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Supplementary Material
The supplementary material is structured into the following sections:

• Sec. 6: Algorithmic Implementation Details
• Sec. 7: From NeRF Distance to Disparity Maps
• Sec. 8: How to Deal with Occlusions
• Sec. 9: Quantitative Results
• Sec. 10: Rationale for Noise Range Selection
• Sec. 11: Our Approach Using ControlNet [57] and Instruct-Pix2Pix [5]
• Sec. 12: Varying N in the Denoising Process
• Sec. 13: Janus Problem
• Sec. 14: Prompts Used for each Method

6 Algorithmic Implementation Details

We have included detailed pseudocode in this supplementary material for clarifi-
cation purposes. These additions aim to provide a comprehensive understanding
of the algorithms discussed in our paper, facilitating reproducibility and deeper
insight into the implementation. Fig. 10 shows the pseudocode representations
for the two main algorithms discussed in Sections 3.3 and 3.4 of the paper.

7 From NeRF Distance to Disparity Maps

In this section, we elaborate on the process of converting distance maps to dispar-
ity maps, aiming to provide a comprehensive understanding of the preparatory
steps in our approach.

Pretrained, inpainting-aware diffusion models, as described in [39,57], necessi-
tate the use of disparity maps for conditioning. These disparity maps, which have
an inverse relationship to depth maps, are derived from the distance maps gen-
erated by Neural Radiance Fields (NeRF). Within the context of a NeRF frame-
work, one can calculate the expected distance for each ray through a weighted
sum of the distances of sample points along that ray. This computation is rep-
resented by the following equation:

dist =
∑

i wi · ti∑
i wi + ϵ

(4)

Algorithm 1 Sec 3.3 Projection Inpainting

Input: Set of sequentially organized: images {I2, I3 . . . , Im}, masks

{M1,M2, . . . ,Mm}, depths {D1, D2 . . . , Dm}, the 1st edited image {Ie1=ref}
Output: Edited images {Ie2 , Ie3 , . . . , Iem}
1: for k = 2 to m do . Iterate over the images

2: Ipk ,M
vis
k  Reprojectk�1!k(I

e
k�1, Dk�1, Ik) . Reproject k-1 edited img

3: Mp
k  Mk ⇥ (1�Mvis

k )

4: z1  Encode(Ipk) + ✏ . Initialize noised latent repr.

5: for n = 1 to N � 1 do

6: M  if n  5 then Mp
k else Mk . Choose mask based on step

7: ✏̂ Blended-Di↵usion(ControlNet(zn, Dk), M) . Predict noise

8: zn+1  zn � ✏̂ . Update latent repr.

9: Iek  Decode(zN )

Algorithm 2 Sec 3.4 Edited NeRF Optimization

Input: Edited images {Ie1 , Ie2 , . . . , Iem}, masks {M1,M2 . . . ,Mm}, depths

{D1, D2 . . . , Dm}, original NeRF model

Output: Optimized NeRF model

1: c = 0, T = 4000, S = 30 . Initialize counter, max iters, img generation

2: for iteration i = 1 to 1000 do . NeRF update with all edited images

3: Update NeRF with {Ie1 , Ie2 , . . . , Iem}
4: for iteration i = 1001 to T do . NeRF update with IDU

5: if i % S = 0 then

6: z  Encode(Iec ) + ✏ . Initialize noised latent repr.

7: Iec  Decode(Blended-Di↵usion(ControlNet(z, Dc), Mc))

8: c (c+ 1) % m . Move to the next image in a cyclic manner

9: Update NeRF with {Ie1 , Ie2 , . . . , Iem}
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Fig. 10: Pseudocode of DATENeRF. Left. Section 3.3 and Right. Section 3.4
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In this equation, wi denotes the weight assigned to the i-th sample point
on the ray, ti represents the distance of the sample along the ray, and ϵ is a
small constant added to prevent division by zero. To translate this into a depth
map, one must project these distances onto the camera’s Z-axis, as shown in the
equation below:

depth = Rz · (D · dist) (5)

Here, Rz symbolizes the camera’s perspective along the Z-axis, while D is
the directional vector of the ray. Subsequently, the disparity map is obtained by
inverting the values of the depth map:

disparity =
1

depth + δ
(6)

In this final step, δ is a small constant added to the depth to avoid divi-
sion by zero when the depth is very close to zero. This procedure ensures that
the resulting disparity map is accurately formatted for the pretrained models’
requirements.

For specific scenes such as person-small and fangzhou-small, we impose a
clamping range on the depth maps between [1, 5]. This adjustment is necessary
because the distance maps produced by NeRF for these scenes exhibited signif-
icant artifacts, particularly in modeling the depth of walls located behind the
subjects. By applying this range limitation, we effectively mitigate these arti-
facts, ensuring a more accurate and reliable disparity map for further processing.

8 How to Deal with Occlusions

In this section, we aim to clarify our method for addressing occlusions during
mask extraction. Initially, we employ Grounded-SAM [22, 27], which provides a
reliable mask for various objects, such as clothes, persons, t-shirts, bears, tables,
etc. However, these masks can occasionally present issues. For example, in some
frames, SAM may not detect the object, or it might incorrectly include unwanted
objects, or it may only capture parts of the object. An instance of this is when
the table label is used for segmentation, and it fails to accurately segment the
table’s legs, as shown in Fig. 11(b).

To mitigate these challenges, we introduce a straightforward step based on the
assumption that "the majority of the masks are sufficiently accurate." We utilize
the depth information from each view to verify if the 3D points within the masks
consistently align across a significant percentage of the images, ensuring the
inclusion of only the desired object (Fig. 11(c)). The subsequent stage involves
projecting this refined point cloud back onto the image plane to obtain the final
masks.

At this juncture, addressing occlusions becomes crucial, as the point cloud
now represents the entire object. Our resolution involves a simple yet effective
strategy: leveraging the depth information from NeRF and the reprojected point
cloud, which provides the z-axis distance in camera coordinates. By prioritizing
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Original SAM mask Point Cloud Final mask

Fig. 11: Mask Extraction and Refinement Process. From left to right. (a) Orig-
inal image of a scene with a table. (b) Initial SAM mask providing a coarse outline of
the object. (c) Derived point cloud representing the geometric structure of the table.
(d) Final mask after applying occlusion handling and refinement, with the legs of the
table segmentation indicated by the purple square, and ball object occlusion tackled
by the green square.

points closest to the camera and disregarding those situated behind, we efficiently
manage occlusions, ensuring that our final masks accurately represent the target
object, as depicted in Fig. 11(d).

9 Quantitative Results

We align our evaluation metrics with those reported in [13], focusing on two
specific metrics: the CLIP Directional Score and the CLIP Direction Consistency
Score. The Directional Score is designed to assess how well changes in textual
descriptions correlate with corresponding changes in images. In contrast, the
Consistency Score evaluates the cosine similarity of CLIP model embeddings
for sequential frames. Both are computed while following a new camera path in
rendering, meaning that we use the test set for each scene.

For the Directional Score, we use paired images (original and modified, viewed
from the same perspective) and corresponding text prompts that describe each
scene. This approach enables a precise comparison of text-image alignment, re-
flecting how well the modified image adheres to the new textual description.

Regarding the Consistency Score, our analysis involves examining consecutive
frames along a novel trajectory (test set). We compare the original NeRF with
its modified counterpart, leading to four distinct CLIP embeddings: two from the
original rendering and two from the modified one. The Consistency Loss, defined
as the cosine similarity between the changes in embeddings from one frame to
the next, quantifies the directional consistency of edits in the CLIP-space across
frames.

The formula for consistency loss, as detailed in [13], is:

cos_sim =
(C(ei)− C(oi)) · (C(ei+1)− C(oi+1))

∥C(ei)− C(oi)∥∥C(ei+1)− C(oi+1)∥
(7)

In this equation, C(ei) and C(ei+1) represent the CLIP embeddings of the
edited rendering at frames i and i + 1, respectively, while C(oi) and C(oi+1)
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correspond to those of the original rendering. This measurement effectively cap-
tures the consistency of the directional changes in CLIP-space from one frame
to the next.

These metrics have been applied to the face, bear, and person scenes, utilizing
a diverse set of 24 prompts for evaluation. For our evaluation metrics, we have
opted to utilize masks with Instruct-NeRF2NeRF. This approach is necessitated
by the fact that Instruct-NeRF2NeRF’s global editing capabilities can cause
some prompts to trigger modifications beyond the intended object. Measuring
the quality of these edits on a scene-wide scale could skew our metrics, leading
to a misrepresentation of the precision of our object-specific edits. By employing
masked images, we ensure that our metrics are specific to the edits of interest,
thereby providing a more accurate assessment of our approach’s performance in
targeted scene editing.

10 Rationale for Noise Range Selection

The justification for our decision to employ a narrower noise range, specifically
[tmin, tmax] = [0.8, 0.98], in our approach, referred to as “Ours without Projec-
tion," in contrast to the broader range of [tmin, tmax] = [0.02, 0.98] utilized in
Instruct-NeRF2NeRF, is rooted in our observation that the latter struggles to
align with the given text prompt during training.

Our empirical results, as depicted in Fig. 12, reveal that employing a wide
spectrum of noise levels can significantly impede the convergence of the model.
In contrast, the specific noise parameters we have selected ensure that NeRF
training aligns effectively with the provided text prompt.

Our underlying intuition here lies in the nature of the diffusion model em-
ployed by Instruct-NeRF2NeRF (Instruct-Pix2Pix [5]), which is designed to pre-
serve the identity of the input image. Consequently, an increase in noise within
the image results in a gradual transition from the original image to a blend with
the generated one.

However, in the case of ControlNet, the concept of preserving image identity
is not a central concern. Therefore, varying the noise levels does not necessarily
imply a gradual blending of the generated image with the original. Instead, it
tends to make the generated image closely resemble the provided text prompt
without the gradual transition characteristic of Instruct-Pix2Pix.

11 Our Approach Using ControlNet [57] and
Instruct-Pix2Pix [5]

We further demonstrate the versatility of our approach by applying it to differ-
ent editing models. In Fig. 13, we showcase two illustrative examples in which
our projection inpainting technique has been employed. The first case depicts
“Benjamin Franklin”, while the second is “An old lady” trnaformations. In both
instances, the results maintain a remarkable level of quality, evidencing the ro-
bustness of our method. This adaptability is one of the most notable strengths
of our approach, enabling its application across various diffusion models without
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Fig. 12: The effect of noise range. The effect of noise range on a bear scene using
ControlNet for the prompt ‘A husky’ The Left image, with [tmin, tmax] = [0.02, 0.98],
shows a broad noise range where results do not converge as effectively, while the Right
image, with [tmin, tmax] = [0.8, 0.98], depicts a narrow noise range with better conver-
gence of results.

sacrificing the efficiency and convergence characteristics that have been previ-
ously highlighted. Such adaptability not only broadens the potential use cases
for our technique but also reinforces its practicality in a wide range of scenarios.

12 Varying N in the Denoising Process

We present results for the prompt "a corgi" within the context of the scene titled
bear, comparing the outcomes when using N = 20 and N = 5 (our method) with
our hybrid inpainting technique. The approach using N = 20 is less effective due
to errors in the NeRF geometry that lead to reprojection artifacts. Furthermore,
pixel propagation across significant viewpoint changes—particularly at oblique
angles—results in suboptimal outcomes, primarily because of texture stretching.
This issue is evident in Fig. 14 where N = 20 is contrasted with N = 5.

‘Benjamin Franklin’ ‘An old lady’

‘ControlNet’ ‘IP2P’ ‘ControlNet’ ‘IP2P’

Fig. 13: Comparison between ControNet vs. Instruct-Pix2Pix using our ap-
proach. Both examples validate the adaptability of our projection inpainting technique
across diverse diffusion models.
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We have found that a more effective strategy involves using the reprojected
pixels as a starting point for the diffusion-based editing process. Our novel hybrid
inpainting scheme accomplishes this by retaining the reprojected pixels during
the initial N = 20 denoising steps and then reverting to complete inpainting
of the object regions in the subsequent denoising steps. These initial diffusion
steps help to guide the overall appearance of the edit, while later stages allow
the diffusion process to correct disoccluded areas, all the while maintaining the
adaptability to amend reprojection artifacts.

13 Janus Problem

Our investigations revealed that ControlNet, like other diffusion models, is sus-
ceptible to the ’Janus problem.’ This issue is characterized by the tendency of the
model to generate facial features on the rear of objects, a phenomenon particu-
larly noticeable with animals. Our approach initially faced the same challenge,
as the projection process could mistake spots on an object, such as a panda, for
a face in subsequent projections.

To overcome this, we devised a simple yet effective solution: querying the
model with prompts such as “The back side of ...”. Specifically for the bear
scene, this strategy allowed us to successfully navigate the problem. This solution
capitalizes on the depth conditioning employed by ControlNet, which cues the
model to predominantly generate the back of an object when it is positioned
accordingly, despite the provided depth. While one might assume that this would
result in backside features appearing on the front, the model’s inherent bias
towards recognizing faces in the depth map prevents this from occurring. Our
understanding of this bias has been instrumental in achieving accurate results.

For all instances labeled ’ours’ within the bear scene, we utilized the prompt
“the backside of ...”. We considered applying this technique to “Ours without
projection”; however, the only instance where it proved beneficial was with the
panda, which we have highlighted in Fig. 6 Convergence Speed, in the main
manuscript.

14 Prompts Used for each Method

In Table. 2, we show a detailed account of the prompts utilized, as Instruct-
Pix2Pix [5] and ControlNet [57] need distinct prompting approaches.
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N=5N=20
Fig. 14: Comparison between N = 20 and N = 5. We illustrate our hybrid in-
painting technique applied to a scene labeled bear, featuring a corgi. We compare the
hybrid scenario with N = 5 against the use of inpainting alone with N = 20. The top
series of images display the progression of reprojected views (top: reprojected images;
bottom: generated images – please zoom in for detail). The results for both approaches
are depicted at the bottom. N = 5 showcases our refined method, where the initial
denoising steps effectively guide the edit.

“A panda bear”“The backside of a panda bear”

viewpoint direction

Fig. 15: Janus Problem. An example of addressing the Janus problem using different
prompts. On the left, “The backside of a panda bear” successfully avoids generating a
face on the rear, as highlighted within the purple square. On the right, “A panda bear”
serves as a comparison prompt. From left to right, the sequence depicts the change in
viewpoint. Top to bottom displays the reprojected images, generated images, then to
the reprojected masks, and finally to the depth maps.
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Table 2: Prompts. Comparison of prompts used for Instruct-Pix2Pix [5] (IP2P) and
ControlNet [57] .

Scene Original Prompt Method

person-complete

Turn him into [...]” IP2P
“Michael Jackson” ControlNet
“Turn the man into [...] IP2P
“Iron Man arc reactor” / “Spiderman” / “Mario Bross
clothes”

ControlNet

“Turn the clothes of the man into [...]” IP2P
“A tuxedo with a red tie bow” ControlNet

person-small “Turn the t-shirt of the man into [...]” IP2P
“the Kentucky Fried Chicken man” / “an sleeveless shirt
with the lakers word stamped on it”

ControlNet

table “Turn the table into [...]” IP2P
“a billiard table” / “sunflower-painted table” / “a starry
night canvas” / “a Fauvism-style table” / “Black and
White Checkered Pattern Table”

ControlNet

face

“Turn his clothes into [...]” IP2P
“a tuxedo with a flower in the lapel” / “a red buffalo plaid
shirt”

ControlNet

“Make this clothes like [...]” IP2P
“Superman clothes” ControlNet

face-complete “Turn him into [...]” IP2P
“a clown” / “Hulk, the green superhero” / “an old lady”
/ “Matthew Mcconaughey smiling” / “Andy Warhol” /
“Benjamin Franklin”

ControlNet

furry “Turn the teddy bear into [...]” IP2P
“Winnie the Pooh” / “a racoon” / “a red panda” / “a
panda bear” / “a grizzly bear ”

ControlNet

furry “Turn the bear into a [...]” IP2P
“tiger” / “zebra” / “sharpei” / “corgi” / “polar bear ”
/ “panda bear” / “grizzly bear” / “wild African dog” /
“husky”

ControlNet


