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Abstract. Navigating drones through natural language commands re-
mains challenging due to the dearth of accessible multi-modal datasets
and the stringent precision requirements for aligning visual and textual
data. To address this pressing need, we introduce GeoText-1652, a new
natural language-guided geolocalization benchmark. This dataset is sys-
tematically constructed through an interactive human-computer process
leveraging Large Language Model (LLM) driven annotation techniques
in conjunction with pre-trained vision models. GeoText-1652 extends the
established University-1652 image dataset with spatial-aware text anno-
tations, thereby establishing one-to-one correspondences between image,
text, and bounding box elements. We further introduce a new optimiza-
tion objective to leverage fine-grained spatial associations, called blend-
ing spatial matching, for region-level spatial relation matching. Extensive
experiments reveal that our approach maintains a competitive recall rate
comparing other prevailing cross-modality methods. This underscores the
promising potential of our approach in elevating drone control and nav-
igation through the seamless integration of natural language commands
in real-world scenarios.

Keywords: Spatial Relation Matching · Geolocalization · Text Guid-
ance · Drone Navigation

1 Introduction

Drone navigation using natural language offers potential to a range of appli-
cations such as disaster management [45, 52], live search and rescue [5, 44],
and remote sensing [3, 6, 25, 26]. Given one single input image, drone naviga-
tion is to search the other relevant images of the same place from a large-scale
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Fig. 1: An example of the proposed benchmark, GeoText-1652. Here we show
a text-guided drone geolocalization process. Left: Every image contains several region-
level query sentences. Middle: Given the user description, we match the text and region
of interest with the spatial relation. Right: With the dense spatial relation matching,
we could easily retrieve the place of interest against other similar false-positives, and
navigate the drone. It is worth noting that multiple similar-appearance build-
ings usually exist in the neighbour regions, so we also indicate the relative
position, e.g ., left, right, upper, and down, in the text query.

gallery [54,57,59,71,77,79], which is usually regarded as a sub-task of image re-
trieval. Current datasets typically provide pairs of images, focusing on matching
images from disparate platforms like drones and satellites [28, 32, 51, 64, 75, 83].
However, the query image is not always available, while natural language de-
scription is a more intrinsic input modality from the user. There remain two
challenges to natural language-guided drone navigation: (1) There is no large
public language-guided dataset. Providing such a detailed description of the im-
age is usually challenging with high human resource costs and reliable annotation
quality. (2) It remains difficult to align language and visual representation due
to the fine-grained nature of the drone-view scene images.

For the first limitation, we propose a multi-view, multi-source vision-language
dataset GeoText-1652, drawing on the existing multi-source images dataset,
University-1652 [79] (see Fig. 1). We have established links between locational
data and corresponding textual descriptions through a semi-automatic proce-
dure, annotation including 276,045 text-bbox pairs and 316,335 descriptions. Our
benchmark facilitates two new tasks: drone navigation via text and drone-view
target localization. As the name implies, drone navigation via text focuses on the
strategic guidance of a drone to the location it has previously visited that most
closely aligns with a provided textual description. This involves a fine-grained
text-to-image retrieval process, highlighting the integration between linguistic
and spatial data. On the other hand, drone-view target localization focuses on
identifying the textual description that best matches a drone-captured image to
accurately localize a target, which is an image-to-text retrieval task. In our ex-
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perimental setup, we approach these tasks as challenges in cross-modal retrieval
focusing on bridging different types of data representations. We compare the
generic feature trained on extremely large datasets with the viewpoint-invariant
feature learned on our proposed dataset. We observe that the proposed GeoText-
1652 dataset aids in learning the viewpoint-invariant feature, which refines drone
control via language, making it more precise and intuitive. To address the second
challenge, we introduce an approach for spatial relation matching that leverages
the GeoText-1652 dataset. Our methodology encompasses two losses, grounding
loss and spatial loss, which help the model in understanding the spatial relation-
ships between objects within images. Through this approach, we enhance the
capability of the model to decipher spatial correlations for more precise text-to-
image retrieval. The main contributions are as follows:

– In pursuit of facilitating natural language-guided drone geolocalization, we
introduce a new image-text-bbox benchmark, called GeoText-1652, which
builds upon the existing multi-platform University-1652 image dataset. Our
key contribution lies in establishing precise associations between spatial posi-
tions and their corresponding text annotations through an innovative human-
computer interaction-based annotation process.

– As a minor contribution, we propose a new spatial-aware approach that
leverages fine-grained spatial associations to perform region-level spatial re-
lation matching. Different from the independent bounding box regression,
our approach further introduces relative position within drone images and
textual descriptions of surrounding positions to achieve precise localization.

– Our proposed spatial-aware model has achieved 31.2% recall@10 accuracy
using text query, surpassing established models, such as ALBEF [32], and X-
VLM [74]. Moreover, our model shows promising generalization capabilities
when applied to unseen real-world scenarios, highlighting its potential for
effective use in diverse and unseen environments.

2 Related Works

Cross-view Geolocalization. Cross-view geolocalization addresses the chal-
lenge of associating images captured from different viewpoints with their cor-
responding geographical locations [2, 29, 61, 63, 79]. One key underpinning this
task is to extract a discriminative visual representation against viewpoints. For
instance, Wang et al . [65] develop a partitioning strategy that enriches the fea-
ture set by considering multiple parts of the image and Lin et al . [36] intro-
duce a new attention module to discover representative key points and focus
on the salient region. Dai et al . [12] introduce a transformer-based structure
with a content alignment strategy. Similarly, Yang et al . [69] utilize the prop-
erties of self-attention and exploit the positional encoding of ground and aerial
images. Rodrigues et al . [55] introduce a dual path network to fuse the local
region with the global feature for partial aerial-view image matching. Another
line of works [8, 14, 24, 56, 77, 84] further integrate enhanced features across dif-
ferent model designs and leverage extra knowledge to improve geolocalization.
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Shi et al . [56] fuse the pose estimation and geometry projection into the feature
matching, while Hu et al . [24] emphasize the accuracy of orientation in street-
view images. Chen et al . [8] introduce a cross-drone mapping mechanism in the
transformer. GeoDTR [77] employs two data augmentation techniques to capture
both low-level details and spatial configurations. TransGeo [84] combines trans-
former flexibility and attention-guided non-uniform cropping to enhance image
resolution in key areas. Dhakal et al . [14] design one contrastive learning frame-
work, which could predict textual embedding for ground-level scenery. Different
from existing methods, our work focuses on two new natural language-guided
drone tasks, which provide a straight-forward way to control the drone.

Multi-modality Alignment. In this work, we focus on natural language-
guided navigation, which can be viewed as a sub-task of text-to-image retrieval
[17, 31, 51]. Early works usually focus on structure design, such as dual-path
network [80]. Wang et al . [67] employ an adaptive gating scheme to handle neg-
ative pairs and irrelevant information, calculating the matching score based on
the fused features, while Li et al . [33] apply graph convolutional networks for
semantic reasoning within image regions. Then, Chen et al . [11] propose word re-
gion alignment in the pertaining of multi-modal model with large-scale datasets.
Li et al . [34] apply object tags detected in images as anchor points to ease the
learning of alignments, while Yang et al . [70] study the attribute-related key-
words. Clip model [51] proposes a contrastive learning method between image-
text pairs. Jia et al . [28] design a simple dual-encoder architecture to align visual
and language representations. Li et al . [32] refine image text matching loss with
a self-training method which learns from pseudo-targets. Zeng et al . [74] further
align multi-region visual concepts and associated texts. Blip model [31] leverages
noisy web data through a caption bootstrapping process. Different from these
existing works, we introduce a spatial-aware approach, which explicitly considers
fine-grained spatial text-region matching.

Data Synthesis via Large Models. Deep learning-based automatic annota-
tion has thrived in recent years [49, 62]. Drawing from the success of AI Gener-
ated Content (AIGC), numerous studies have harnessed the capabilities of Large
Models (LM) [78] for the creation of training or supplementary datasets. The
LM has already showed the ability to do annotation for different modality data,
including the text [20, 30, 76], image [27, 35], video [42, 58], and music [16, 38].
Wang et al . [66], utilizing LM to tailor personalized content for recommenda-
tion systems. Concurrently, Hämäläinen et al . [21] delve into GPT-3’s capacity
to craft credible user research narratives for human-computer interaction. This
trend extends into the domain of enhancing data precision and utility, with en-
deavours such as Yu et al . [72] exploration of LMs in generating open-domain QA
content and Meng et al . [46] produce synthetic data for few-shot learning boost-
ing classification task performance. The collective progress in this field, from the
generative capabilities demonstrated by Borisov et al . [4] in tabular data synthe-
sis to Fang et al . [18] synthetic molecules, reflects that champions not just the
generation of data but its thoughtful curation and refinement to meet the nu-
anced demands of various tasks. Chen et al . [9] harness the GPT4V-synthesized
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Fig. 2: The properties of the proposed dataset GeoText-1652. Different from
the traditional category annotation, our dataset not only includes image-level detailed
descriptions but region-level short descriptions (left). Samples of the dataset show that
the description could align well with the image and its regions (right).

Split #Imgs #Global Descriptions #Bbox-Texts #Classes #Univ.
Trainingdrone 37,854 113,562 113,367 701

33Trainingsatellite 701 2,103 1,709 701
Trainingground 11,663 34,989 14,761 701

Testdrone 51,355 154,065 140,179 951
39Testsatellite 951 2,853 2,006 951

Testground 2,921 8,763 4,023 793

Table 1: Statistics of GeoText-1652. Training and test sets all include the image,
global description, bbox-text pair and building numbers. We note that there is no
overlap between the 33 universities of the training set and the 39 universities of the
test sets. Three platforms are considered, i.e., drone, satellite, and ground cameras.

data to build a lite vision-language model. This paradigm shift, further propelled
by methodological enhancements such as those proposed by Yu et al . [73] for
curating less biased and more diverse training datasets. However, our approach
diverges significantly from these predecessors by offering more detailed anno-
tations and tailoring our methodology specifically for spatial matching tasks.
This nuanced focus not only enhances the granularity of the data provided but
also optimizes the dataset for more precise and effective application in spatial
analysis, setting a new precedent in the utilization of LMs for dataset synthesis.

Vision and Language Navigation. Vision-and-Language Navigation (VLN)
requires an agent to follow natural language instructions to navigate in a spe-
cific environment [1]. Recent approaches tackle VLN using cross-modal atten-
tion [43, 50], data augmentation [60, 82], and incorporating object-level infor-
mation and structured spatial representations [19, 23, 50]. Memory architec-
tures [23,43], auxiliary reasoning tasks [82], pre-training on image-text pairs [22],
and integrating referring expressions [43, 50] have shown promise in improving
navigation. In this work, we focus on the language-guided drone navigation task,
which remains under-explored.
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3 GeoText-1652 Dataset

3.1 Dataset Description

The proposed GeoText-1652 dataset extends the image-based University-1652
dataset [79], containing 1,652 buildings in 72 universities from three platforms,
i.e., satellite, drone and ground cameras. We add fine-grained annotations for
every image with 3 global descriptions and 2.62 bounding boxes on average
since we removed some low-quality bounding boxes. Specifically, each global de-
scription, encompassing both image-level and region-level details, contains 70.23
words on average. As shown in Fig. 2, the proposed dataset, compared to the
original dataset, contains fine-grained descriptions with region-level annotations,
which is the key to the natural language-guided task. The region-level descrip-
tions, extracted specifically for bounding box matches, contain 21.6 words on
average. More detailed statistics are shown in Table 1. Similar practices in other
computer vision fields, e.g ., those by Zhu et al . [86] and COCO-Captions [10],
also affirm that enriching single modal datasets with visual or textual data could
enhance model training for fine-grained vision-language tasks.

3.2 Dataset Annotation Framework

As shown in Fig. 3, we briefly illustrate the overall workflow of our dataset con-
struction for the natural language-guided geolocalization. We extend the con-
ventional drone-view dataset University-1652 with dense annotations. To gener-
ate image-text pairs, we adopt a new human-computer interaction annotation
strategy, which could largely save time and costs. Considering LLMs still have
problems in reasoning, including diverse biases, hallucinatory responses, and
inconsistencies, even for advanced models such as GPT-4V [7], we argue that
human validation is of importance during the process [48]. In particular, our
annotation process has two principal phases, i.e., the modality expansion phase
and the spatial refinement phase.
Modality Expansion Phase. For the modality expansion phase, we apply
two kinds of prompts for each image. One prompt focuses on salient objects,
and the other prompt encompasses the description of the entire image. Given
the input and prompts, we ask the visual language model (visual-LLM [81])
to generate answers. Considering the inherent limitations of language models,
such as hallucination phenomena and ambiguous statements, not all outputs
meet the standards. To address this limitation, we introduce a referee model
to autonomously adjudicate whether the outputs from visual-LLM meet good
quality. The raw answers (1) undergo positive sample element detection to ensure
the inclusion of the desired keywords and (2) then enter a negative sample pool
to exclude subjective statements. The keyword within the referee model is set
by the human-computer interaction. In particular, given several raw answers,
i.e., 1,000 cases, we adopt another large language model [47] as a teacher to
classify the negative and positive samples. The referee model keyword list is
updated with terms in negative samples that typically indicate common errors,
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Fig. 3: The proposed human-computer interaction annotation strategy. The
strategy includes two main processes: modality expansion annotator and spatial refine-
ment annotator. The modality expansion annotator is to annotate the image-level and
the region-level descriptions. The spatial refinement annotator could utilize the region-
level description to conduct the visual grounding. Finally, after human-computer fil-
tering processes, we build the proposed dataset with Image-Text-Bbox Pairs.

Property CVUSA [68] CVACT [37] VIGOR [85] GeoText-1652
Annotation GPS Tag GPS Tag GPS Tag Sentence
# Bbox-Texts N/A N/A N/A 276,045
Platform G,S G,S G,S G,S,D
Modality Image Image Image Image, Text

(a) (b)

Fig. 4: (a)Comparison between the proposed GeoText-1652 dataset and other existing
geolocalization datasets. The labels G, S, and D represent ground-view, satellite-view,
and drone-view images, respectively. (b)Why is Relative Position Necessary?
Here we show some typical challenging cases. In these rows, similar objects (boats,
towers, skyscrapers) are difficult to distinguish based on their characteristics alone.
However, their spatial relationships (left, middle, right) can effectively aid in distin-
guishing them. Color-coded boxes highlight the main object from left to right.

like ‘img src’, ‘[image]’, and various apologies or URLs. In contrast, the positive
word list is for spatial relationship indicators to ensure the inclusion of positional
context within the annotations. The human annotator only needs to check the
key word list. If the presence of negative terms or missing positive words triggers
the referee model, the visual-LLM will re-generate the caption until meeting the
standard. This process enables us to obtain three image-level descriptions and
nine region-level description proposals for each input image.
Spatial Refinement Phase. In the spatial refinement phase, we build the
relationship with the bounding box. Specifically, given the region-level descrip-
tion, we utilize an off-the-shelf text-based visual grounding model [39] to identify
corresponding bounding boxes (bboxes). Since all region-level descriptions con-
tain spatial phrases such as ‘right’ or ‘left’, we set a spatial rule to filter out
the bounding boxes in mismatched locations. We also refine the description by
adding vertical spatial terms like ‘upper left’ and ‘down right’. Considering the
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domain gap between pre-trained grounding models and our aerial-view data,
we empirically fine-tune the inference hyper-parameters, e.g ., IoU threshold, in
grounding models via feedback. We conduct 5-round evaluation. In each round,
we randomly extract 20% of the annotations for human evaluation, assessing
both the accuracy of the bounding box and the relevance of the associated text.
These evaluations are graded on a matching scale. Over five iterations of refine-
ment, the annotations rated as excellent exceed 90% according to manual feed-
back. We only preserve the high-quality 2.62 corresponding bounding boxes and
region-level description for every image on average. Finally, through the stages of
modality expansion and spatial refinement annotation, we achieve dense annota-
tions, encompassing both image-level descriptions and region-level descriptions
with bbox pairings. This iterative and multi-faceted approach ensures a high-
quality dataset for fine-grained geolocalization using natural language.
Discussion. The contribution to the community. The key difference from
existing datasets [37, 68, 85] lies in the fine-grained region-level descriptions, fa-
cilitating more intuitive natural language-guided tasks (see Fig. 4a). This level
of detail is crucial for tasks requiring precise localization and contextual under-
standing. For instance, only describing the visual patterns of the main building
can be challenging due to language limitations (see Fig. 4b). In such cases,
distinguishing the target by describing the surrounding buildings can be an ef-
fective strategy. The spatial context adds clarity and distinction. Enhancing a
multimodal model with relative spatial reasoning is crucial for interpreting fine-
grained visual contexts. Moreover, our dataset annotation framework, incorpo-
rating a human-computer interaction strategy and a referee model, ensures both
efficiency and high-quality annotations. Researchers can leverage GeoText-1652
to explore new approaches, improve model generalization, and push the bound-
aries of visual geolocalization and natural language understanding integration.

4 Method

We introduce a cross-modal geolocalization framework to conduct fine-grained
spatial analyses (see Fig. 5). It mainly consists of an image encoder, a text en-
coder, and a cross-modal encoder. We revisit the image-text semantic matching
in Sec. 4.1, followed by the new blending spatial matching in Sec. 4.2.

4.1 Image-text Semantic Matching

Image-Text Contrastive. Given an image-text pair, we first extract the image
visual feature V and image-level text feature T , respectively. Cosine similarity
can be calculated as: s(V, T ) = V ⊤T

||V ||2||T ||2 . According to contrastive learning, we
treat the other samples within the mini-batch as negative examples. Then, we
could calculate the in-batch vision-to-text and text-to-vision similarity as:

pv2t =
exp(s(V, T )/τ)∑N

i=1 exp(s(V, T
i)/τ)

, pt2v =
exp(s(V, T )/τ)∑N

i=1 exp(s(V
i, T )/τ)

, (1)
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Fig. 5: The proposed multi-modal framework. The framework processes an aerial
image by identifying regions of interest (ROIs) and matching them with corresponding
text descriptions. It contains an image encoder that extracts visual embeddings and in-
termediate feature maps. We could obtain region-level visual features via ROI Pooling,
and concatenate to calculate the spatial relation followed by multi-layer perceptron
(MLP). On the other hand, text inputs, including the image-level and region-level
descriptions, are encoded separately with the text encoder. Two attention modules in-
tegrate the image and text features, and they share the same weights. The framework
applies several loss functions, including Grounding and Spatial Loss for blending spa-
tial matching, and ITM and ITC Loss for image-text matching.

where τ is a learnable temperature parameter. The superscript of V i and T i

denotes the i-th sample within the batch. The contrastive learning is defined as:

Litc = −1

2
E [log(pt2v) + log(pv2t)] , (2)

where we encourage that the identity image-text pair has the larger similarity.
Image-Text Matching. We further demand the model to determine whether
a pair of visual concepts and text is matched. For each visual concept in a mini-
batch, we sample an in-batch hard negative text feature according to the highest
similarity in Eq. 3. Similarly, we also sample one hard negative visual feature for
each text. We apply the output embedding of the cross-modal encoder to predict
the matching probability pmatch, and the binary classification loss is:

Litm = −E
[
ym log(pmatch) + (1− ym) log(1− pmatch)

]
, (3)

where ym is a binary label indicating whether the input is a positive pair or a
hard negative pair.

4.2 Blending Spatial Matching

In text-guided bounding-box prediction, known as the grounding process, the
model uses natural language descriptions to identify and spatially locate objects
within an image. This involves an interaction between the text and image fea-
ture maps to guide a region proposal network. Therefore, our proposed blending
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spatial matching includes two optimization objectives: the grounding prediction
and the spatial relation matching.
Grounding Prediction. Given the image representation and the region-level
text representation, the model is to predict the bounding box bj according to
the corresponding textual concept Tj . The bounding box is formulated as bj =
(cx, cy, w, h). Here the subscript j denotes the j-th short bounding box of the
corresponding image. cx, cy are the center point coordinate of the bounding box,
and h,w are the height and width, respectively. In particular, we adopt the cross-
attention model with six transformer blocks followed by multi-layer perceptron
(MLP) (as shown in Fig. 5 (right)). We also apply the Sigmoid to normalize
the prediction b̂j within the valid region [0, 1]. The grounding prediction loss
includes the ℓ1 regression loss and the Intersection over Union (IoU) loss [53] to
compare the overlap areas. Therefore, the grounding loss can be formulated as:

Lgrounding = E[Liou(bj , b̂j) + ||bj − b̂j ||1]. (4)

Spatial Relation Matching. Considering the grounding loss focus on a single
region, we propose a relative localization matching. For instance, given the visual
feature of three bounding boxes, we intend to predict the spatial relationship
between them. Given three regions of interests b1, b2, b3, we extract the visual
feature based on the global feature V via the ROI Pooling module as region
features R1, R2, R3. As the spatial relation is a relative concept, we concatenate
the region features as composed feature Rij (i ̸= j). Then we adopt the Multi-
Layer Perceptron (MLP) to predict the 9-class spatial relationship pr

ij . The
spatial loss is defined as the cross-entropy loss between yr

ij and p̂r
ij :

Lspatial = E[−yr
ij log(p̂r

ij)], (5)

where the ground-truth class yr
ij is derived by the center distance for the two

bboxes (cx, cy, w, h) and (c′x, c
′
y, w

′, h′). Horizontal distance is defined as ∆x =
c′x−cx and vertical distance is ∆y = c′y−cy. If |∆x| < w

2 , we define it as ‘middle’;
If ∆x > w

2 , we define it as ‘left’; If ∆x < −w
2 , we define it as ‘right’. Similarly,

we also could classify the ground-truth vertical relationship as 3 categories, i.e.,
top, middle, and bottom. Therefore, we could compose the vertical and horizontal
relation as 9 location categories in total.
Discussion. Why do we need spatial relation matching? Relative position
estimation has been explored in other fields, such as self-supervised learning [15].
In this work, spatial matching serves as a crucial complement to bounding box
prediction in our approach, providing a nuanced perspective on the relation-
ships between different regions of interest (ROIs). While bounding box predic-
tion Lgrounding focuses on individual regions, our proposed relative localization
matching Lspatial introduces a relative spatial dimension to the scene under-
standing. In particular, the proposed spatial relation matching via 9 orientation
classification motivates the model towards a more fine-grained understanding of
different regions within the image.
Optimization Objectives. Finally, the total loss Ltotal is defined as:

Ltotal = Litc + Litm + λ(Lgrounding + Lspatial), (6)
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where λ is the blending spatial matching weight, and we empirically set λ = 0.1.

5 Experiment

Implementation Details. We adopt XVLM [74] pretrained on 16M images as
our backbone model. Our text encoder is BERT [13] and our image encoder is
Swin [40]. We deploy AdamW [41] optimizer with a weight decay of 0.01. The
learning rate is set to 3e−5. All images are resized to 384 × 384 pixels during
the training process, and the image patch size is set to 32. We perform simple
data augmentation, such as brightness adjustment and identity operation. We
do not use random rotation or horizontal flipping as it would lose the spatial
information. In the context of global description serving as the text query, we
remove stop words to keep the query concise during evaluation.

5.1 Geolocalization Performance

The GeoText-1652 dataset contributes to the advancement of cross-modality
retrieval and the proposed method outperforms the performance of other models,
particularly when fine-tuned with this dataset. We could observe two primary
points from Table 2:
Effectiveness of the Proposed Dataset. The GeoText-1652 dataset, provides
a substantial ground for evaluating the image-text retrieval capabilities of vari-
ous models. The results show that fine-tuning our dataset leads to considerable
improvements in performance, as seen with ALBEFfinetuned and XVLMfinetuned,
among others. The result also suggests that the dataset contains rich and varied
annotations that are beneficial for training models to understand and match im-
ages with text descriptions accurately. Furthermore, the significant gap between
pre-trained models and their fine-tuned counterparts underscores that it remains
challenging for the “large” vision model on the aerial-view dataset, reflecting the
necessity of the proposed dataset.
Superiority of the Proposed Method. Our method shows a clear superiority
over other methods, particularly in the Recall@10 metric for both image and
text retrieval tasks. Compared with the baseline XVLMfinetuned, the proposed
method moves more positive candidates forward in the ranking list, with +0.4%
Recall@1, +0.9% Recall@5 and +1.6% Recall@10 improvements in the text-to-
image retrieval. Similarly, we could observe the increase in the image-to-text
retrieval setting, with +1.3% Recall@1, +1.4% Recall@5 and +1.8% Recall@10.
Such improvement is non-trivial in practical applications, where multiple correct
answers are desirable. With comparable model parameters, the high Recall@10
performance also implies that the model is capable of understanding the visual-
textual relationship effectively. The proposed approach learns diverse features
from the GeoText-1652 dataset, handling the detailed descriptions and region-
level annotations efficiently.
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Method # Params # Pretrained Images Text Query Image Query
R@1 R@5 R@10 R@1 R@5 R@10

UNITER [11] 300M 4M 0.9 2.7 4.2 2.5 7.4 11.8
METER-Swin [17] 380M 4M 1.3 3.9 5.8 2.7 8.0 12.2

ALBEF [32] 210M 4M 1.8 4.8 7.1 2.9 8.1 12.4
ALBEF [32] 210M 14M 1.1 3.5 5.3 3.0 9.1 14.2
XVLM [74] 216M 4M 4.3 9.1 13.2 4.9 14.2 21.1
XVLM [74] 216M 16M 4.5 9.9 13.4 5.0 14.4 21.4

UNITERfinetuned 300M 4M 10.6 20.4 26.1 21.4 43.4 59.5
METER-Swinfinetuned 380M 4M 11.3 21.5 27.3 22.7 46.3 60.7

ALBEFfinetuned 210M 4M 12.3 22.8 28.6 22.9 49.5 62.3
ALBEFfinetuned 210M 14M 12.5 22.8 28.5 23.2 49.7 62.4
XVLMfinetuned 216M 4M 13.1 23.5 29.2 23.6 50.0 63.2
XVLMfinetuned 216M 16M 13.2 23.7 29.6 25.0 52.3 65.1

Ours 217M 16M 13.6 24.6 31.2 26.3 53.7 66.9

Table 2: Image-text bi-direction retrieval results on GeoText-1652. Text
Query: Drone Navigation (Text-to-Image Search). Image Query: Drone-view Geolo-
calization (Image-to-Text Search). We adopt Recall@K as the evaluation metric.

5.2 Ablation Studies and Further Discussion

Effect of Loss Objectives. We gradually add the loss terms to train the model,
and the retrieval performance is shown in Table 3a. The baseline model, stripped
of both the spatial and grounding loss, exhibits a significant impairment, as
mirrored in the Recall@1 accuracy for Text Query and Image Query. With the
grounding loss only, the overall performance of the model is better compared to
the baseline model, i.e., +0.3% Recall@1 accuracy in Text Query and +0.9%
Recall@1 accuracy in Image Query. With the spatial loss only, the model shows
a consistent enhancement in performance compared to the baseline model, i.e.,
+0.2% Recall@1 accuracy in Text Query and +0.3% Recall@1 accuracy in Image
Query. With our method, the evaluation result shows a notable increase, i.e.,
+0.4% Recall@1 in Text Query and +1.3% Recall@1 in Image Query. Therefore,
the full model has arrived at the best performance with the two losses together,
i.e., 13.6% Recall@1 in Text Query and 26.3% Recall@1 in Image Query. We
observe that grounding loss is the main factor in enhancing retrieval performance.
The combination of both losses performs better than only using one of them.
Different Training Sets. We study the effect of the dataset split in Table 3b.
The “Satellite + Drone + Ground” training set shows better performance than
only using “Drone” or “Satellite + Ground”, i.e., +0.7% Recall@1 in Text Query
and +0.6% Recall@1 in Image Query compared to “Drone” training set, and
+3.5% Recall@1 in Text Query and +7.6% Recall@1 in Image Query compared
to “Satellite + Ground” training set. These results indicate that the training set
includes a more diverse range of data (for instance, a combination of satellite,
drone, and ground data), facilitating the model training.
Hyperparameter Study. λ is the weight to balance the spatial matching losses
and the cross-modality matching losses. As shown in Table 3c, we could observe
that when λ = 0.1, the learned mode achieves the best recall rate.
Rotation Angle Study. We rotate test images at 15°, 90°, 180°, and 270°.
As shown in Table 3d, we observe that the proposed method is robust to small
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Table 3: Ablation studies on: (a) Spatial and bbox losses. (b) Different training sets.
(c) The hyper-parameter λ selection. (d) Rotation angles.

(a)

Method Text Query Image Query
R@1 R@5 R@10 R@1 R@5 R@10

Baseline [74] 13.2 23.7 29.6 25.0 52.3 65.1
w grounding loss 13.5 24.4 30.9 25.9 53.4 66.3

w spatial loss 13.4 24.0 30.1 25.3 52.8 65.6
Ours 13.6 24.6 31.2 26.3 53.7 66.9

(b)

Training Set #imgs Text Query Image Query
R@1 R@5 R@10 R@1 R@5 R@10

Drone 37,854 12.9 23.4 29.1 25.7 51.5 64.3
Satellite + Ground 12,364 10.1 19.3 24.4 18.7 39.6 51.2
Satellite + Drone + Ground 50,218 13.6 24.6 31.2 26.3 53.7 66.9

(c)

λ
Text Query Image Query

R@1 R@5 R@10 R@1 R@5 R@10

1.00 10.5 21.6 27.6 21.8 47.5 60.8
0.50 11.2 22.3 29.4 23.2 51.4 63.5
0.10 13.6 24.6 31.2 26.3 53.7 66.9
0.05 12.3 24.1 30.6 24.6 52.9 65.2

(d)

Rotation Degree Ours Baseline
R@1 R@5 R@10 R@1 R@5 R@10

0 13.6 24.6 31.2 13.2 23.7 29.6
15 13.4 24.3 30.9 13.0 23.6 29.4
90 13.1 23.7 29.6 12.9 23.4 29.1
180 13.3 23.9 30.2 13.1 23.6 29.5
270 13.2 23.8 29.8 12.9 23.5 29.2

rotation perturbation. As expected, it performs worse against a larger rotation
degree, considering that we provide a “wrong” relative position in the text query.
In contrast, the baseline method achieves a similar performance against rotation.
Since the main objects are still correct in the text query, the performance drop
is within an acceptable range, and our method still surpasses the baseline.

Spatial Text Grounding. We further evaluate our spatial bounding box pre-
diction on both synthesized and drone-view images in the wild (see Fig. 6). (1)
It shows the strength in spatial matching, not just on familiar, trained images
but also on new, real-world scenes. For instance, buildings and objects on the
sea are never included in our training data, but the model could easily capture
the boats and buildings based on our text instruction which indicates that the
model has the potential to handle real-world navigation tasks. (2) The images
also accentuate the robustness in discerning between objects solely based on
textual descriptions that define their spatial relationships, even when multiple
instances of the same object are present within the same image. For example,
when two parking lots are shown in the synthesized image, the model could de-
tect the proposed parking lot based on the spatial word we provided. Also, as
shown in the real drone image, when a harbour with boats on both sides, the
model could also capture the proposed object based on the instruction. This
level of fine-grained discrimination emphasizes the understanding of spatial lan-
guage, accurately mapping words that convey spatial relationships to the specific
regions of the image they describe.

Text Query Retrieval. As shown in Fig. 7, our method shows spatial-aware
capabilities, achieving a higher recall compared to baseline models. Spatial de-
scriptors enable accurate image identification based not only on object labels
but also on the integration of spatial relations. For instance, the keywords, e.g .,
“in the center”, “in the down side”, and “in upper left”, are well captured by
our learned model. These keywords help our model to find the object of inter-
est. The results in the top rows show that the baseline still could retrieve the
content-similar image, e.g ., a car, sports field or colour, but they miss the spatial
alignment, which is common in real-world scenarios.



14 Chu et al.

Fig. 6: Bounding box prediction on unseen images. We evaluate images from
both synthesized and real drone views in the wild. Our approach predicts correct regions
even though there exist many similar instances in the entire scene. It shows the necessity
of the proposed spatial relation matching.

Fig. 7: Qualitative text-to-image re-
trieval results. Here we compare our
method with two baselines. The ranking
list is in descending order from left to right
according to the similarity score. The im-
ages in red boxes are false-matched, while
the green ones are true-matched. The key-
words are highlighted in bold.

6 Conclusion

In this work, we introduce GeoText-1652, a new vision-language dataset that en-
hances natural language-guided drone geolocalization, addressing the challenges
of dataset availability and alignment of language with fine-grained visual rep-
resentations. The dataset enables two tasks: text-to-image and image-to-text
retrieval for precise drone navigation and target localization. We also introduce
a new blending spatial matching, leveraging region-level relationships between
drone-view images and textual descriptions. The proposed method outperforms
other cross-modality approaches in recall accuracy and shows good generaliza-
tion in real-world scenarios.
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