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Abstract. Current multi-instance learning algorithms for pathology im-
age analysis often require a substantial number of Whole Slide Images for
effective training but exhibit suboptimal performance in scenarios with
limited learning data. In clinical settings, restricted access to pathology
slides is inevitable due to patient privacy concerns and the prevalence of
rare or emerging diseases. The emergence of the Few-shot Weakly Su-
pervised WSI Classification accommodates the significant challenge of
the limited slide data and sparse slide-level labels for diagnosis. Prompt
learning based on the pre-trained models (e.g ., CLIP) appears to be
a promising scheme for this setting; however, current research in this
area is limited, and existing algorithms often focus solely on patch-level
prompts or confine themselves to language prompts. This paper pro-
poses a multi-instance prompt learning framework enhanced with pathol-
ogy knowledge, i.e., integrating visual and textual prior knowledge into
prompts at both patch and slide levels. The training process employs
a combination of static and learnable prompts, effectively guiding the
activation of pre-trained models and further facilitating the diagnosis of
key pathology patterns. Lightweight Messenger (self-attention) and Sum-
mary (attention-pooling) layers are introduced to model relationships
between patches and slides within the same patient data. Additionally,
alignment-wise contrastive losses ensure the feature-level alignment be-
tween visual and textual learnable prompts for both patches and slides.
Our method demonstrates superior performance in three challenging clin-
ical tasks, significantly outperforming comparative few-shot methods.

Keywords: Pathology image analysis · Prompt learning

1 Introduction

Deep learning for pathology Whole Slide Image (WSI) classification offers a
rapid, objective, and precise diagnostic approach, enhancing prognosis predic-
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Fig. 1: Existing methods such as CoOp [42] do not fully consider task-related pathology
visual features and its association with specific terms in FSWC. We utilize aligned
task-specific image examples and language descriptions to enhance visual and textual
prompt learning at both patch and slide levels.

tion and treatment response assessment [3, 4, 8, 13, 20, 26]. Given the gigapixel
resolution of WSIs, segmentation into multiple patches is essential for processing.
However, obtaining detailed annotations for each patch is challenging. Instead,
it often results in slide-level ground truth labels. Multiple Instance Learning
(MIL), a prominent weakly supervised paradigm, has emerged as a key tech-
nique for WSI classification [5, 9, 25, 30]. In MIL, each WSI is treated as a bag,
with patches as instances. During training, only slide-level labels are available,
necessitating a comprehensive model to capture relationships between patches
and slide labels for accurate classification [28].

MIL algorithms achieve slide-level classification by aggregating patch-level
features or predictions. Though effective, existing algorithms typically demand
a considerable number of slides for practical training, performing inadequately
in scenarios with limited samples. In clinical practice, challenges such as pre-
serving patient privacy, the rarity of certain diseases, and emerging conditions,
particularly for prognosis and rare tumor subtypes, hinder the acquisition of a
substantial quantity of WSIs [9,26,33]. Recently, the challenging problem of Few-
shot weakly Supervised WSI Classification (FSWC) has emerged [27]. FSWC is
characterized by the limited availability of training WSIs (e.g ., typically 2, 4, 8,
16, or 32 per class) and sparse slide-level annotations, with unknown fine-grained
annotations for numerous patches in each WSI.

In image classification, recent advancements highlight the effectiveness of
Vision-Language Models (VLMs) like CLIP [29], BLIP [21], and Flamingo [1].
These models undergo training on large-scale language-image pairs using align-
ment contrastive learning, demonstrating notable zero-shot and few-shot transfer
learning capabilities. In the pathology image domain, despite valuable contribu-
tions from initiatives like MI-Zero [24] and PLIP [14] in constructing VLMs
for computational pathology, challenges including ethical concerns, annotation
scarcity, and storage limitations make it impractical to train foundational mod-
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els for each specific downstream task [27]. Furthermore, existing VLMs ex-
hibit restricted direct zero-shot transfer capabilities for specific downstream
tasks [7, 36, 38]. Considering these challenges, the application of existing VLMs
for developing prompt learning algorithms tailored to few-shot downstream tasks
appears promising. Prompt learning involves adapting a pre-trained and then
fixed VLM to new tasks by integrating task-specific prompts as additional model
inputs. In the context of few-shot learning, these prompts can be either fixed or
trainable, with trainable prompts enabling contrastive learning between visual
and language features [11,42].

Presently, research on prompt learning for FSWC is limited [27]. Previous
efforts, such as MI-Zero [24], PLIP [14], and CITE [41], have predominantly fo-
cused on the utilization of “patch-level” prompts—textual prompts associated
with pathology regions of interest. Nonetheless, visual or textual prompts in
domain-specific downstream tasks may not be understandable (often unseen) for
the pre-trained model and thus may not properly activate the relevant features of
the pre-trained model. The TOP framework [27] represents the initial endeavor
to implement prompt learning by introducing language-based prior descriptions
in the prompts. However, pathology images encompass highly specialized visual
features and corresponding pathology-specific terms, posing a challenge for net-
works to comprehensively understand and learn pathology-related features and
specialized descriptions solely through language explanations for classification.

To address this issue, we propose Pathology-knowledge Enhanced Multi-
instance Prompt Learning for FSWC named PEMP, with a concise architecture
depicted in Fig. 1. PEMP is a multi-instance prompt learning framework specif-
ically designed for the FSWC problem, incorporating both visual and textual
samples (as a form of prior knowledge) at both patch and slide levels. Drawing
inspiration from pathologists learning pathology images and language knowledge
from textbooks, we introduce task-specific image examples and corresponding
language descriptions, injected in both the visual and textual prompts. Dur-
ing prompt learning, the model is fed with a more understandable and effective
guide (in image examples and plain words) and then activates more meaningful
features for the diagnosis of key patch-level and slide-level pathology patterns in
scenarios with limited training samples.

The contribution of this work is threefold:

– We propose a multi-instance prompt learning framework, PEMP, introducing
vision and text prior knowledge in the designed prompts at both patch
and slide levels. A combination of static and learnable prompts is employed
in the training, effectively adapting the pre-trained model to focus on key
pathology patterns in patches and slides.

– We explore the alignment of visual and textual prompts using con-
trastive losses at both patch and slide levels. We design lightweight Messen-
ger (self-attention) and Summary (attention-pooling) layers to model rela-
tionships of patch-to-patch and patch-to-slide within the same patient data.

– We evaluate PEMP’s performance in addressing three challenging pathology
tasks in clinical practice, including predicting patient survival and lymph
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node metastasis in early cervical cancer H&E slides and subtype classifica-
tion for a rare tumor (round cell tumor). PEMP achieves superior perfor-
mance in all these tasks under the few-shot setting, notably outperforming
all comparative methods by a large margin (4% on average).

2 Related Work

2.1 MIL for WSI Classification

Current MIL algorithms for WSI classification can be broadly categorized as
instance-based [2, 10, 22, 28, 37] and bag-based [6, 12, 16, 18, 19, 23, 25, 31, 32, 34,
35,39,40,43] methods. Instance-based methods involve generating pseudo-labels
for each patch and training patch classifiers to score all patches within a slide,
whereas bag-based methods, the current mainstream, extract patch features and
employ techniques like attention weighting [12, 16, 18, 25, 32, 39, 40, 43] to aggre-
gate these features into slide-level features. While existing algorithms perform
well with ample training data, they lack specificity for FSWC tasks, struggling
with limited samples. Our proposed PEMP, falling under the bag-based MIL
paradigm, distinguishes itself by innovatively addressing FSWC through VLMs
and prompt learning, deviating from traditional bag-based MIL approaches.

2.2 VLM-Based Prompt Learning

VLMs, comprising image and text encoders, are trained on large-scale image-text
pairs using alignment contrastive learning to establish a shared feature space.
Pre-trained VLMs like CLIP [29], BLIP [21], and Flamingo [1] exhibit robust
zero-shot and few-shot transferability in image recognition tasks. However, lim-
ited accuracy in zero-shot transfer has fueled interest in few-shot learning based
on VLMs, where the prompt learning paradigm, demonstrating strong perfor-
mance [7, 36, 38], is emerging. Prompt learning leverages a pre-trained VLM in
the adaptation to new downstream tasks by incorporating task-specific prompts
through enriched model inputs. These prompts could be static with manual de-
signs or learnable vectors [11,42].

In pathology, recent research emphasizes constructing specialized VLMs, such
as MI-Zero [24], PLIP [14], and QUILT [15]. However, privacy concerns, annota-
tion scarcity, and storage demands make training separate foundational models
for each downstream task impractical. Existing VLMs exhibit limited zero-shot
transferability, especially for rare diseases. Unlike fine-tuning VLMs at the data
level or constructing large datasets like these works, we introduce a novel prompt
learning paradigm based on VLMs (e.g., CLIP with frozen parameters) to ad-
dress the FSWC problem. Importantly, our scheme is versatile across various
foundation models. Moreover, MI-Zero, PLIP and QUILT mainly contribute by
collecting large datasets to construct pathology VLMs but lack effective methods
for FSWC. Their simple adapting strategies for FSWC (e.g., LinearProbe and
Attention Pooling) limit their performance in challenging clinical tasks.
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In pathology, prompt learning research for FSWC is limited. Prior works like
MI-Zero [24], PLIP [14], and CITE [41] only explore “patch-level” prompts, lim-
iting slide-level classification performance. TOP [27] introduces prompt learning
at both patch and slide levels but lacks task-specific visual knowledge on the
vision side. Relying solely on language explanations is challenging for the net-
works to understand pathology features with limited training samples. In con-
trast, PEMP’s learning process operates at patch and slide levels, covers visual
and textual prompt design, and introduces task-specific image examples and
descriptions separately as prior knowledge.

3 FSWC Baseline Framework

3.1 Problem Formulation

We provide a brief introduction to the problem definition of FSWC and the
pre-trained VLM used in our study. Given a dataset W = {W1,W2, . . . ,WN}
containing N WSIs, each WSI Wi is divided into non-overlapping small image
patches {pi,j , j = 1, 2, . . . , ni}, where ni represents the number of patches ob-
tained from Wi. It is important to note that the number of patches obtained from
each slide may vary. All patches in Wi collectively form a bag, and each patch
serves as an instance of this bag. Each bag is assigned a label Yi ∈ {0, 1, . . . , U},
while the label of each instance is unknown, and U is the number of classes.
FSWC is highly challenging as it allows training with only a limited number of
slides (with labels). In the FSWC task, “shot” refers to the number of WSIs, e.g.,
K pairs of WSIs and labels for training in a K-shot setting, while the trained
model is evaluated on a completely independent test set. Typically, K can take
values such as 2, 4, 8, 16, or 32.

3.2 Attention Aggregation for WSI Classification

The attention-based pooling strategy [16] is a classical MIL aggregation method
used for WSI classification. Initially, an encoder ϕimg is used to extract features
fi,j for all patches {pi,j , j = 1, 2, . . . ni} in slide Wi, and then aggregate these
patch features using an attention-based trainable aggregation function A(·) to
obtain the bag feature Fi:

Fi = A (ϕimg (pi,1) , ϕimg (pi,2) , . . .) =

ni∑
j=1

ai,jfi,j , (1)

ai,j =
exp

{
w⊤ tanh

(
V f⊤

i,j

)}∑ni

j=1 exp
{
w⊤ tanh

(
V f⊤

i,j

)} , (2)

where ai,j is the attention score predicted by the self-attention network, which
is parameterized by w and V . The weights ai,j reflect the contribution of each
patch in making the slide-level prediction. The patch-level encoder ϕimg is from
the pre-trained CLIP [29] and remains fixed during the training process.
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3.3 VLM backbone and Few-shot Prompt Learning

We utilize CLIP [29] as the backbone of the proposed framework and also the pre-
trained VLM for feature extraction, which is trained on a massive dataset of 400
million image-text pairs, including medical data, facilitating efficient knowledge
transfer of diverse visual concepts to downstream tasks.

Prompt learning enables the efficient adaptation of a fixed pre-trained CLIP
in few-shot downstream classification tasks by introducing task-specific prompts
into the model input. These prompts, whether fixed or learnable, can be applied
to the text encoder, visual encoder, or both simultaneously. In the few-shot set-
ting, the training could also involve aligning visual and text features through
alignment contrastive learning (AC-Loss) in the specific domain. Formally, we
denote the visual encoder as ϕimg and the text encoder as ϕtext. For a down-
stream classification task with U classes, a commonly used fixed hand-crafted
prompt, denoted as [Class Prompt], guides classification on the text side. Specif-
ically, assuming the name of the i-th class is “[class-name],” the corresponding
hand-crafted prompt is typically designed as “a photo of a [class-name].” These
[Class Prompts] are pre-encoded into a vector C = {ci}Ui=1.

To further enhance generalization to downstream tasks, it is also popular
to explore learning a set of continuous context vectors as learnable prompts,
denoted as V = {v1, v2, . . . , vM}. These learnable context vectors V, concate-
nated with the vectors from [Class Prompt] C, form the complete text prompt
ti = {v1, v2, . . . , vM , ci}. This prompt is then fed into the text encoder ϕtext to
obtain the final textual features for each class, Ti = ϕtext (ti). On the visual side,
given an image Wi and its label y, its slide features Fi is computed via Eq. (1).
Similar to the text side, learnable prompts could also be appended, which will
be inputted into the visual encoder ϕimg.

With a limited number of image-text pairs, the optimization involves min-
imizing the negative log-likelihood between the visual slide feature Fi and its
class text feature Ty, updating all learnable parameters. During testing, the ex-
tracted visual features Fi are used to retrieve the class text features Ty to obtain
the probabilities for each class.

p(y | Fi) =
exp (sim (Fi, Ty) /τ)∑U
i=1 exp (sim (Fi, Ti) /τ)

, (3)

where, y represents the ground truth class, U is the total number of classes,
sim(·) denotes cosine similarity, and τ is a learnable temperature parameter. It
is crucial to note that during the training process, the parameters of CLIP’s
image encoder and text encoder remain fixed and unchanged.

4 Knowledge-enhanced Prompt Learning

4.1 Overview

Fig. 2 illustrates the primary workflow of our proposed PEMP, which comprises
three learning processes: Visual prompt learning, Textual prompt learning, and
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Fig. 2: Overview of PEMP, where flames represent optimized parameters, and
snowflakes indicate frozen parameters during training.

Two-level prompt alignment via contrastive learning. In visual prompt learning,
we address three key tasks. Firstly, we integrate prior visual pathology knowl-
edge into the prompts at both patch-level and slide-level. This guides the model,
particularly with limited training samples, to understand the prompt better and
produce more meaningful activations for task-specific key pathology patterns. Ad-
ditionally, we also include the learnable prompts on the slide level, triggering the
model’s precise adaptation to specific tasks. Thirdly, we introduce a lightweight
Messenger (self-attention) Layer and Summary (attention-pooling) Layer. The
former efficiently communicates and models features of different patches within
the same slide, while the latter aggregates patch features into slide features using
an attention mechanism.

In a similar initiative, textual prompt learning concentrates on modeling
language descriptions related to pathology tasks, also incorporating patch-level
and slide-level priors. Pathologists are employed to provide straightforward lan-
guage descriptions in the overall task, task-related slide-level pathology, and
task-related patch-level pathology, avoiding obscure professional terms.

Recognizing the challenges faced by the VLM in understanding key visual
features and complex pathology terms in visual examples, we establish a close
alignment between textual prompt learning (with integrated pathology language
descriptions) and visual prompt learning (with injected visual examples) at both
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(a) Examples for predicting the progno-
sis of early cervical cancer patients from
H&E pathology slides of the primary le-
sion, derived from authoritative textbooks
and pathology experts. Top: visual patch ex-
amples. Bottom: visual slide examples.

Patch-level descriptive [Token] for poor prognosis

Vascular invasion. The presence of cancer cells within the 

blood and lymphatic vessels. 

High-grade atypia. Pronounced and abnormal variations in 

the size, shape, and staining pattern of the cells.

Necrosis. Empty spaces or regions with a lack of normal cell 

structure.

Patch-level descriptive [Token] for good prognosis 

No Vascular invasion. Normal blood or lymphatic vessels. 

High-grade atypia. Slight variations in cell size, shape, and 

staining.

Fuzzy Tumor Boundaries. The edges or borders of the tumor 

are fuzzy or hard to distinguish on the slide level. 

Low tumor stroma ratio. Lots of stroma tissue surrounding 

the tumors.

Clear Tumor Boundaries. The edges or borders of the tumor 

are easy to see and well-defined on the slide level. 

High tumor stroma ratio. Few stroma tissue surrounding the 

tumors.

Slide-level descriptive [Token] for poor prognosis Slide-level descriptive [Token] for good prognosis 

(b) Top: Construction of Patch-level de-
scriptive [Token]. Bottom: Construction of
Slide-level descriptive [Token]. Examples for
the prognosis of early cervical cancer patients
from H&E pathology slides of the primary le-
sion, serving as task-related patch-level and
slide-level pathology priors on the text side.

Fig. 3: (A) and (B) examples of visual and textual token constructions related to the
prognosis of early cervical cancer patients.

slide and patch levels. This alignment enhances the organization and cohesion
of knowledge-enhanced prompts on both visual and textual sides.

4.2 Visual Prompt Learning

Construction of visual prompts. In the FSWC task, limited training samples
present challenges in acquiring effective knowledge. Moreover, tasks like survival
analysis require finding key factors both locally (e.g ., patch-level: necrosis, vas-
cular invasion) and globally (e.g ., slide-level: tumor boundary, tumor stroma
ratio). To overcome these, we out-source prior visual pathology knowledge at
both patch and slide levels (shown in the top part of Fig. 3a), guiding the model
with task-specific pathology patterns for diagnosis. For challenging slide-level
diagnostic tasks, relevant patterns manifest at both levels. Leveraging exper-
tise from pathology professionals, we construct visual patch and slide exam-
ples as fixed prompts, as shown in Fig. 3a. For each classification task, highly
relevant visual patches and slides indicating high and low risks are retrieved
from authoritative sources or pathology experts. For instance, in the progno-
sis of early cervical cancer, visual patch examples for poor prognosis include
“high-grade atypia”, “vascular invasion,” and “necrosis,” while slide examples en-
compass “overall infiltration with fuzzy tumor boundaries and low tumor stroma
ratio.” Conversely, low-risk examples include “low-grade dysplasia,” “no vascu-
lar invasion,” and “overall pushing-type with clear tumor boundaries and high
tumor stroma ratio.”

In total, 6 slides and 6 patch images are used as visual prompts, including 3
typical slides per prognosis category (good and poor), each with 3 local patches
in the prognosis of early cervical cancer. For the Lymph Node Metastasis Pre-
diction Task, we used 4 slides and 4 patches, with two representative slides per
category (metastasis and non-metastasis) and two local images per slide. For
Round Cell Subtype Diagnosis, 10 slides and 10 patches were used, with two
slides per category, each with two local images. Selection of these visual exam-
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ples was guided by clinical experts, with each risk factor represented by one slide
and its local patch.
Learning pipeline. As illustrated in Fig. 2, we assuming Wi represents the
training slide containing ni patches named pi,j and utilize the fixed CLIP image
encoder ϕimg to extract patch features fi,j = ϕimg (pi,j) ∈ R1×υ, where υ repre-
sents the dimension of the features. Subsequently, the constructed visual patch
examples el are also transformed into patch features zl = ϕimg (el). zl remains
unchanged throughout the training process and is combined with the current
slide’s patch features as a fixed visual prompt. Specifically, we match the cosine
similarity between fi,j and zl, concatenate the most matched example patch
feature with the patch feature as fe

i,j , and ultimately concatenate all new patch
features for the current slide F e

i =
{
fe
i,j

}ni

j=1
∈ Rni×υ×2. To model all patch

features within a slide effectively, we introduce a lightweight self-attention layer
named Messenger Layer (ML). Taking F e

i as input, it outputs FML
i :

FML
i = softmax

(
QK⊤
√
dw

)
V, (4)

where Q, K, and V are Query, Key, and Value vectors obtained through linear
mapping of F e

i , and dw is the feature dimension. Next, we construct a lightweight
Attention Aggregation Layer to aggregate all patch features FML

i within a slide
into a slide feature FS

i . The attention weights are learnable, and the detailed
structure is shown in Section 3.2. Following this, the constructed visual slide
examples Em undergo the aforementioned process like Wi (i.e., patch extraction,
patch example matching, Messenger Layer, and Summary Layer) to obtain their
slide features Zm. These slide example features are also integrated as prompts
into slide-level training. Similar to the patch-level matching, we match the cosine
similarity between FS

i and Zm and concatenate the most matched slide example
feature with the slide feature. Additionally, we introduce learnable vector FP

i as a
slide-level learnable prompt, concatenate it together, and input them into a one-
layer fully-connected layer named “projector” to adjust the feature dimension,
yielding the final slide visual features Fi ∈ R1×υ.

4.3 Textual Prompt Learning

Construction of textual prompts. Textual prompt learning primarily focuses
on modeling language descriptions related to pathology tasks, patch-level, and
slide-level pathology priors on the text side. This knowledge is integrated into
the training process through fixed descriptive prompts and learnable prompts
(shown in the middle of Fig. 2). The construction of textual prompts could be
divided into mainly three parts. The following detailed explanation uses the task
“predicting the prognosis of early cervical cancer patients from H&E pathology
slides of the primary lesion” as an example, also illustrated in Fig. 3b.

First, the “Slide task [Token]” primarily serves to prompt the main cate-
gory of the current task, such as “A Whole Slide Image of cervical cancer from
primary tumors with a [poor/good] prognosis.” Furthermore, we concatenate
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learnable prompts (([α]1[α]2 . . . [α]M )) with the “Slide task [Token]” to adap-
tively adjust and complement during few-shot training.

Then, the “Slide-level descriptive [Token]” is a straightforward language
description corresponding to the aforementioned visual slide examples. These de-
scriptions are provided by experienced pathology experts, avoiding obscure pro-
fessional terminology. For instance, the description corresponding to the “Poor
prognosis” category is: “Fuzzy Tumor Boundaries. The edges or borders of the
tumor are fuzzy or hard to distinguish on the slide level. Low tumor stroma
ratio. Few stroma tissues surrounding the tumors.” In contrast, the description
corresponding to the “Good prognosis” category is: “Clear Tumor Boundaries.
The edges or borders of the tumor are easy to see and well-defined on the slide
level. High tumor stroma ratio. Lots of stroma tissue surrounding the tumors.”
Similarly, we also append learnable prompts (([β]1[β]2 . . . [β]M )).

Finally, the “Patch-level descriptive [Token]” provides the language de-
scription corresponding to the aforementioned visual patch examples. For exam-
ple, the description corresponding to the “Poor prognosis” category is: “Vascular
and lymphatic invasion: The presence of cancer cells within the blood and lym-
phatic vessels. High-level atypia: Pronounced and abnormal variations in the
size, shape, and staining pattern of the cells. Necrosis: Empty spaces or regions
with a lack of normal cell structure.” Similarly, immediately following this, we
also include learnable prompts (([γ]1[γ]2 . . . [γ]M )).

It is crucial to note that the second and third parts correspond closely to
the same number of visual slide and patch examples in visual prompt learning.
We input each part’s visual descriptions and learnable vectors together into the
CLIP Text Encoder, obtaining the final slide textual features Ti ∈ R1×υ.

4.4 Alignment of Visual and Textual Prompts

Alignment contrastive learning (AC-Loss) is originally used to align correspond-
ing visual representation and textual representation. Nonetheless, the overall
loss function in this paper consists of three parts of AC-Loss, expressed as
Ltotal = Lt+λ1Ls+λ2Lp. Conceptually, Lt aligns the overall slide visual features
Fi with the slide textual features Ti corresponding to the task category, thereby
completing slide-level classification. Ls aligns the features of slide-level visual
examples in visual prompt learning with the slide-level pathological language
descriptions in textual prompt learning. Lp aligns the features of patch-level vi-
sual examples with patch-level pathology language descriptions (shown in the
bottom of Fig. 2).

Mathematically, the forms of these three parts of AC-Loss are identical. Here,
we take Lt as an example. AC-Loss optimizes the learnable parameters by mini-
mizing the negative log-likelihood between the image features Fi and the ground
truth class text features Ty. Its basic form is as follows:

L = −
∑
Fi

log
exp (sim (Fi, Ty) /τ)∑U
i=1 exp (sim (Fi, Ti) /τ)

, (5)
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where y is the ground truth category, U is the total number of categories, sim(·)
denotes the cosine similarity, and τ is a learnable temperature parameter.

During testing, we input the unseen WSI and obtain its slide visual feature
in the same fashion as training. Subsequently, we match it separately with the
textual features for “poor prognosis” and “good prognosis” and use softmax to
obtain the predicted risks for the two categories.

5 Experiment and Result

Datasets and Evaluation Metrics. This paper addresses clinical tasks in
H&E pathology diagnosis, specifically focusing on data label scarcity, the com-
plexity of direct diagnosis by pathologists, and limited sample sizes for rare
diseases. This study encompasses three clinical tasks for five tumor types across
five datasets: (1) Predicting patient survival prognosis and lymph node metas-
tasis from H&E slides of early-stage cervical cancer primary lesions using an
in-house dataset (For testing, 80 cases and 74 cases, individually) and a public
TCGA-CESC dataset (For testing, 80 cases and 70 cases, individually). Note
that the prompts utilized in the public TCGA datasets are the same as those
used in the corresponding in-house datasets for each task. We ensure no overlap
between our training data and visual prompts (obtained from external authori-
tative sources or pathology experts) and testing data, across both in-house and
TCGA datasets. Furthermore, the lymph node metastasis detection tasks from
primary lesions assessed in this study present a significantly greater challenge
compared to those from sentinel lymph nodes, as utilized in prior research, with
samples and labels being notably rarer. (2) Classifying round cell tumors, includ-
ing neuroendocrine tumors, malignant melanoma, lymphohematopoietic tumors,
and soft tissue tumors, into subtypes using an in-house dataset (For testing, 112
cases). More details are in the Supplementary Materials. For the prognosis pre-
diction task in cervical cancer, the concordance index (C-index) is used, while
for other tasks, the Area Under the Curve (AUC) is employed. Higher values for
both metrics indicate improved performance.
Compared Methods. Currently, few methods directly address FSWC tasks
through prompt learning, with the SOTA being represented by the recently
proposed TOP method [27] in the pathology domain. In the natural domain,
prompt learning work based on VLMs is limited to single image patches and
does not readily apply to slide-level classification. Following the TOP approach,
we adopt advanced prompt learning methods from the natural domain for the
MIL problem. These methods include: (1) Linear-Probe [29], (2) VPT [17], (3)
CoOp [42], and (4) KgCoOp [38]. The Messenger Layer and Summary Layer,
as described in this paper, aggregate patch features into a slide feature. All
compared methods use the same Messenger & Summary layers for fair compar-
isons. For Linear-Probe, a linear layer performs slide-level classification on the
aggregated feature. VPT incorporates a learnable prompt on the vision side for
slide-level classification. CoOp utilizes CLIP’s prompt learning by adding the
Slide Task [Token] and learnable textual prompts trained through AC-Loss. Kg-
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Table 1: Comparison for Survival Prognosis Prediction Task.

Dataset In-house Dataset Public TCGA-CESC Dataset
Method 32-shot 16-shot 8-shot 4-shot 2-shot 32-shot 16-shot 8-shot 4-shot 2-shot

LinearProbe 0.620 0.562 0.543 0.501 0.458 0.584 0.577 0.543 0.511 0.485
VPT(ECCV’22) 0.626 0.569 0.545 0.501 0.464 0.589 0.573 0.550 0.518 0.482
CoOp(IJCV’22) 0.641 0.594 0.561 0.517 0.490 0.604 0.585 0.558 0.523 0.487

KgCoOp(CVPR’23) 0.635 0.587 0.552 0.513 0.487 0.597 0.584 0.550 0.519 0.486
TOP(NeurIPS’23) 0.652 0.608 0.574 0.539 0.508 0.611 0.597 0.566 0.536 0.518
PEMP (ours) 0.667 0.637 0.614 0.587 0.562 0.637 0.624 0.602 0.577 0.551

Table 2: Comparison for Lymph Node Metastasis Prediction Task.

Dataset In-house Dataset Public TCGA-CESC Dataset
Method 32-shot 16-shot 8-shot 4-shot 2-shot 32-shot 16-shot 8-shot 4-shot 2-shot

LinearProbe 0.781 0.735 0.728 0.716 0.687 0.763 0.719 0.696 0.671 0.655
VPT(ECCV’22) 0.785 0.742 0.728 0.719 0.689 0.769 0.724 0.712 0.678 0.655
CoOp(IJCV’22) 0.792 0.757 0.735 0.727 0.693 0.786 0.741 0.723 0.691 0.659

KgCoOp(CVPR’23) 0.789 0.753 0.731 0.724 0.693 0.775 0.733 0.710 0.687 0.652
TOP(NeurIPS’23) 0.825 0.819 0.801 0.787 0.762 0.799 0.761 0.744 0.708 0.679
PEMP (ours) 0.849 0.838 0.824 0.801 0.783 0.818 0.795 0.760 0.726 0.704

Table 3: Comparison for Round Cell Subtype Diagnosis Task.

Method 32-shot 16-shot 8-shot 4-shot 2-shot
LinearProbe 0.654 0.606 0.549 0.517 0.483
VPT(ECCV’22) 0.659 0.613 0.556 0.515 0.511
CoOp(IJCV’22) 0.667 0.627 0.568 0.553 0.549
KgCoOp(CVPR’23) 0.661 0.619 0.547 0.535 0.534
TOP(NeurIPS’23) 0.682 0.652 0.633 0.584 0.560
PEMP (ours) 0.751 0.718 0.685 0.643 0.625

CoOp imposes constraints on learnable textual prompts. Few-shot experiments
are conducted for each category with 2, 4, 8, 16, and 32 slides (with labels). Re-
sults are reported as an average over five experimental runs. Standard deviation
of our main results are provided in the supplementary materials.

5.1 Results

Survival prognosis prediction. Predicting survival prognosis, especially di-
rectly from H&E slides with a limited number of samples, poses a significant
challenge. Table 1 showcases the performance of all methods in the in-house
dataset and the public TCGA-CESC dataset, with PEMP consistently demon-
strating superior performance across all settings with few samples, outperform-
ing all comparative methods significantly. In scenarios with limited samples,
LinearProbe and VPT, relying solely on features extracted by the CLIP Image
Encoder on the visual side without incorporating language-based prior knowl-
edge, exhibit suboptimal performance. CoOp and KgCoOp, which combine visual
and language aspects, struggle to comprehend complex medical terms related to
prognosis effectively, limiting their performance. TOP enhances language de-
scriptions at both slide and patch levels but provides explanations solely on the
language side, making it challenging to establish a direct relationship between
crucial visual features and language descriptions. In contrast, PEMP introduces
typical patch and slide examples related to prognosis on the visual side, along
with straightforward language descriptions on the language side. Through AC-
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Table 4: Ablation studies of the modules.

Method 32-shot 16-shot 8-shot 4-shot 2-shot
PEMP w/o v&t em. 0.641 0.594 0.561 0.517 0.490
PEMP vision only 0.649 0.607 0.568 0.543 0.527
PEMP w/o vision em. 0.655 0.613 0.577 0.540 0.511
PEMP w/o text em. 0.658 0.619 0.575 0.557 0.533
PEMP w/o Summary Layer 0.632 0.587 0.558 0.511 0.487
PEMP w/o Messenger Layer 0.664 0.629 0.594 0.575 0.554
PEMP w/o Slide-level Prompts 0.656 0.620 0.581 0.552 0.525
PEMP w/o AC-Loss 0.660 0.626 0.589 0.568 0.549
PEMP (ours) 0.667 0.637 0.614 0.587 0.562

Loss, the model efficiently completes the task under the guidance of pathology
prior knowledge. Additionally, PEMP excels when the sample size is very small
(e.g ., 2-shot, 4-shot), showcasing its effective utilization of visual and language
prior knowledge related to prognosis in H&E pathology slides for diagnosis.
Lymph node metastasis prediction. Table 2 presents the performance of
all methods in the in-house and TCGA-CESC datasets. Across all settings with
limited samples, PEMP consistently achieves the best performance and signifi-
cantly outperforms all comparative methods. This indicates that PEMP is also
capable of efficiently understanding and leveraging pathological prior knowledge
related to metastasis in primary lesion H&E pathology slides for diagnosis. The
results of both tasks highlight the immense potential of PEMP in clinical tasks
characterized by challenges in label acquisition and diagnostic complexity.
Round cell subtype diagnosis. The classification diagnosis for rare diseases
in the round cell subtype task presents an increasingly challenging yet vital
clinical issue. Table 3 illustrates the performance of all methods. Notably, with a
limited number of shots, most methods face challenges in achieving satisfactory
diagnostic results. However, leveraging visual and pathological expertise from
pathology experts, PEMP achieves significantly better results for all the settings
(6.2% higher AUC on average). This underscores the substantial potential of
PEMP in the diagnosis of rare diseases.
Ablation Study. As shown in Table 4, we designed eight variants and evaluated
the roles of each component in PEMP in the prognosis task. (1) PEMP w/o v&t
em. represents the removal of all vision and text examples, reducing PEMP to
CoOp; (2) PEMP vision only denotes the exclusion of the text end, training solely
with vision examples as guidance for prior knowledge; (3) PEMP w/o vision em.
indicates the removal of all vision examples; (4) PEMP w/o text em. signifies
the exclusion of all text examples; (5) PEMP w/o Summary Layer denotes the
replacement from Summary Layer to simple average pooling. Please note that
the Summary Layer is essentially an Attention Pooling layer, recognized as a
crucial component in MIL problems; (6) PEMP w/o Messenger Layer denotes the
removal of the Messenger Layer; (7) PEMP w/o Slide-level Prompt denotes the
removal of all slide-level prompts; (8) PEMP w/o AC-Loss denotes the removal
of AC-Loss for vision and text examples while retaining the AC-Loss for the
visual and text features of the slide task token.
Visualization and Interpretability. To illustrate the robust performance
of PEMP, we briefly visualize typical cases where visual patch examples and
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Fig. 4: Visualization of key pathology patterns indicating both good and poor prog-
nosis retrieved by PEMP from the test set.

slide examples exhibit the highest similarity on the prognosis task’s test dataset
(Fig. 4). PEMP demonstrates accurate learning of pathology prior knowledge,
effectively addressing the challenge of predicting survival outcomes with lim-
ited training WSIs. More importantly, PEMP also shows high interpretability.
PEMP efficiently integrates the high-risk and low-risk pathology image patterns
and textual descriptions that pathologists have summarized over an extended pe-
riod. PEMP achieves excellent performance under the guidance and facilitation
of this prior knowledge.

6 Conclusion

This paper presents PEMP, a pathology-knowledge enhanced multi-instance
prompt learning framework, excelling in challenging tasks such as prognosis pre-
diction with difficult label acquisition and rare tumor classification in Few-shot
Weakly Supervised WSI Classification. PEMP integrates vision and text prior
knowledge into prompts at both patch and slide levels, using a combination
of static and learnable prompts during training to guide the effective diagno-
sis of key pathology patterns. Alignment-wise contrastive losses ensure feature-
level alignment between knowledge-enhanced visual and textual prompts at both
patch and slide levels. In specific clinical settings, collecting a large number of
WSIs may be challenging due to patient privacy issues, the prevalence of rare
diseases, new treatment protocols, or small patient groups. PEMP has shown
substantial benefits across five datasets, including prognosis and rare diseases,
demonstrating significant diagnostic benefits in fields with limited medical re-
sources. PEMP also demonstrates high interpretability in medical diagnoses,
indicating significant potential for future clinical applications. Moreover, such
prompt-description-based model adaptation could be widely adopted as a gen-
eral learning paradigm for specialized domain applications.
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