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Abstract. The unsupervised 3D object detection is to accurately de-
tect objects in unstructured environments with no explicit supervisory
signals. This task, given sparse LiDAR point clouds, often results in com-
promised performance for detecting distant or small objects due to the
inherent sparsity and limited spatial resolution. In this paper, we are
among the early attempts to integrate LiDAR data with 2D images for
unsupervised 3D detection and introduce a new method, dubbed LiDAR-
2D Self-paced Learning (LiSe). We argue that RGB images serve as a
valuable complement to LiDAR data, offering precise 2D localization
cues, particularly when scarce LiDAR points are available for certain
objects. Considering the unique characteristics of both modalities, our
framework devises a self-paced learning pipeline that incorporates adap-
tive sampling and weak model aggregation strategies. The adaptive sam-
pling strategy dynamically tunes the distribution of pseudo labels dur-
ing training, countering the tendency of models to overfit easily detected
samples, such as nearby and large-sized objects. By doing so, it ensures a
balanced learning trajectory across varying object scales and distances.
The weak model aggregation component consolidates the strengths of
models trained under different pseudo label distributions, culminating in
a robust and powerful final model. Experimental evaluations validate the
efficacy of our proposed LiSe method, manifesting significant improve-
ments of +7.1% APBEV and +3.4% AP3D on nuScenes, and +8.3%
APBEV and +7.4% AP3D on Lyft compared to existing techniques.

Keywords: Unsupervised 3D Object Detection · 2D Scene Understand-
ing · Self-paced Learning · Unsupervised Learning

1 Introduction

Unsupervised 3D object detection in the context of autonomous driving aims
to discover potential 3D objects in an unsupervised manner [29, 49, 55]. The
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Fig. 1: We show typical limitations of LiDAR-based methods for unsupervised 3D ob-
ject detection. Compared with the prevailing LiDAR-based method, i.e., MODEST [49]
generally misses objects in the distance and small objects (left), our proposed method
LiSe successfully recalls such objects (right). Best viewed in color: the green boxes are
ground truth labels and the red boxes are predictions.

key underpinning unsupervised 3D detection is to develop intelligent algorithms
that can effectively reason about and adapt to the vast array of potential object
classes and their various manifestations in real-world scenarios without explicit
prior knowledge or labeled data. The process involves not only accurately esti-
mating the 3D position of objects but also learning to identify previously unseen
object types and handle unpredictable environmental conditions, which remains
challenging to 2D-based methods [6, 14]. This technology is crucial for ensuring
the safety and efficiency of autonomous vehicles as they navigate through com-
plex and unpredictable road environments. The ability to accurately detect 3D
objects allows these systems to anticipate potential hazards, make informed deci-
sions, and react accordingly. It can be widely applied to real-world applications,
including pedestrian protection [9,12], auto-driving assistance systems [15,17–19]
and traffic management [27,36]. The inherent challenge lies in designing models
capable of extracting discriminative features from sparse and noisy sensor data,
such as point clouds and images, while simultaneously overcoming issues related
to class imbalance, scale variation, and partial occlusions.

Most existing works usually focus on mining the LiDAR data to discover
unlabeled 3D objects [29, 49, 55]. For instance, some works [49, 55] utilize the
rule-based generation of pseudo boxes followed by a self-training process, and
another line of works [29] harness the motion cues provided by LiDAR scene
flow to identify potential dynamic objects. While LiDAR data provides accurate
depth information and a comprehensive perception of the surrounding environ-
ment, it is limited by the inherent sparsity and spatial resolution. This sparsity
challenge becomes particularly pronounced in scenarios involving long-range or
small-scale objects (see Figure 1), where the dearth of LiDAR points returned
significantly compromises the discriminative power required to accurately segre-
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gate foreground entities from their background context. Current methodologies
often adopt an iterative training pipeline that commences with initial object pro-
posals followed by pseudo-label refinement. However, overdependence on LiDAR
alone can lead to a blind spot for detecting diminutive or distant objects, thus
culminating in suboptimal overall detection capabilities.

In this paper, we thus propose a novel LiDAR-2D Self-paced Learning (LiSe)
for unsupervised 3D detection, which integrates LiDAR data with 2D images. It
aims to leverage the rich textual and RGB color information in 2D scenes to over-
come the limitations of LiDAR in detecting distant and small objects. We adopt
the off-the-self multi-traversal method for LiDAR-based 3D detection [49], while
applying the 2D detection [28] and segmentation [20] with 3D lifting for image-
based 3D detection. We observe that two modalities are complementary on the
objects with different distances and resolution, and serve as good initialization
seed. Then we apply the self-paced training strategy to propagate the object
label and refine the box prediction. During training, we observe that the models
tend to overfit to the common category, e.g ., cars, and gradually lose the ability
to detect relatively rare objects, e.g ., bicycles. To alleviate the diminishing detec-
tion ability of such long-tail samples, we introduce an adaptive sampling strategy
that dynamically adjusts the distribution of training data based on the feedback
of the model. Therefore, we could obtain the snapshots trained with different
data distributions during the training process, and thus the learned snapshots
are inherently with complementary focuses. We further propose the weak model
aggregation strategy to merge all snapshot weights along the self-paced learning
process as the final model. We conduct extensive quantitative experiments and
qualitative analyses to validate the effectiveness of our method. In conclusion,
our contributions are summarized as follows:

– Considering the inherent sparsity of LiDAR data, we propose a new ap-
proach, called LiSe, jointly leveraging 2D images and 3D LiDAR to improve
the pseudo label quality in all ranges. The rich texture in 2D images provides
a straightforward discovery of small and distant objects.

– Considering the imbalanced object distribution in self-training, we propose
an adaptive sampling strategy to explicitly emphasize the long-tailed objects,
followed by the weak model aggregation, which iteratively fuses the strengths
of different snapshots into a final stable model.

– Extensive experiments on nuScenes and Lyft verify the effectiveness of the
proposed method, surpassing state-of-the-art by a clear margin on both
AP3D and APBEV . Especially, for long-range detection (50-80m), the APBEV

metric even exceeds that of fully supervised model.

2 Related Work

Unsupervised 3D Object Detection. Unsupervised 3D object detection
is attracting increasing interest within the research community [10, 43, 47, 54].
Cen et al . [5] utilize a fully-supervised detector to generate proposals for un-
known classes. However, this approach struggles with overconfidence issues and
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lacks the ability to generate proposals for semantically distinct classes. Studies
like MODEST [49] and OYSTER [55] have explored a self-training pipeline to in-
crementally discover more objects from LiDAR data. Nevertheless, the inherent
sparsity of LiDAR data hampers their ability to detect small objects. Najibi et
al . [29] employ scene flow to identify objects in motion, training detection model
with generated pseudo boxes. Najibi et al . [30] propose distilling VLM knowledge
into 3D detection model, addressing detection task by initially segmenting based
on text references, followed by 3D box fitting. Different from existing works, our
work aims to leverage the information density in 2D scenes to enhance recogni-
tion of distant and small objects. We also develop adaptive sampling strategy to
address data distribution imbalance problem during self-training process.
Open-vocabulary 2D Detection. Open-vocabulary 2D detection methods
can be categorized into two groups: (1) Knowledge distillation methods [2,8,44]
focus on transferring the extensive open-vocabulary knowledge from VLMs into
closed-set 2D detectors. Therefore, the detection capability is limited by the
scope of the teacher VLM. (2) Region-text pretraining methods [3,23,53] empha-
size learning from region captions through pretraining at the region level, albeit
with high computational costs due to the large scale of pretraining datasets.
Similarly, our work leverages pretrained open-vocabulary detection models to
recognize objects in 2D images. It helps us to instill 2D prior to the 3D detec-
tion. We also consider to eliminate the negative impact of the class imbalance
and overfitting during the self-training process.
Image and LiDAR Fusion. In the realm of closed-set object detection, recent
works have begun to study image and LiDAR data fusion. These works can be
divided into two categories, i.e., sequential fusion [33,45] and parallel fusion [7,
31]. (1) Sequential based approaches [33,45] use 2D base models to initiate the 3D
detection pipeline. The drawback here is that failures in 2D models accumulate
in the 3D detection model, which inevitably degrades the overall performance.
(2) Parallel fusion approaches integrate two modalities at different stages of
the pipeline, including early fusion at the input stage [46], deep fusion at the
feature stage [7,13,21,26], and late fusion at the output stage [31,58]. A primary
challenge in parallel fusion is to ensure semantic alignment, due to substantial
gap between characteristics of images and point clouds. Different from existing
works, our method fuses two modalities by combining box seeds from both. We
introduce self-paced learning to progressively update the box labels, offering
robustness where the failure of 2D models does not halt the pipeline.
Self-paced Learning. Self-paced learning [22] describes a self-directed learning
process where the distribution of training data is dynamically adjusted based on
the model performance. This concept has seen broad application in computer
vision field, including image classification [40, 48, 50], object detection and lo-
calization [37, 39, 51], scene segmentation [24, 34], and video processing [25, 52].
However, these strategies are predominantly focused on the image and video
domains. Diverging from existing works, we have tailored a self-paced learn-
ing strategy specifically for the 3D unsupervised detection task, incorporating
unique 3D attributes such as object distance and volume information.
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Fig. 2: Illustration of the pseudo label generation process in LiSe, which distinctively
harnesses information density from 2D scenes to complement LiDAR data. Our ap-
proach involves a generation method tailored for each modality to obtain LiDAR-
based and image-based 3D boxes. In the LiDAR branch, an off-the-shelf multi-traversal
based method generates pseudo labels, primarily covering near-range objects. Concur-
rently, the image branch uses a pretrained open-vocabulary 2D detector and Segment-
Anything-Model to generate 2D contours from images, which are then mapped into
3D space. Following this, a distance-aware 3D boxes integration process fuses boxes
from both LiDAR and image modalities. Notably, image-based boxes at longer ranges
(e.g ., > 10m) are merged with LiDAR-based 3D boxes. This integration addresses the
limitations of LiDAR-based method in detecting long-range and small objects. The
resulting pseudo labels are proficient in originally challenging samples (e.g ., distant
and small objects) for LiDAR-based methods, laying a solid foundation for enhancing
detection model performance on these challenging cases.

3 Method

We present a detailed description of our method in this section and structure it
into three parts: (1) integration of LiDAR data with 2D scene (see Figure 2),
(2) adaptive sampling strategy (see Figure 3), and (3) weak model aggregation
(see Figure 3).

3.1 Integration of LiDAR Data with 2D Scene

Pseudo-boxes from LiDAR. In our work, we apply a multi-traversal ap-
proach to extract significant objects from LiDAR data. Multi-traversal approach
is based on the idea that when a vehicle traverses the same location multiple
times, entities that remain unchanged in both position and state are likely static
background elements, e.g . buildings. Conversely, items that shift in location are
probable foreground objects, e.g . moving cars. Specifically, we first conduct the
data processing for given LiDAR data. For locations visited more than once,
the LiDAR scans collected at these locations are combined. We then use the
GPS/INS data which provides accurate information on vehicle location and the
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rotation matrix to calibrate the data so that different LiDAR scans are aligned
into same coordinate system. After the alignment, we calculate the point per-
sistency score (ppScore) [49] of each point τ(u) to quantify whether it belongs
to unchanging or changing objects. The higher ppScore indicates a more static
point and lower ppScore indicates a more dynamic one.

With the calculated ppScore, a clustering process that considers both the
similarity of ppScore and the actual geometric distance between points is uti-
lized to segment the entire point cloud into distinct clusters. A graph is con-
structed where points within radius threshold rt of each other are connected
by an edge, and the weight of this edge is calculated as the absolute difference
of their ppScores |τ(u) − τ(v)|. Following graph construction, a variant of the
DBSCAN [11] algorithm which is adapted for application on the graph is used
on the constructed graph, resulting in numerous clusters of points with similar
ppScores and proximate geometric distances. A filtering process that excludes
clusters where the top K percent of points with ppScore above threshold α
is applied, designating these as static clusters (e.g ., large building walls). The
remaining clusters are treated as foreground objects. Finally, an off-the-shelf
bounding box fitting algorithm [56] is applied to each cluster to create a 3D box.
Pseudo-boxes from Images. For 3D pseudo-boxes generation from images, we
employ an off-the-shelf open-vocabulary 2D detector, e.g ., GroundingDINO [28]
to first identify discriminative objects within the images. To realize this purpose,
we construct the detection prompt by concatenating discriminative class names
together, feeding it into GroundingDINO, and obtaining a collection of 2D boxes.
Usually, the detected 2D boxes often contain substantial background areas, which
do not accurately reflect the shapes of real-world objects. Direct employment
of these 2D boxes for subsequent processing can result in imprecise 3D box
estimations. Fortunately, the 2D boxes naturally serve as initial prompts for the
Segment-Anything-Model (SAM) [20]. By inputting these 2D boxes into SAM
as prompts, we instead obtain refined 2D masks. These masks reflect the actual
contours of the targeted objects, significantly mitigating the drawbacks inherent
in utilizing 2D boxes directly. To estimate 3D boxes from images, a projection
process from 3D to 2D is then applied and can be formulated as:

ûi = K · E · ui, (i = 1, ...,m), (1)

where ui is one LiDAR point in the 3D space, K is the intrinsic matrix, E is the
extrinsic matrix, and m is number of points in point cloud. For those projected
2D points lying in the masks, we reserve their corresponding 3D points. This
process is equal to building a frustum extending from the ego center of the vehicle
to 2D mask. This frustum is considered to contain the point cluster corresponding
to the detected object. We then apply the region growth algorithm [1] to get the
cluster with the most points. Subsequently, tight external 3D bounding box is
estimated based on the cluster. All the generated 3D boxes are then consolidated
to form the final pseudo labels for a single LiDAR point cloud. Ultimately, we
achieve a comprehensive set of pseudo labels for the training dataset, entirely
independent of any ground-truth 3D annotations.
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Fig. 3: Illustration of the self-paced learning process in LiSe. Initial distribution of
objects and inference distribution after training are first calculated with the distance
volume-based metric. Adaptive sampling strategy thus updates sampling rates for dif-
ferent objects based on changes in two distributions. We further consider weak model
aggregation to combine newly trained model with previously aggregated model to ob-
tain a stronger, more robust model for current round. Finally, we iteratively update
distribution of pseudo labels and model weight for T rounds to obtain the final model.

It is worth noting that due to the rich texture information in 2D images and
the strong detection ability of the employed open-vocabulary 2D detector, many
distant and small objects, which are usually challenging to identify in LiDAR
data, can be recognized. The pseudo labels derived from images can thus serve
as a robust complement to those obtained from LiDAR, potentially enhancing
the overall quality and coverage of the training data.
Integration between LiDAR and 2D scene. To enhance the integration of
pseudo boxes from both LiDAR and images for training models, we employ a
distance-aware strategy. This approach optimally leverages the complementary
characteristics of two data sources. We begin by establishing a predefined range,
and then we selectively include image-derived boxes that lie within this range,
alongside LiDAR-generated boxes. Final bounding boxes can be derived from:

Bfinal = BLiDAR ∪ {bi | d(bi) ≥ dmin, bi ∈ Bimg}, (2)

where Bimg denotes all image-derived boxes and BLiDAR denotes LiDAR-generated
boxes. bi is one image-derived 3D box, d(bi) is the distance between box bi and
the ego car. dmin is the determined range value. Considering that objects in close
proximity typically exhibit a high density of LiDAR points, LiDAR data alone
is often sufficient for precise estimations. Our distance-aware strategy allows for
flexible exclusion of image-derived boxes in these near-range areas by adjusting
range values. It helps to prevent possible conflicts with LiDAR-generated boxes.

3.2 Adaptive Sampling Strategy

Despite integrating 2D scenes into 3D pseudo-boxes is able to recall the missed
distant and small objects, the model tends to be biased toward easier samples,
e.g ., closer or larger objects in training. Such bias persists throughout all training
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rounds and the reason behind is attributed to the imbalanced data distribution.
We thus propose an adaptive sampling strategy, dynamically balancing different
objects throughout the training phases (see Figure 3).

We first propose distance volume-based metric, which leverages general prop-
erties in 3D world, i.e., distance and volume to categorize objects. For distance-
based categorization, we adopt the criteria in MODEST [49], dividing objects
into near- and far-range ones: objects within 0-30m are considered as near ob-
jects and those beyond 30m are categorized as far objects. For volume-based
categorization, we consult GPT-4 for general information on the volume and
size of common categories. We then classify objects with a volume smaller than
5m3 as small objects, and those larger than 5m3 as large objects. For exam-
ple, common categories such as pedestrians, cyclists will be categorized as small
objects, and typical cars or other vehicles will be attributed to large ones.

Based on the distance volume-based metric, we calculate the initial object
distribution before training and inference distribution after training. We analyze
the differences between two distributions: For object groups whose probability in
inference distribution is significantly increased, we adaptively downsample these
objects in the next round. Conversely, for object groups whose probabilities are
decreased in the inference, we adaptively upsample these groups accordingly.
Therefore, we introduce a sampling score, which can be formulated as:

R(gi) =

{
1− (Q(gi)−Qinit(gi)) if Q(gi) > Qinit(gi)

1 + (Qinit(gi)−Q(gi)) if Q(gi) ≤ Qinit(gi)
, (3)

where gi is one type of objects grouped by distance volume-based metric. Q(gi)
is sampling probability in inference distribution and Qinit(gi) is sampling prob-
ability in initial distribution. R(gi) is new sampling score for objects in group gi
in next round. Adaptive resampling can calibrate model towards harder samples
and away from easier ones, thus resulting in self-paced learning process.

3.3 Weak Model Aggregation

The models obtained in different rounds tend to be proficient in different object
groups, with the adaptive sampling strategy assigning varied sampling ratios.
For example, while a model trained in the t-th round excels at identifying large
objects, the model in the (t+1)-th round takes more attention to detecting small
objects with the increased sampling rate for small objects. The models obtained
in different rounds have their unique bias and lack a comprehensive detection
ability. Therefore, we refer to these models as “weak models”, and introduce
weak model aggregation, which combines these weak models to create a robust,
stronger model (see Figure 3). We select a model as initialization starting from
round Ts. Similar to weight-average approaches [41, 57], we average each weak
model in subsequent rounds with the previous aggregated strong model, and the
obtained model serves as the strong one for the current round. An aggregation
coefficient λ is utilized to balance the influence of the previous strong model and
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the current weak model. The calculation process can be formulated as:

Θt =

{
θt if 1 ≤ t < Ts

λ ·Θt−1 + (1− λ) · θt if Ts ≤ t ≤ T
, (4)

where t is round number, Ts is start round to perform weak model aggregation,
and T is total number of self-paced learning rounds. λ is aggregation coefficient.
θt is current weak model in t-th round, Θt−1 is aggregated strong model obtained
in (t− 1)-th round, and Θt is the aggregated strong model in t-th round.

3.4 Pseudo Labels-based Self-paced Learning

We unify integrated pseudo labels, adaptive sampling strategy, and weak model
aggregation into a self-paced learning process (see Fig. 3). Specifically, it consists
of two stages: seed training and self-training. In seed training, integrated pseudo
labels Bfinal are used to train an initial detector Θ0. Self-training is an iterative
process repeated for T rounds. In t-th round, detector trained from previous
round Θt−1 first conducts inference on the training set to obtain pseudo training
labels for the current round. The pseudo training labels are then redistributed
with our proposed adaptive sampling strategy to counter the bias towards easier
object groups, e.g ., near-range and large objects. Then the updated pseudo labels
are harnessed to train a new detector θt. Weak model aggregation aggregates
the weak model in current round θt and strong model from previous round Θt−1

into a strong model for current round Θt. Different from vanilla self-training, in
our process, distribution of pseudo training labels is adjusted based on model
feedback, which results in a self-paced learning process.

4 Experiment

Dataset. We conduct unsupervised 3D detection experiments on nuScenes [4]
and Lyft [16], two widely recognized benchmarks in autonomous driving. In our
experiment, we follow the basic dataset configuration in MODEST [49]. Specif-
ically, we only utilize LiDAR point clouds which are collected from locations
with more than one sample in order to satisfy the multi-traversal requirement.
For nuScenes, the final used data consists of 3,985 training keyframes and 2,412
testing ones. For Lyft, we use 11,873 training samples and 4,901 testing samples.
We emphasize that the ground-truth 3D annotations are not used in our training
and they are just involved in the testing to evaluate model performance.
Metric. Two different metrics APBEV and AP3D are considered. APBEV fo-
cuses on accuracy from the Bird’s Eye View (BEV), while AP3D considers ad-
ditional height information and evaluates detection results in 3D space, thus of-
fering more comprehensive assessment. Furthermore, we consider objects w.r.t.
the distance and report evaluation results for objects in the near range (0-30m),
middle range (30-50m), far range (50-80m), and the full range (0-80m).
Implementation Details. In the training, we adopt PointRCNN [35] as the
backbone. In each self-paced training round, we train the model for 80 epochs on
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Table 1: Detection results on nuScenes. We report APBEV and AP3D at IoU = 0.25
for objects across various distances. The results are shown in APBEV / AP3D format.
T = 0 is training from seed labels. T = 2 and T = 10 are the results for 2th and
10th round self-training, respectively. The supervised performance of model trained
with ground-truth boxes is in the first row (Supervised). It is noticeable that the
performance of LiSe significantly surpasses that of the state-of-the-art OYSTER [55]
across all evaluated metrics. ∗: We present the results of our reimplementation, as
official code for OYSTER is not available. Our reimplementation follows OYSTER
settings, which conduct two rounds of self-training.

Method 0-30m 30-50m 50-80m 0-80m

Supervised 39.8 / 34.5 12.9 / 10.0 4.4 / 2.9 22.2 / 18.2

MODEST-PP (T = 0) 0.7 / 0.1 0.0 / 0.0 0.0 / 0.0 0.2 / 0.1
MODEST-PP (T = 10) - - - -
MODEST (T = 0) 16.5 / 12.5 1.3 / 0.8 0.3 / 0.1 7.0 / 5.0
MODEST (T = 10) 24.8 / 17.1 5.5 / 1.4 1.5 / 0.3 11.8 / 6.6
OYSTER (T = 0) 14.7 / 12.3 1.5 / 1.1 0.5 / 0.3 6.2 / 5.4
OYSTER (T = 2)∗ 26.6 / 19.3 4.4 / 1.8 1.7 / 0.4 12.7 / 8.0

LiSe (T = 0) 5.8 / 4.7 0.6 / 0.2 0.3 / 0.2 2.1 / 1.8
LiSe (T = 10) 35.0 / 24.0 11.4 / 4.4 4.8 / 1.3 19.8 / 11.4

nuScenes and 60 epochs on Lyft. We adopt AdamOneCycle [38] as the optimizer,
with a default learning rate of 0.01, weight decay of 0.01, and momentum of 0.9.
The learning rate is reduced at epochs 35 and 45 by a factor of 0.1, with a
minimum learning rate clip of 1e−7. The random seed is set as 0. The total
batch size is set at 8, uniformly distributed among 4 × A6000 (48G) GPUs. In
pseudo label generation, we follow previous works [49] to set α as 0.7 and K as
20. Our code is based on OpenPCDet [42] and is implemented in PyTorch [32].

4.1 Main Results

We present nuScenes results in Table 1 and observe that LiSe significantly out-
performs all existing methods. In particular, compared to the state-of-the-art
OYSTER, LiSe achieves an improvement of +7.1% in APBEV and +3.4% in
AP3D within the 0-80m range. In other distances, such as 0-30m, 30-50m, and
50-80m, LiSe consistently surpasses OYSTER, demonstrating a universally en-
hanced detection capability. The improvement validates the effectiveness of our
proposed integration with 2D scenes, adaptive sampling strategy, and weak
model aggregation in enhancing overall detection ability of model. It is also
noteworthy that APBEV of LiSe in the long range (50-80m) even exceeds that
of fully supervised results. These results affirm that incorporating 2D scene un-
derstanding significantly augments the detection of distant and small objects.

We further conduct experiments on Lyft, using the same hyper-parameters
on nuScenes (see Table 2). We observe that the proposed LiSe surpasses the
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Table 2: Comparison on Lyft. We observe that the proposed LiSe significantly sur-
passes MODEST across all evaluated metrics, especially in long range (50-80m). T
denotes self-training round.

Method 0-30m 30-50m 50-80m 0-80m

Supervised 82.8 / 82.6 70.8 / 70.3 50.2 / 49.6 69.5 / 69.1

MODEST-PP (T = 0) 46.4 / 45.4 16.5 / 10.8 0.9 / 0.4 21.8 / 18.0
MODEST-PP (T = 10) 49.9 / 49.3 32.3 / 27.0 3.5 / 1.4 30.9 / 27.3
MODEST (T = 0) 65.7 / 63.0 41.4 / 36.0 8.9 / 5.7 42.5 / 37.9
MODEST (T = 10) 73.8 / 71.3 62.8 / 60.3 27.0 / 24.8 57.3 / 55.1

LiSe (T = 0) 54.5 / 54.0 24.2 / 22.8 1.4 / 1.2 29.2 / 27.5
LiSe (T = 10) 76.7 / 74.0 66.1 / 64.4 46.6 / 43.7 65.6 / 62.5

Table 3: Ablation studies on the primary components of the proposed method, in-
cluding integration with 2D scenes (3D and 2D), adaptive sampling strategy (ADS),
and weak model aggregation (WMA).

3D 2D ADS WMA 0-30m 30-50m 50-80m 0-80m

✓ 24.8 / 17.1 5.5 / 1.4 1.5 / 0.3 11.8 / 6.6
✓ 31.8 / 14.0 3.8 / 0.8 0.6 / 0.0 12.4 / 4.7

✓ ✓ 31.4 / 19.9 8.3 / 3.1 3.4 / 0.9 16.2 / 9.1
✓ ✓ ✓ 32.8 / 22.3 11.1 / 3.8 3.9 / 0.9 18.4 / 10.2
✓ ✓ ✓ 34.3 / 23.3 10.0 / 4.1 4.0 / 1.3 18.5 / 11.0
✓ ✓ ✓ ✓ 35.0 / 24.0 11.4 / 4.4 4.8 / 1.3 19.8 / 11.4

competitive MODEST across all evaluated metrics. More importantly, LiSe out-
performs MODEST by +19.4% in APBEV and +18.9% in AP3D in the long
range (50-80m), which contributes most to overall improvement. These results
validate the effectiveness and generalizability of our proposed method.

4.2 Ablation Studies and Analyses

Effect of Integration with 2D Scenes. Comparing the first three rows in Ta-
ble 3, we observe that integrating 2D scenes into 3D-based pseudo boxes yields
the best overall performance across both APBEV and AP3D. The significant im-
provement over LiDAR-based methods highlights the unique advantages of 2D
scenes in detecting distant and small objects. We further examine the way to in-
tegrate 2D scenes (see Table 4). Specifically, we only incorporate 3D boxes from
images with distance over 5m, 10m, and 15m. Table 4 indicates by integrating
image-based boxes with distance over 10m achieves best performance. Such re-
sults also suggest that image-based boxes and LiDAR-based boxes conflict with
each other in range 0-10 meters. Consideration of object distance in integration
avoids such conflicts, and make two modalities complementary.
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Table 4: Ablation studies on integrating image-based 3D boxes according to the dis-
tance. We incorporate image-based 3D boxes with a distance greater than 5, 10, and 15
meters (>5m, >10m, >15m). The term “All” refers to the use of all image-based boxes.
We find that >10m yields the optimal results. This threshold balancedly integrates the
advantage of 2D scenes and avoids conflict with LiDAR-based 3D boxes in near range.

3D 2D 0-30m 30-50m 50-80m 0-80m

All All 29.3 / 19.8 4.7 / 2.3 2.4 / 0.5 13.8 / 8.0
All >5m 30.7 / 19.8 8.6 / 3.3 3.1 / 0.7 15.4 / 8.9
All >10m 31.4 / 19.9 8.3 / 3.1 3.4 / 0.9 16.2 / 9.1
All >15m 30.2 / 20.6 5.7 / 2.8 2.1 / 0.4 14.3 / 8.9

Table 5: Adaptive sampling strategy based on the volume of objects (Volume) or the
distance of objects (Distance). We could observe that volume-based strategy facilitates
the distant objects in 30-50m, while distance-focused sampling improves box detection,
with remarkable improvement in median distance. After combining two factors into
consideration, we arrive at a balanced strategy for all ranges.

Volume Distance 0-30m 30-50m 50-80m 0-80m

31.4 / 19.9 8.3 / 3.1 3.4 / 0.9 16.2 / 9.1
✓ 31.5 / 20.1 10.1 / 3.0 3.4 / 0.6 17.1 / 8.6

✓ 35.0 / 22.2 10.5 / 3.8 3.2 / 0.7 18.2 / 9.6
✓ ✓ 32.8 / 22.3 11.1 / 3.8 3.9 / 0.9 18.4 / 10.2

Effect of Adaptive Sampling Strategy. Comparing rows 3 and 4 in Table 3, it
shows that adaptive sampling further enhances model performance, particularly
in the 30-50m and 50-80m ranges, validating its effectiveness in enhancing long-
range detection capabilities. We also conduct a comprehensive ablation study
to evaluate the design of adaptive sampling strategy. According to Table 5, the
inclusion of a single metric, such as volume or distance, significantly enhances
model performance. Notably, when incorporating a distance-based metric, both
APBEV and AP3D in the 30-50m range exceed the performance achieved with
a volume-based metric alone. The improvement underscores the effectiveness of
distance-based adaptive sampling in improving long-range detection capabili-
ties. The combination of both volume-based and distance-based metrics yields
the best performance, demonstrating that combined metric can more compre-
hensively addresses overlooking on long-tailed object groups. These two metrics
work in a complementary manner, further enhancing overall model efficacy.
Effect of Weak Model Aggregation. Comparing rows 3 and 5 in Table 3, we
observe that weak model aggregation alone enhances model performance. This
improvement demonstrates effectiveness of weak model aggregation in creating
a more robust model. Furthermore, when comparing rows 4, 5, and 6 in Table 3,
we find combination of adaptive sampling strategy and weak model aggregation
yields the best performance. This validates crucial role of interaction between
adaptive sampling strategy and weak model aggregation. We also examine im-
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Table 6: Ablation study of starting round Ts and the aggregation coefficient λ selec-
tion during the weak model aggregation. (1) We fix λ and study Ts. We observe that
initiating the aggregation process at a later round, when the performance of model is
higher and fluctuating, yields better results. (2) If we fix Ts as 6, we can see the large
λ with slow update speed has achieved the best results in all different ranges, which
stabilizes the prediction result.

Ts λ 0-30m 30-50m 50-80m 0-80m

3 0.999 31.7 / 21.5 8.7 / 4.2 2.7 / 0.7 16.3 / 10.2
6 0.999 35.4 / 21.3 10.0 / 4.0 3.2 / 0.6 18.5 / 10.1
8 0.999 34.3 / 23.3 10.0 / 4.1 4.0 / 1.3 18.5 / 11.0

6 0.999 35.4 / 21.3 10.0 / 4.0 3.2 / 0.6 18.5 / 10.1
6 0.99 31.9 / 20.7 8.8 / 3.1 2.9 / 0.5 16.5 / 9.0
6 0.9 31.4 / 21.0 7.4 / 3.3 2.3 / 0.5 16.0 / 9.5

Fig. 4: Statistical analysis of performance of different models. (a) Visualization com-
parison of the performances of various methods. This comparison shows superiority
of LiSe over purely LiDAR-based methods. (b) Visualization of performance changes
throughout the training process. The trend shows combination of adaptive sampling
strategy with weak model aggregation ensures a stable and effective training process.

pact of start round Ts and aggregation coefficient λ in Table 6. Initially, we fix
λ at 0.999 and vary start round in 3, 6, and 8. The findings suggest that initiat-
ing aggregation process at a later round, when performance of model is higher
and fluctuating, yields better results. During this period, models generally ex-
hibit good performance with distinct strengths, making it an opportune time for
weak model aggregation. Additionally, we fix start round and vary aggregation
coefficient λ in 0.999, 0.99, and 0.9. Observations indicate larger coefficient, such
as 0.999, leads to best performance. The ablation implies aggregation process
benefits from being smoother and progressing in smaller steps.
Statistical analyses. We present statistical analyses of performance of different
models in Figure 4. In Figure 4(a), LiSe significantly outperforms state-of-the-art
model, OYSTER [55]. Notably, APBEV of LiSe at long ranges (50-80m) surpasses
that of fully-supervised results. It verifies our integration with 2D scenes effec-



14 R. Zhang et al .

MODEST OYSTER LiSe (ours)

Detect more 
far objects

Detect more 
small objects

Fig. 5: Visualization comparison between MODEST [49], OYSTER [55], LiSe (ours),
and ground truth boxes. The overall results indicate LiSe is superior in detecting dis-
tant and small objects. Green boxes represent ground truth labels, red boxes indicate
predictions and blue circles highlight differences in predictions.

tively enhances capability of model to detect distant objects. In Figure 4(b), we
can observe LiSe starts at a low point in initial training round, yet consistently
achieves improved performance during self-paced training process.
Visualization. We present qualitative analysis in Figure 5. From rows 1 and
2, we observe LiSe excels at detecting distant objects, even when there are very
limited points captured. Results in rows 3 and 4 indicate our LiSe framework
performs significantly better than MODEST and OYSTER in detecting small
objects. These results validate our obtained model is robust in detecting poten-
tially existing objects, especially for challenging distant and small objects.

5 Conclusion

In this paper, we introduce a framework LiSe for unsupervised 3D detection. We
propose integration with 2D scenes to improve detection ability in distant and
small objects. In self-paced learning process, we further propose adaptive sam-
pling strategy to continuously improve perception ability in challenging samples.
Additionally, we introduce weak model aggregation, combining models trained
under different distributions into a final, robust model. Extensive experiments af-
firm superior detection ability of our method. The comprehensive ablation stud-
ies and qualitative analyses also validate effectiveness of each proposed module.
We hope our work will contribute to the fusion between 2D and 3D data for
unsupervised 3D object detection and inspire future work in related fields.
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