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1 Appendix

1.1 Implementation Details of XPSR

Image Encoder Stable Diffusion [4] utilizes a VAE Encoder to map the original
512×512 image to a latent representation of 64×64 dimensions, enabling iterative
denoising in the latent space. To align with the scale of Stable Diffusion, the LR
images are also upsampled by a factor of 4 to match the same resolution. Then,
through a pyramid-like image encoder [13], the scale is gradually reduced to a
64 × 64 feature space vector. The image encoder consists of three layers, with
each layer comprising two convolutional layers where the stride of the second
convolution is 2× 2, resulting in a halving of the feature map size.

In our pixel-space constraint, we use linear layers to map the feature maps
of i-th layer Xi to RGB images x̂i ∈ R

512

2i
× 512

2i
×3, which corresponds to the i-th

scale of the HR image after downsampling. The L1 loss is utilized to ensure that
the extracted features closely resemble the semantic content of the HR image.

ControlNet The ControlNet component, with a trainable copy of the Unet
Encoder from Stable Diffusion, extracts multi-scale features through a pyramid
structure. Within ControlNet, the features from LR images are further reduced
from a dimension of 64× 64 to a latent representation of 8× 8. The multi-scale
conditional controls extracted by ControlNet are connected to the Unet through
zero-convolution residual connections and conditional attention. Therefore, the
conditional features at scale j are also mapped to the channels of the latent
representation through a linear transformation as ẑj ∈ R

64

2j
× 64

2j
×4, corresponding

to the i-th scale downsampled result of the HR latent. The L1 loss is also applied
to enforce the constraint in the latent space.

1.2 Additional Experimental Results
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Table 1: Results of user study on real-world images.

Methods BSRGAN Real-ESRGAN StableSR PASD SeeSR XPSR(Ours)

Selection Rates 0.7% 0.9% 5.3% 14.0% 14.8% 64.3%

Table 2: Quantitative comparison with SOTA methods on real-world dataset with no
reference images. Red and blue colors are the best and second-best performance.

Dataset Metrics GAN-based SR Diffusion-based SR
BSRGAN Real-ESRGAN SwinIR LDM StableSR DiffBIR PASD SeeSR XPSR

RealLR200
MANIQA" 0.3671 0.3633 0.3741 0.3049 0.3688 0.4288 0.4295 0.4844 0.5589
CLIPIQA" 0.5698 0.5409 0.5596 0.5253 0.5935 0.6452 0.6325 0.6553 0.7524
MUSIQ" 64.87 62.96 63.55 55.19 63.29 62.44 66.50 68.37 69.30

User Study To thoroughly evaluate the performance of our XPSR in real-world
scenarios, we conduct a user study on 50 LR real-world images randomly sampled
from DrealSR [1] and RealSR [8]. We compare our XPSR with five other ISR
methods, including: BSRGAN [12], Real-ESRGAN [7], StableSR [6], PASD [11]
and SeeSR [9]. For each image, the participants were simultaneously shown the
LR image along with the restoration results from all ISR methods, and they
were then instructed to select the best ISR result for the LR image. A total of
20 participants were invited to the user study and made a total of 20× 50 votes,
which are shown in Tab. 1. Our method achieved the highest selection rate
of 64.3%, which is 4 times higher than the second-ranked method, showcasing
the powerful application capabilities of XPSR in real-world scenarios.

Comparisons on real-world images To evaluate the capabilities of our
method in in-the-wild scenarios, we conduct tests on the RealLR200 dataset [9].
The RealLR200 dataset consists of 200 real-world images, incorporating results
collected from different studies [3, 7] as well as some images collected from the
internet. Due to the lack of available reference HR images for these real-world im-
ages, we only utilize three non-reference IQA metrics, including MANIQA [10],
MUSIQ [2], and CLIPIQA [5]. The quantitative results are shown in Tab. 2.

It can be observed that our XPSR performs the best in all three metrics,
which is consistent with the results obtained on other datasets mentioned in
the main text. In addition, we have visualized some results in Fig. 2, which
indicate that XPSR is capable of recovering more realistic details compared to
other methods, including lifelike facial features, intricate textures of the fur, and
clearer tree leaves. The aforementioned results clearly demonstrate the powerful
image restoration capabilities of XPSR even in in-the-wild scenarios.

The impact of MLLMs on ISR performance. XPSR relies on MLLMs
to obtain low-level and high-level semantic embeddings. Therefore, it is neces-
sary to explore how the limitations of MLLMs may impact the performance of
the method. We have explored based on the following three aspects. (1) Preci-
sion. If an MLLM fails to understand LR, restoration results may be unrealistic
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Table 3: Ablation on the effect of MLLMs.

Setting DrealSR RealSR
SSIM" LPIPS# FID# MANIQA" MUSIQ" SSIM" LPIPS# FID# MANIQA" MUSIQ"

original 0.7220 0.3864 164.68 0.5713 67.84 0.6870 0.3517 141.95 0.6059 70.23
+ LLaVA-13b 0.7237 0.3870 165.70 0.5760 67.94 0.6920 0.3508 141.94 0.6099 70.32
+ Simple desc. 0.7190 0.3859 168.10 0.5697 67.74 0.6880 0.3537 148.93 0.5991 69.89
+ Downscale 64 0.7212 0.3884 167.80 0.5706 67.44 0.6856 0.3588 144.54 0.5966 69.86
+ Upscale 256 0.7204 0.3876 167.38 0.5733 67.89 0.6855 0.3525 142.45 0.6079 70.36
+ Gaussian blur 0.7121 0.3926 175.77 0.5730 67.16 0.6812 0.3624 146.62 0.5945 69.38
+ Jpeg comp. 0.7137 0.3902 170.83 0.5690 67.42 0.6822 0.3578 145.00 0.6040 69.70

LR SeeSRXPSR(Ours) LR

Fig. 1: Limitations of diffusion-based methods. Due to their limited semantic under-
standing, the restored content may be unrelated to the original image.

or incorrect. Hence, we utilize the larger and more accurate LLaVA-13b model
to generate the prompt. (2) Completeness. As shown in Sec.3.3 of the paper,
XPSR employs the detailed descriptions generated by the MLLMs as guidance.
For comparison, we build a simple prompt limited to 20 words, containing only
object or distortion categories, to assess the impact of semantic completeness on
image restoration. (3) Robustness. MLLM might struggle with diverse and com-
plex image conditions, limiting its generalization ability. Therefore, we further
degrade the LR images to obtain semantic cues under various complex degrada-
tion scenarios (e.g ., resolution, JPEG compression, Gaussian blur).

As given in Tab. 3, more precision and complete descriptions help to achieve
better results, while the model suffers when LR owns severe degradations (i.e.,
JPEG compression and Gaussian blur). The resolution has little impact on the
final result, which means that MLLM can still obtain accurate semantic descrip-
tions. Notably, XPSR is orthogonal to MLLMs, and better MLLMs in
these three aspects can further advance XPSR.

1.3 Limitations

In this section, we discuss the limitations of diffusion-based methods in the ISR
task. We have found that although diffusion models possess powerful generative
capabilities and can produce realistic and detailed images, their understanding
of specific scenes is limited. As a result, they can sometimes generate semantic-
unrelated content. In Fig. 1, we present two examples.

For the left case, although our XPSR model recognizes the main subject of
the original image as a cat, it overlooks the cartoon-style nature of the image,
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resulting in the generated cartoon character exhibiting a realistic fur texture that
is typically found only on real cats. The same issue occurs in other diffusion-based
models, as demonstrated in the case on the right. Although SeeSR recognizes
the person’s motion, it fails to realize that the original image depicts the famous
character Spider-Man, restoring a clear but unrelated portrait. Therefore, we
consider that further enhancing the semantic understanding of different scenes
is crucial for the successful application of diffusion models in ISR, which is also
the motivation behind our XPSR. We strongly believe that this approach holds
significant potential for exploration.

1.4 More Visual Results

In this section, we provide additional visualization results. Fig. 3 displays the
high-level and low-level semantic prompts generated by LLaVA for different im-
ages, which align well with human perception. This illustrates the reliability
of MLLM in incorporating cross-model semantic priors. In Fig. 4 and Fig. 5,
we present additional comparative results with other methods, which further
demonstrate the powerful capabilities of XPSR in generating high-fidelity and
high-realistic images.
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Fig. 2: Qualitative comparisons with different SOTA methods on real-world images.
Zoom in for a better view.
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