pt2 , a joint token grouping is performed to obtain a window partition.
A sparse regional cross-attention (SRCA) is performed independently in each window
to integrate the historical information to the middle tokens of the current frame. In
other words, the tokens from two frames but with the same colors are attending to each
other. For simplicity, the information flow is only depicted for the green tokens. After
the second joint token grouping, the cross-attention are performed once more with the
shifted window partition. The red dot ( ) indicates the ego-vehicle driving towards the
right. The box with diagonal stripes ( ) represents an object, e.g ., a vehicle, moving
towards the left. Best viewed in color and high-resolution.

3.4 Siamese Encoder and Windowed Cross-Attention (SiamWCA)

Siamese encoder. Given the pillar-wise representations of a pair of frames,
we explore an asymmetric network and a Siamese encoder for feature encoding.
The asymmetric network consists of two branches with the same architecture but
the branch for Pt1 is modified by reducing the number of channels by half, as
depicted in Fig. 6 (a). A Siamese encoder is a symmetric network with two sub-
networks sharing weights. It is widely used to compute similarity in latent space
for tracking [1,21,23,49] and contrastive learning [10,12,42]. For the Siamese en-
coder, we investigate two weight updating strategies, namely accumulation and
SimSiam-style [10]. Accumulation indicates the backward gradients of the two
encoders are accumulated. SimSiam, standing for the simple Siamese pre-training
strategy [10], indicates the encoder for Pt1 is detached from the computational
graph, as depicted in Fig. 6 (b). Thus the weight of this encoder is not updated
by gradient propagation but by copying the weights from the encoder for Pt2 .
Windowed cross-attention (WCA). When provided with input tokens from
two frames, there are several methods for interaction. One intuitive approach
is to apply a standard self-attention layer to the concatenation of all tokens
from both frames. This approach significantly increases GPU memory require-
ments because it doubles the number of input tokens. The vanilla Transformer
block [53], which consists of a cross-attention layer and a self-attention layer can
also be adopted and a single cross-attention layer is feasible as well. However, all
these conventional global attentions are not affordable in 3D space due to the ex-
pensive computational overhead imposed by the unavoidable high resolution. For
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instance, the input for our Siamese encoder can be R(468×468)×128, whereas it is
R(14×14)×384 for a ViT-B/16 due to the patch embedding. Therefore, a window-
based implementation is crucial for efficiency. In brief, the WCA module divides
the 3D space into non-overlapping windows and then performs cross-attention
within the windows. Figure 4 intuitively illustrates this process with a diagram
that simulates a scene from a bird’s eye view. The key components are elaborated
in the following paragraphs.
▷ Joint token grouping partitions the 3D space into non-overlapping windows
and subsequently allocates the token to the corresponding window based on its
spatial location. The previous frame has been aligned with the current frame and
thus the window partition is unified for both frames, which allows the following
attention mechanism to perform within each window. As shown in Fig. 4, all
tokens within the same physical window share the same colour, indicating that
they are assigned to the same group for mutual attention.
▷ Sparse Regional Cross-Attention (SRCA) is essentially a cross-attention
layer where the query comes from Pt2 and the key-value comes from Pt1 . For
clarity, we consider a single window as an example. Given two groups of tokens
F t1 ,F t2 from two frames and their corresponding spatial coordinates It1 , It2 ,
the cross-attention is performed as follows:

F̂ t2 = MCA
(
F t2 +PE(It2),F t1 +PE(It1),F t1

)
(1)

F̃ t2 = LN
(
MLP

(
LN(F̂ t2)

)
+ F̂ t2

)
+ F t2 (2)

where MCA(Q,K,V) indicates a classical Multi-head Cross-Attention, PE(·)
represents the absolute positional encoding function used in [6], and LN(·)
stands for Layer Normalization. Note that, if a window is empty in the previous
frame, the tokens of this window in the current frame will remain unchanged,
i.e. F̃ t2 = F t2 . While the core concept of WCA is identical to cross-attention,
this windowed implementation significantly scales down the computational com-
plexity especially when working with sparse pillars.
▷ Repeated operations with window shift. Given the middle tokens, the
window partition is shifted by half of the window size. Next, the tokens are
re-grouped by the joint token grouping, as illustrated in “Shifted Window Parti-
tion” of Fig. 4. After that, the SRCA is performed once more. Note that, while
performing the SRCA #2, the tokens F̃ t2 of Pt2 are updated by SRCA #1 while
the tokens F t1 remain unchanged because a cross-attention operation does not
update key K and value V. With this window shift and SRCA #2, a token
interacts with more tokens. For instance, the yellow token in the first window
partition only attaches itself in the previous frame via SRCA #1 but interacts
with more tokens in SRCA #2.

4 Experiments

4.1 Dataset and Implementation

Experiments are conducted on the following two datasets.
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Waymo Open dataset [47] is a large-scale autonomous driving dataset with
LiDAR points. For 3D detection, an evaluation protocol is provided for calculat-
ing the average precision (AP) and the average precision weighted by heading
(APH). Moreover, the evaluation includes two difficulty levels wherein bounding
boxes containing over 5 points are regarded as Level 1, while Level 2 indicates
all bounding boxes. We adopt mean AP and mean APH at Level 2 as the main
evaluation metrics.
ONCE dataset [35] consists of 581 sequences of varying length. 6, 4 and 10
sequences are selected for training, validation and test sets, respectively, and
manually annotated. The remaining data is not annotated and adopted for pre-
training in our experiments. The official evaluation metrics are AP calculated
for each category and range.
Implementation Details. We implement our approach based on the code-
base of OpenPCDet1. We adopt the sparse pyramid transformer as our encoder
and keep the configuration consistent with its official implementation of GD-
MAE [62]. Three data augmentation techniques, i.e. random flipping, scaling,
and rotation, are applied to both frames during pre-training and finetuning. In
addition, following MV-JAR [58] and GD-MAE [62], a copy-n-paste augmenta-
tion [61] is also employed to slightly address the issue of class imbalance during
finetuning. Note that identical data augmentations are applied to a pair of two
frames. Further details are in the supplementary material.

4.2 Main Results

We present the comparison with SOTA methods on two datasets: For the ONCE
dataset [35], we pre-train our SiamWCA with the raw_large split and fine-tune
it with the annotated training set. For the Waymo dataset [47], we pre-train
SiamWCA with the entire training set. Then, following MV-JAR [58], we finetune
our approach with four portions of labeled data, namely 5%, 10%, 20% and 100%.
Note that, a strong counterpart, GD-MAE [62], has not been evaluated in this
setting and thus we re-train it for a more comprehensive comparison.
The impact of the T-MAE pre-training. The bottom block in Tab. 1 shows
that the randomly initialized SiamWCA (denoted as Random) performs better
than any other models that are initialized with a different pre-training strategy
(i.e. 69.13 v.s. 67.64), suggesting that SiamWCA is a powerful backbone capable
of learning temporal modeling when provided with sufficient annotated data.
However, its performance drops significantly when finetuning data is limited
(e.g ., 40.29 v.s. 46.68 at 5% level), indicating a strong demand for annotated
data. As a comparison, the proposed T-MAE consistently enhances SiamWCA
compared to random initialization. Moreover, as the labeled data shrinks from
100% to 5%, the impact of the T-MAE pre-training becomes more pronounced,
namely increasing from 1.39 to 9.17, suggesting that the pre-training approach
learns a powerful representation and alleviates the demand for annotated data.

1 https://github.com/open-mmlab/OpenPCDet

https://github.com/open-mmlab/OpenPCDet
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Table 1: Comparison with SSL methods on the Waymo validation set [47].
Random initialization denotes training from scratch. † represents duplicating the cur-
rent frame as input during inference. ∗ and ∗∗ indicate reproduced by us and taken
from [62], respectively. Results for other methods are taken from MV-JAR [58] or the
survey [17]. Best results are highlighted as first , second , and third . Differences
between T-MAE pre-training and random initialization are highlighted in red.

Data
Amount Initialization Overall Vehicle Pedestrian Cyclist

mAP mAPH mAP mAPH mAP mAPH mAP mAPH

5%

Random 43.68 40.29 54.05 53.50 53.45 44.76 23.54 22.61
PointContrast [57] 45.32 41.30 52.12 51.61 53.68 43.22 30.16 29.09
ProposalContrast [64] 46.62 42.58 52.67 52.19 54.31 43.82 32.87 31.72
MV-JAR [58] 50.52 46.68 56.47 56.01 57.65 47.69 37.44 36.33
GD-MAE [62]∗ 48.23 44.56 56.34 55.76 55.62 46.22 32.72 31.69
T-MAE† 50.89 47.22 57.06 56.05 58.95 52.62 36.64 32.99
T-MAE (Ours) 51.47↑7.79 49.46↑9.17 57.13 56.63 59.69 55.28 37.61 36.48

10%

Random 56.05 53.13 59.78 59.27 60.08 53.04 48.28 47.08
PointContrast [57] 53.69 49.94 54.76 54.30 59.75 50.12 46.57 45.39
ProposalContrast [64] 53.89 50.13 55.18 54.71 60.01 50.39 46.48 45.28
MV-JAR [58] 57.44 54.06 58.43 58.00 63.28 54.66 50.63 49.52
GD-MAE [62]∗ 57.67 54.31 59.72 59.19 60.43 52.21 52.85 51.52
T-MAE† 58.52 55.59 60.26 59.75 62.89 55.85 52.43 51.16
T-MAE (Ours) 59.93↑3.88 57.99↑4.86 60.27 59.77 65.23 61.10 54.29 53.09

20%

Random 60.21 57.61 61.58 61.08 64.63 58.41 54.42 53.33
PointContrast [57] 59.35 55.78 58.64 58.18 64.39 55.43 55.02 53.73
ProposalContrast [64] 59.52 55.91 58.69 58.22 64.53 55.45 55.36 54.07
MV-JAR [58] 62.28 59.15 61.88 61.45 66.98 59.02 57.98 57.00
GD-MAE [62]∗ 62.32 59.09 62.27 61.79 66.12 58.06 58.57 57.42
T-MAE† 62.37 60.17 62.19 61.72 67.18 62.18 57.74 56.59
T-MAE (Ours) 63.52↑3.31 61.80↑4.19 63.10 62.59 68.23 64.66 59.23 58.15

100%

Random 71.30 69.13 69.05 68.62 73.77 68.80 71.09 69.97
GCC-3D [31] 65.29 62.79 63.97 63.47 64.23 58.47 67.88 66.44
BEV-MAE [32] 66.92 64.45 64.78 64.29 66.25 60.53 69.73 68.52
PointContrast [57] 68.06 64.84 64.24 63.82 71.92 63.81 68.03 66.89
ProposalContrast [64] 68.17 65.01 64.42 64.00 71.94 63.94 68.16 67.10
MV-JAR [58] 69.16 66.20 65.52 65.12 72.77 65.28 69.19 68.20
GD-MAE [62]∗∗ 70.62 67.64 68.72 68.29 72.84 65.47 70.30 69.16
T-MAE† 71.56 69.00 69.39 68.95 74.42 68.43 70.86 69.61
T-MAE (Ours) 72.30↑1.00 70.52↑1.39 69.34 68.89 75.79 72.01 71.78 70.65

Comparison with SOTA methods. We aim to leverage the temporal infor-
mation between two adjacent frames, which is often overlooked by other meth-
ods. This absence makes it challenging to compare our method with others in
the same setting. Therefore, we implement a test-time single-frame baseline (de-
noted as T-MAE†) by replicating the same frame and inputting them into our
pre-trained model during evaluation. Table 1 shows that T-MAE with identi-
cal frames outperforms SOTA counterparts. Moreover, T-MAE with adjacent
frames achieves new SOTA at all levels in terms of overall and class-specific
metrics. Notably, thanks to the temporal modeling ability, T-MAE significantly
outperforms other methods in terms of L2 mAPH for pedestrians. For instance,
with 5% labeled data, T-MAE achieve better mAPH (i.e. 55.28) than any other
method using 10% labeled data. This metric indicates better direction detection
for pedestrians, which could benefit downstream applications, e.g ., pedestrian
intention prediction.
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Fig. 5: Qualitative results. We depict ground truth and predictions as boxes colored
in red and green for two exemplary scenes from the Waymo dataset [47].

Table 2: Performance comparisons on the validation split of the ONCE dataset [35].
Pt. indicates the model is initialized with pre-trained weights. Results for other methods
are taken from GD-MAE [62].

Methods Pt. mAP Vehicle Pedestrian Cyclist
Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf

PV-RCNN [46] ✗ 53.55 77.77 89.39 72.55 58.64 23.50 25.61 22.84 17.27 59.37 71.66 52.58 36.17
IA-SSD [69] ✗ 57.43 70.30 83.01 62.84 47.01 39.82 47.45 32.75 18.99 62.17 73.78 56.31 39.53
CenterPoint-Pillar [65] ✗ 59.07 74.10 85.23 69.22 53.14 40.94 48.43 34.72 20.09 62.17 73.70 56.05 40.19
CenterPoint-Voxel [65] ✗ 60.05 66.79 80.10 59.55 43.39 49.90 56.24 42.61 26.27 63.45 74.28 57.94 41.48

SECOND [61] ✗ 51.89 71.19 84.04 63.02 47.25 26.44 29.33 24.05 18.05 58.04 69.96 52.43 34.61
w/ BYOL [20] ✓ 51.63 71.32 83.59 64.89 50.27 25.02 27.06 22.96 17.04 58.56 70.18 52.74 36.32
w/ PointContrast [57] ✓ 53.59↑1.70 71.87 86.93 62.85 48.65 28.03 33.07 25.91 14.44 60.88 71.12 55.77 36.78
w/ DeepCluster [50] ✓ 53.72↑1.83 72.89 83.52 67.09 50.38 30.32 34.76 26.43 18.33 57.94 69.18 52.42 34.36

SPT [62] ✗ 62.62 75.64 87.21 70.10 53.21 45.92 54.78 37.84 22.56 66.30 78.12 60.52 42.05
w/ GD-MAE [62] ✓ 64.92↑2.30 76.79 88.01 71.70 55.60 48.84 58.70 37.30 25.72 69.14 80.29 64.58 45.14

SiamWCA (Ours) ✗ 63.71 76.47 87.63 71.59 55.16 47.27 57.57 36.99 21.79 67.40 78.39 62.78 43.90
w/ T-MAE (Ours) ✓ 67.00↑3.29 78.35 88.45 73.05 57.16 52.57 62.66 44.18 25.29 70.09 81.14 65.33 46.48

To reduce performance variance on 5% and 10% splits, we also report T-MAE
performance in the Appendix (see Sec. S4) when it is finetuned with two more
5% and 10% splits and another 20% split. T-MAE consistently outperforms
other methods, indicating the efficacy of T-MAE. Since there are no existing
multi-frame SSL methods, we also compare our approach with robust non-SSL
baselines that utilize multi-frame as inputs in the Appendix (see Tab. S9).

To assess the generalization capabilities of our method, we also conducted
experiments on the ONCE dataset [35]. As shown in Tab. 2, T-MAE outperforms
other methods in most metrics, indicating its superiority. Moreover, the substan-
tial improvement for pedestrians generalizes to this new dataset, indicating the
dominance of T-MAE in pedestrian detection.

Figure 5 shows two exemplary qualitative results from the Waymo dataset
and more qualitative results are presented in the Appendix.

4.3 Ablation Study

We perform ablation studies on the Waymo dataset [47] to justify design choices
and hyperparameters. For cost-effective experiments, the split 0 with 5% data
of the data-efficient benchmark [62] is used to finetune the model by default.
Is a delicate fusion module necessary? To compare with a model taking
two frames as input, we modified the input of GD-MAE [62] by concatenating
all points of two consecutive frames. We pre-trained, finetuned, and evaluated
the modified GD-MAE with the same setting as T-MAE. As depicted in Table 3,
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Table 3: Two frames comparison. Two consecutive frames are merged and input
into the GD-MAE [62] as an enhanced baseline.

Method Frame Input L2 Overall Vehicle Pedestrian Cyclist

Previous Current mAP mAPH AP APH AP APH AP APH

GD-MAE - 0 48.23 44.56 56.34 55.76 55.62 46.22 32.72 31.69
GD-MAE - {-1, 0} 47.35 43.69 57.04 56.48 57.76 48.48 27.26 26.12
T-MAE (Ours) -1 0 49.45 46.78 56.56 56.02 57.96 51.94 33.82 32.37

Table 4: Ablation study on model architecture. The proposed SiamWCA (e)
demonstrates superior performance in terms of overall mAP and mAPH.

Model Encoder Fusion L2 Overall Vehicle Pedestrian Cyclist

mAP mAPH AP APH AP APH AP APH

(a) Asymmetric WCA 47.26 44.78 54.25 53.75 56.66 50.98 30.88 29.60
(b) SimSiam WCA 45.58 42.05 53.37 52.84 53.80 44.78 29.58 28.53
(c) Siamese WCA+WSA 47.01 45.11 55.81 55.33 58.95 54.69 26.26 25.31
(d) Siamese WSA 43.82 40.90 53.05 52.54 54.08 48.18 24.33 21.97
(e) Ours Siamese WCA 49.45 46.78 56.56 56.02 57.96 51.94 33.82 32.37

directly merging two frames improves the metrics in terms of vehicles and pedes-
trians, which probably results from the density of target objects being doubled,
as shown in Fig. 2. However, it has a negative impact on cyclists, resulting in
a decrease in overall performance. The drop for cyclists might be attributed to
the drift of estimated bounding boxes caused by the fast velocity of bicycles and
their relatively small dimensions. In contrast, integrating a historical frame by
our method consistently improves overall and class-specific metrics compared to
the single-frame baseline.
Backbone design. The proposed architecture consists of a Siamese encoder and
a WCA module. We ablate these components with alternatives. (a) Asymmet-
ric encoder: it derives from a Siamese encoder but the encoder for P1 is scaled
down. Consequently, the two encoders no longer share weights. (b) We employ
the SimSiam [10] approach, where one of the two encoders is detached from
the computational graph, preventing it from being updated by gradient prop-
agation. The encoder for the current frame is updated by gradients and then
shares its weights with the detached encoder. (c) The design of the Siamese
encoder stays unaltered, while a typical cross-self attention module is adopted
in a window-based manner. (d) The WCA module in our SiamWCA is replaced
with a windowed self-attention (WSA) module. However, since self-attention
only needs one input, the tokens of both frames have to be concatenated. Then,
the enhanced tokens of the current frame are split from the output of WSA
module. These variants are depicted in Fig. 6. The superiority of the proposed
SiamWCA is shown in Tab. 4. Variant (c) outperforms SiamWCA in terms of
pedestrians but at the expense of both cyclists’ performance and extra parame-
ters. Therefore, based on the comprehensive comparison, a Siamese encoder and
a WCA fusion module are selected.
Compatibility. To verify that the proposed SSL method T-MAE is independent
of a specific encoder or detector, we replace the encoder SPT [62] with two other
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(a) Asym. Enc. (b) SimSiam Enc. (c) WCA + WSA (d) WSA

Fig. 6: Four architecture variants of our SiamWCA backbone. (a) Asymmetric
encoders: the encoder for the previous frame is scaled down. (b) SimSiam-style [10]
encoder: one encoder receives no gradient updates. (c) An additional windows-based
self-attention is attached as the classic Transformer [53]. (d) The fusion is implemented
by a concat-WSA-split operation.

Table 5: Ablation study on the encoder and the detector. The original en-
coder SPT [62] is replaced with SST [16] and SpCNN [19] and the original detector
enterPoint [65] is replaced with Graph R-CNN [63]. Due to space limits, only overall
performance is presented.

Data
Amount Encoder Detector Random Init. T-MAE (Ours)

mAP mAPH mAP mAPH

5%

SPT CenterPoint 43.68 40.29 51.47 49.46
SST CenterPoint 44.26 41.19 51.59 49.24
SpCNN CenterPoint 46.02 43.31 52.08 49.95
SPT Graph R-CNN 51.18 47.27 56.92 54.70

100% SPT CenterPoint 71.30 69.13 72.30 70.52
SPT Graph R-CNN 72.76 70.04 75.16 73.50

encoders, i.e. SST [16] and SpCNN [19], and the detector with a two-stage
detector, Graph R-CNN [63]. Table 5 shows that T-MAE constantly improves
performance by a significant margin, showcasing its compatibility.
Temporal interval for inference. The temporal interval between two frames
should be constrained, as previously discussed in Sec. 3.2. To investigate this
matter, we conducted experiments on the Waymo Dataset [47], suggesting that
a fixed interval of 0.3 seconds is better than using two consecutive frames. Ad-
ditional information is available in Appendix Sec. S3.

5 Conclusion

We introduced Temporal Masked Autoencoders (T-MAE), a novel self-supervised
paradigm for LiDAR point cloud pre-training. Building upon the single-frame
MAE baseline, we incorporated historical frames into the representation using
SiamWCA, with the proposed WCA module playing a pivotal role. This pre-
training enabled the model to acquire robust representations and the ability to
capture motion even with very limited labeled data. By constraining the tem-
poral interval of two frames, we achieved additional performance improvement.
Our experiments on the Waymo dataset and the ONCE dataset demonstrate
the effectiveness of our approach by showing improvements over state-of-the-art
methods.
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