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Abstract. Diffusion-based methods, endowed with a formidable gener-
ative prior, have received increasing attention in Image Super-Resolution
(ISR) recently. However, as low-resolution (LR) images often undergo se-
vere degradation, it is challenging for ISR models to perceive the semantic
and degradation information, resulting in restoration images with incor-
rect content or unrealistic artifacts. To address these issues, we propose
a Cross-modal Priors for Super-Resolution (XPSR) framework. Within
XPSR, to acquire precise and comprehensive semantic conditions for
the diffusion model, cutting-edge Multimodal Large Language Models
(MLLMs) are utilized. To facilitate better fusion of cross-modal priors, a
Semantic-Fusion Attention is raised. To distill semantic-preserved infor-
mation instead of undesired degradations, a Degradation-Free Constraint
is attached between LR and its high-resolution (HR) counterpart. Quan-
titative and qualitative results show that XPSR is capable of generat-
ing high-fidelity and high-realism images across synthetic and real-world
datasets. Codes are released at https://github.com/qyp2000/XPSR.

Keywords: Image super-resolution · Image restoration · Diffusion mod-
els · Multimodal large language models

1 Introduction

The objective of Image Super-Resolution (ISR) entails generating a perceptually
authentic how-resolution (HR) image from its low-resolution (LR) counterpart,
which is characterized by unknown and intricate degradation processes. Despite
the considerable achievements of GAN-based methods [37,63,73], they still strug-
gle to reproduce vivid and realistic textures. This is mainly attributable to the
domain gap between the synthetic training data and the real-world test data,
and the excessive fidelity-oriented optimization objective [67].

Recently, denoising diffusion probabilistic models (DDPMs) are emerging
as successors to GANs across a range of generation tasks [23, 47, 52, 76], due
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to their strong ability in modeling complicated distributions. Some pioneering
works [14, 28] have adopted DDPMs to tackle the ISR problems. Notably, ISR
introduces further challenges, on account of high restoration fidelity. This re-
quirement starkly contrasts with the inherent stochasticity of DDPMs.

Given that the large-scale pretrained text-to-image (T2I) models (e.g . Sta-
bleDiffusion (SD) [52]), trained on datasets surpassing 5 billion image-text pairs
and embodying robust and plentiful natural image priors, other methods [39,
61, 67, 69] utilize ControlNet [76] to harness pre-trained SD priors for ISR. En-
couragingly, these methods have exhibited the incredible capability to generate
realistic image details. StableSR [61] and DiffBIR [39] straightforwardly set the
prompt condition to empty, relying on extracting semantic information from LR
images. However, LR images undergo complex degradations, making it challeng-
ing for ISR models to extract semantic priors, which are provided in the form of
textual prompts within pre-trained T2I models. PASD [69] and SeeSR [67] lever-
age off-the-shelf tagging models for the extraction of object labels as high-level
prompts. However, these tagging prompts lack more complex information such
as spatial location and scene understanding, which are crucial for generating
comprehensive images in T2I models. These prompts also fail to capture the in-
herent distortions within images, yet such low-level priors facilitate the modeling
of the degradation process, thereby enabling clearer restorations in ISR [3,74].

In this paper, we explore the significance of different semantic priors from
multi-modal large language models (MLLMs) for ISR. Based on the analysis, we
present a Cross-modal Priors for Super-Resolution (XPSR) framework, utiliz-
ing cross-modal priors to guide diffusion models in generating more high-fidelity
and realistic images. To furnish more precise and perceptually aligned seman-
tic priors, we introduce MLLMs to offer multi-level prompts of LR images. To
effectively fuse cross-model semantic priors with generative priors, we propose
a Semantic-Fusion Attention (SFA) for adaptive selection of semantic features.
To enhance the extraction of semantic-preserved features, we further devise a
Degradation-Free Constraint (DFC). Our contributions are as follows:

1. We explore the significance of semantic priors in diffusion-based ISR, wherein
high-level priors offer a wealth of semantic information while low-level pri-
ors assist in modeling degradation mechanisms. Furthermore, cutting-edge
MLLMs are utilized to obtain the desired appropriate priors.

2. We propose the XPSR, where the SFA is adopted to fuse multi-level semantic
priors with the diffusion model in a parallel cross-attention manner.

3. To obtain semantic-preserved features instead of degradations, the DFC is
attached between the LR and HR images in the pixel and latent space.

4. Through quantitative and qualitative analysis, XPSR demonstrates a strong
capability in generating high-fidelity and high-realism images, achieving the
best performance on multiple image quality metrics across several datasets.
Extensive ablation studies prove the validity of each component.
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2 Related Work

2.1 Degradation Prior-based Image Super-resolution

Initial investigations [8,10,12,13,38,81] into ISR mainly focused on the restora-
tion of LR images through pre-determined degradation types, such as bicubic
downsampling, blurring, noise, and other factors. Yet, their efficacy markedly
diminishes in practical settings due to their limited adaptability. [17, 45, 79].
To elevate performance further, recent advancements (i.e., GAN-based methods
[7,36,37,63,73]) have delved into more complex degradation models to mimic the
real-world distortions closely. Among them, BSRGAN [73] proposed using ran-
dom shuffling combinations of basic degradation operations. Real-ESRGAN [63]
employed a high-order process to simulate degradation in real-life procedures,
e.g ., cameras, image editing, transmission, etc. Beyond the dependence on ex-
plicit priors, other studies [6,18,35,43,44] also discovered adopting implicit priors
through adversarial training. However, these methods fall short, chiefly due to
insufficient prior knowledge, resulting in suboptimal output quality.

2.2 Diffusion Prior-based Image Super-resolution

Analogous to GAN-based methodologies, diffusion models [4,24,47,51,53,54,76]
have earned escalating recognition for their superior ability to embody generative
priors. Of late, these models have been skillfully utilized as generative priors
within the realm of ISR as well [29, 55, 56, 62]. Among them, StableSR [61]
trained a time-aware encoder to fine-tune the StableDiffusion (SD) model [52]
and employed feature warping to balance between fidelity and perceptual quality.
DiffBIR [39] utilized a two-stage approach, initially reconstructing the image
as a preliminary estimate, and subsequently leveraging the SD to refine and
augment visual details. To effectively utilize the potential of pretrained text-to-
image diffusion models, PASD [69] and SeeSR [67] introduced off-the-shelf high-
level semantic information (i.e., object tags) as extra conditions. Through these
endeavors, ISR can reproduce more realistic image details. Nevertheless, when
confronted with LR images that exhibit complicated distortions, and intertwined
spatial positions among objects, the generated result will be substandard.

2.3 Cross-modal Semantic Prior-based Image Super-resolution

Textual prompts are essential in guiding targeted image generation in T2I dif-
fusion models [5, 21, 30]. Previous ISR works [67, 69] have attempted to utilize
existing visual perception models (i.e., ResNet [20], BLIP [34], RAM [80]) to
understand image content and provide cross-model semantic priors as prompts.
However, these prompts fall short as they only encompass basic object recog-
nition, lacking high-level information (e.g ., spatial positioning and scene under-
standing) and low-level information (e.g ., image quality and sharpness). Lever-
aging CLIP [50] and additional adapters to align visual inputs with textual
inputs into large-scale language models (LLMs, e.g ., GPT-4 [1], LLaMA [59]),
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High-level Prompt: 
Two boats drifting on the 

water.

LR Image High-level Prompt: 
Red clothes are knitted.

High-level Prompt: 
Red clothes are made of 

nylon

LR Image No Prompt

LR Image Low-level Prompt: 
The fruit is dirty and 

messy

Low-level Prompt: 
The fruit is clear.

LR Image Low-level Prompt: 
The background is 

clear.

Low-level Prompt: 
The background is 

blurry.

(a) Influence of High-level Prompts (b) Influence of Low-level Prompts 

Fig. 1: Impact of textual prompts for conditional T2I diffusion models. (a) When given
high-level prompts containing object categories and detailed textures, high-realism HR
images can be restored based on ambiguous LR images. (b) When furnished with
accurate low-level prompts that encompass distortion types or the general quality of
LR images, high-fidelity images can be generated from blurry or noisy inputs.

MLLMs [16, 33, 40, 49, 77, 83] exhibit remarkable visual comprehension capabili-
ties. By scaling up parameters and training data, MLLMs have shown robust per-
formance in both high-level and low-level perceptual tasks, enabling the extrac-
tion of cross-model semantic priors that align with human perception [66,70,71].

3 Methodology

3.1 Cross-modal Semantic Priors

Current diffusion-based ISR methods typically capture semantic structures from
LR images and utilize the T2I model to generate realistic HR images. However,
LR images often undergo complex degradation processes, complicating the task
for ISR models to extract semantic content independently. This difficulty is ex-
acerbated by constraints in scale and the availability of training data, leading
to the restoration of blurry and indistinguishable images. Therefore, it is nec-
essary to provide additional conditions to the diffusion model more effectively.
Considering that T2I models fundamentally generate images guided by textual
input, we believe that leveraging textual prompts as semantic priors is a viable
approach to enhance the capabilities of T2I models for ISR.

Based on common cognition [15], the semantic information contained in im-
ages can be roughly divided into two categories: high-level and low-level seman-
tics. To more intuitively reflect the impact of different types of prompts on
diffusion-based ISR tasks, we have pre-visualized some results in Fig. 1. First,
we provide high-level semantic priors related to the LR images, which may en-
compass information about the objects in the image, spatial positioning, scene
descriptions, and more. As illustrated in Fig. 1 (a), it becomes possible to re-
store images that are clearer and retain the corresponding semantic information



XPSR 5

(e.g ., the boat and the clothes). These show the advantage of utilizing addi-
tional high-level semantic priors upon relying on sole diffusion models. Second,
we use low-level semantic priors as guidance, which includes the perception of
overall quality, sharpness, noise level, and other distortions about the LR image.
As shown in Fig. 1 (b), accurate low-level conditions are necessary for gener-
ating high-quality images. For the 1st case, where the background of the LR
image is highly blurred, providing the correct prompt (i.e., "The background
is blurry" ) enables the restoration of a clear image. Conversely, an incor-
rect prompt (i.e., "The background is clear") may lead to the restoration
of blurry details due to the model’s assumption of sufficient clarity in the LR
image. For the 2nd case, an incorrect prompt (i.e., "The fruit is messy and
blurry") leads to unrealistic artifacts. This implies that low-level semantic pri-
ors assist in modeling the degradation process, which benefits clearer images.
Therefore, we believe that by combining both high- and low-level semantic pri-
ors, restoration results can be semantically accurate and rich in detail as well.

3.2 Framework of XPSR

To combine semantic priors with the LR image, as conditions of the diffusion
model, there still exist three problems that require immediate resolution: (1)
how to obtain semantic priors that describe accurately? (2) How to effectively
incorporate these priors with well-defined diffusion models? (3) How to extract
semantic-preserved but degradation-unrelated conditions from LR images?

To address these problems, we propose a framework called Cross-modal Pri-
ors for Super Resolution (XPSR). As depicted in Fig. 2, it consists of two main
stages: generation of semantic priors and image restoration with these priors.
In the first stage (Fig. 2 (a)), to address the first problem, we rely on ex-
isting SOTA MLLMs to acquire high-level and low-level semantic priors for the
LR image (Sec. 3.3). Then two varieties of embeddings are derived upon input
into the CLIP [50] text encoder. In the second stage (Fig. 2 (b)), we employ
the powerful pretrained T2I SD model [52] as the backbone. Additionally, we
utilize ControlNet [76] as a controller, guiding the conditional image restoration
process. We clone the encoder of the Unet architecture from SD as a trainable
copy to initialize ControlNet. To address the second problem, we design a
Semantic-Fusion Attention (SFA) module, which facilitates the interaction be-
tween the semantic priors obtained in the first stage and the generated priors
from the T2I model (Sec. 3.4). To address the third problem, during training,
we further attach a Degradation-Free Constraint (DFC) to ControlNet, reducing
the impact of degradation and extracting semantic-aware representations from
the LR image (Sec. 3.5). During inference, only ControlNet and Unet parts,
along with the MLLM, are used for predicting restoration images.

3.3 Semantic Prompts from MLLM

By scaling up the size of data and the scale of models, MLLMs have demonstrated
impressive capabilities in semantic comprehension [70]. Accordingly, we employ
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LR Image

Multimodal Large
Language Model

… a photo of a church steeple, which appears to be
blurry and out of focus. The lack of color and the poor
focus on the subject contribute to the low quality… taken
from a distance, limiting the view of the church steeple.

Low-level Semantic Prompts

The image features a tall white tower with a green
roof … The tower is adorned with a cross on top, and it
is surrounded by a few trees. The tower is situated in
front of a sky background,…

High-level Semantic Prompts
CLIP 
Text

Encoder
High-level Embedding

Low-level Embedding

(a) Semantic Prior Guidance from MLLM

LR Image

Image
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High-level 
Embedding

Low-level 
Embedding
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Attention

……

In
iti
al
iz
e

Semantic-Fusion
Attention

Conditional
Attention

Conditional Embedding

𝒛𝒕ି𝟏
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VAE
Decoder

Restoration Image

HR Image

VAE
Encoder

Degradation-Free Constraint

High-level
Attention

Low-level
Attention

Fusion
Attention𝑄

𝐾,𝑉

𝑄

𝐾,𝑉

𝐾,𝑉 Semantic-Fusion Attention

(b) Framework of Our Proposed XPSR

Latent Representation of HR

Controlled Diffusion Model Frozen
Trainable

ControlNet

Unet Encoder Unet Decoder

Fig. 2: Framework of XPSR. (a) First, we integrate an MLLM to acquire semantic
priors, encompassing both high-level and low-level descriptions for the LR image. Two
varieties of embeddings are derived upon input into the CLIP text encoder. (b) Next,
the LR image, along with the embeddings above, are input into the controlled diffu-
sion model as conditions through a Semantic-Fusion Attention (SFA), adhering to the
defined workflow. Besides, a Degradation-Free Constraint (DFC) is appended to the
ControlNet part, alleviating the challenge of discerning distortions.

a noteworthy MLLM called LLaVA [40] to perceive the LR images and extract
semantic priors. By defining appropriate instructions, we aim to facilitate its
understanding of semantics from both high- and low-level perspectives.

Determining appropriate instructions to guide the MLLMs in generating
outputs that align with human preferences is a matter that requires iterative
practice [9]. In the acquisition of high-level semantic priors, we have ultimately
opted for the instruction "Please provide a descriptive summary of the
content of this image" as the guidance for LLaVA. In our practical experi-
ence, we observe that similar instructions consistently yield similar results with
LLaVA, generating the intended high-level semantics, including object descrip-
tions, spatial locations, scenes, and other relevant content. In the acquisition of
low-level semantic priors, we first analyze the distribution of degradations in
real-world scenarios. The degradation primarily occurs due to processes such as
capturing, transcoding compression, or transmission. Consequently, it introduces
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The quality of the image is low due to several factors. 
Firstly, the colors in the image are not bright enough, 
which make the image appear less vibrant and 
detailed. Secondly, the palm tree is not the main focus 
of the photo, and the background is not well-defined, 
which can make the image feel less cohesive. Lastly, 
the image is described as blurry, resulting in a lack of 
clarity and detail in the photo.

Low-level Semantic Prompts
 

The image features a palm tree with long, 
curly leaves. The tree is situated in front of a 
blue sky, creating a beautiful contrast 
between the tree and the sky. The palm tree 
appears to be in a tropical setting, with its 
leaves swaying in the breeze.

High-level Semantic Prompts

The quality of the image is quite good, with clear
visibility of the mountain and the water. The color
balance is also well-maintained, with the mountain
and the water appearing natural and vibrant. The
lighting in the image is appropriate, as it highlights
the mountain and the water without causing any noise
or distortion. Overall, the image is well-executed.

Low-level Semantic Prompts
 

The image features a serene mountain lake
with a reflection of a mountain in the water.
The mountain's reflection is visible in the
lake, creating a picturesque scene. The water
appears to be calm, and the mountains are
covered in snow, adding to the beauty of the
landscape.

High-level Semantic Prompts
 

Please provide a descriptive summary of the 
content of this image.

Please describe the quality of this image and evaluate 
it based on factors such as clarity, color, noise, and 
lighting.

Fig. 3: Given appropriate instructions, LLaVA can generate high- and low-level seman-
tic prompts consistent with human perception for both high- and low-quality images.

various distortions such as motion blur, low-light conditions, color shifts, noise,
and compression artifacts [26,26,41,46,57,72,75,82]. Therefore, by incorporating
guidance in the instructions on these quality-related factors, we observe that this
approach generates more realistic and detailed descriptions. We adopt the in-
struction "Please describe the quality of this image and evaluate it
based on factors such as clarity, color, noise, and lighting" to gen-
erate descriptions related to overall quality, clarity, noise level, color, and other
relevant information. As shown in Fig. 3, LLaVA is capable of providing high-
level and low-level semantic descriptions that align with human perception.

3.4 Semantic Priors Fusion for Diffusion Model

To integrate extra semantic priors into the diffusion model, an intuitive and
naive approach is to employ two consecutive cross-attention (i.e., attention type
for the original T2I) structures as a serial connection into the ControlNet. Given
the feature xk in the k-th layer, the computation process can be noted as:

xk+1 = CAl(CAh(xk, ch), cl), (1)

where CAh and CAl represent the high-level and low-level cross-attention while
ch and cl denote the two types of semantic prompts, respectively. However, as
these two types of priors are distinct, serial processing may cause a certain part
of the information to be overwritten and obtain suboptimal results.

Therefore, we design a new Semantic-Fusion Attention (SFA), which employs
two parallel branches of cross-attention, and then fuses them to obtain the final
condition using a fusion attention CAf . As shown in Fig. 2, the fusion attention
obtains the query Q from the high-level results, and the key K and value V from
the low-level results. The parallel type of SFA can be written as:

xk+1 = CAf (CAh(xk, ch), CAl(xk, cl)). (2)
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In this way, SFA can achieve a balance between priors from different levels,
allowing for an adaptive selection of semantic features. Ablation in Tab. 4 further
verifies the effectiveness of this setting. Specifically, we claim that a low-level
understanding of LR images is not necessary for Unet, which receives noise as
input, so only high-level attention is used. To enhance the generalizability of SD
for downstream tasks and fortify the fusion of features derived from LR images,
we add a cross-attention module termed Conditional Attention in the Unet.

3.5 Degradation-Free Constraint

Real-world images may experience a variety of degradations, such as blurriness,
blocky artifacts, etc., leading to distortions that affect both high-frequency and
low-frequency components (appeared in the pixel- and latent-space) [26, 57].
Aiming to mitigate the impact of degradations and extract robust semantic
information from LR images, we propose a Degradation-Free Constraint (DFC)
which attaches constraints on both the pixel space and the latent space.

As shown in Fig. 2, the LR image is initially passed through a pyramid-shaped
image encoder in ControlNet for downsampling. Following [69], we apply a pixel-
space constraint in the image encoder. At the i-th layer of the pyramid encoder,
we employ a single-layer convolution to map the feature map into an image
x̂i ∈ RHi×Wi×3 with RGB channels. As the scale is reduced by half compared
to the previous layer, we apply an L1 loss to make x̂i as close as possible to the
downsampled result of the original HR image xhr,i, denoted as ∥xhr,i − x̂i∥1.

Besides, ControlNet adopts a pyramid-like Unet Encoder to encode semantic
features at the latent level, we further apply a similar latent-space constraint.
The feature map obtained from the j-th layer is mapped to the latent space as
ẑj . We align it with the downsampled result of the HR latent zhr,j at scale j
using the L1 loss ∥zhr,j − ẑj∥1. The final DFC is a combination of constraints in
both the pixel space and the latent space, which can be noted as:

LDFC =
∑3

i=1
∥xhr,i − x̂i∥1 +

∑3

j=1
∥zhr,j − ẑj∥1. (3)

3.6 Training and Testing Strategy

During training, the HR image is mapped to the latent embedding zhr. We add
noise ϵ through the diffusion process by following t steps to obtain the noisy
latent zthr, where t is randomly sampled from a range of [1, T ]. Overall, XPSR
relies on the LR image xlr, noisy latent zthr, high-level prompt ch, and low-level
prompt cl to predict the added noise. The optimization objective is:

LD = Ezhr,t,ch,cl,xlr,ϵ∼N (0,1)

[∥∥ϵ− ϵθ
(
zthr, t, ch, cl, xlr

)∥∥2
2

]
. (4)

where ϵθ(·) represents the mapping function of XPSR. The final loss function is
a weighted sum of the diffusion loss and the DFC loss:

L = LD + λLDFC , (5)
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where λ is a balancing coefficient. To reduce training costs and leverage the
generative prior of SD, we freeze all the parameters of SD during training and
only train the ControlNet and the added Conditional Attention.

During testing, we employ the classifier-free guidance strategy [25], which
allows the diffusion model to generate better-quality images through negative
prompts without additional training. In each step, we rely on regular high-
level prompts ch for prediction while simultaneously replacing ch with negative
prompts cneg. These predictions are fused to obtain the final output:

ϵ̂ = ϵθ(z
t
lr, t, ch, cl, xlr)

ϵ̂neg = ϵθ(z
t
lr, t, cneg, cl, xlr)

ϵ̃ = ϵ̂+ λs(ϵ̂− ϵ̂neg)

(6)

where λs is the guidance scale and ztlr is the noisy latent of LR image. In practice,
We employ combinations of negative words "blurry, dotted, noise, unclear, low-
res, over-smoothed" as negative prompts to generate higher-quality images.

4 Experiments

4.1 Experimental Settings

Training and testing datasets. We train our XPSR on DIV2K [2], DIV8K [19],
Flickr2K [58], Unsplash2K [32], OST [64], and the first 5K face images from
FFHQ [27]. We use the degradation pipeline of Real-ESRGAN [63] to synthesize
LR-HR image pairs for training. To conduct a comprehensive evaluation of ISR,
we conduct testing using synthetic and real-world datasets. The synthetic dataset
is generated from the DIV2K validation set, where we randomly crop 3K patches
following the same degradation pipeline. Following [61, 67], the LR image are
center-cropped to 128× 128. For the real-world dataset, we employ the DrealSR
and RealSR datasets for evaluation, with each image being center-cropped. Each
HR image in the training and testing sets has a resolution of 512× 512.

Implementation details. We employ the pretrained SD-v1.53 as the base T2I
model. For training, we utilize an AdamW [42] optimizer with a weight decay of
1e-2 to finetune XPSR for 100K iterations. The batch size and the learning rate
are set to 32 and 5e-5. All experiments are conducted on 8 NVIDIA A800 GPUs.
For inference, we adopt DDPM sampling [48] with 20 timesteps. The balancing
coefficient λ in Eq. (5) is 0.05 and the guidance scale λs in Eq. (6) is 5.5.

Evaluation metrics. We employ a range of widely used reference and non-
reference metrics to conduct a comprehensive quantitative evaluation of ISR
methods. In reference-based metrics, PSNR and SSIM [65] (calculated on the Y
channel in YCbCr space) are fidelity metrics, while LPIPS [78], DISTS [11] are
quality evaluation metrics. FID [22] calculates the distance between the distri-
butions of generated images and reference images. MANIQA [68], MUSIQ [31],
and CLIPIQA [60] are non-reference image quality assessment (IQA) metrics.
3 https://huggingface.co/runwayml/stable-diffusion-v1-5
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PSNR: 28.25
SSIM: 0.8396
LPIPS: 0.2910
MUSIQ:46.11
CLIPIQA:0.4817

PSNR: 23.14
SSIM: 0.7459
LPIPS: 0.3602
MUSIQ:67.71
CLIPIQA:0.7636

PSNR: 23.84
SSIM: 0.7471
LPIPS: 0.2356
MUSIQ:54.01
CLIPIQA:0.3726

PSNR: 22.50
SSIM: 0.6034
LPIPS: 0.3494
MUSIQ:74.73
CLIPIQA:0.8116

LR HR XPSR(Ours)

XPSR(Ours)HRLR PASD

Real-ESRGAN 

Human Perception: High QualityLow Quality

Fig. 4: Drawbacks of current full-reference metrics (e.g ., PSNR, SSIM, LPIPS). The
visualization results show that XPSR generates images with high-realism and high-
fidelity in human perception, but obtains lower scores in some cases.

Table 1: Quantitative comparison with SOTA methods on both synthetic and real-
world benchmarks. Red and blue colors are the best and second-best performance.

Dataset Metrics GAN-based SR Diffusion-based SR
BSRGAN Real-ESRGAN SwinIR LDM StableSR DiffBIR PASD SeeSR XPSR

DIV2K-Val

PSNR↑ 24.42 24.30 23.77 21.66 23.26 23.49 23.59 23.56 22.80
SSIM↑ 0.6164 0.6324 0.6186 0.4752 0.5670 0.5568 0.5899 0.5981 0.5627
LPIPS↓ 0.3511 0.3267 0.3910 0.4887 0.3228 0.3638 0.3611 0.3283 0.3761
DISTS↓ 0.2369 0.2245 0.2291 0.2693 0.2116 0.2177 0.2134 0.2008 0.2217
FID↓ 50.99 44.34 44.45 55.04 28.32 34.55 39.74 28.89 33.38

MANIQA↑ 0.3547 0.3756 0.3411 0.3589 0.4173 0.4598 0.4440 0.5046 0.6080
CLIPIQA↑ 0.5253 0.5205 0.5213 0.5570 0.6752 0.6731 0.6573 0.6959 0.7816
MUSIQ↑ 60.18 59.76 57.21 57.46 65.19 65.57 66.58 68.35 69.99

RealSR

PSNR↑ 26.38 25.68 25.88 25.66 24.69 24.94 25.21 25.31 24.19
SSIM↑ 0.7651 0.7614 0.7671 0.6934 0.7090 0.6664 0.7140 0.7284 0.6870
LPIPS↓ 0.2656 0.2710 0.2614 0.3367 0.3003 0.3485 0.2986 0.2993 0.3517
DISTS↓ 0.2124 0.2060 0.2061 0.2324 0.2134 0.2257 0.2125 0.2224 0.2471
FID↓ 141.25 135.14 132.80 133.34 131.72 127.59 139.42 126.21 141.95

MANIQA↑ 0.3763 0.3736 0.3561 0.3375 0.4167 0.4378 0.4418 0.5370 0.6059
CLIPIQA↑ 0.5114 0.4487 0.4433 0.6053 0.6200 0.6396 0.6009 0.6638 0.7354
MUSIQ↑ 63.28 60.37 59.28 56.32 65.25 64.32 66.61 69.56 70.23

DRealSR

PSNR↑ 28.70 28.61 28.20 27.78 27.87 26.57 27.45 28.13 26.62
SSIM↑ 0.8028 0.8052 0.7983 0.7152 0.7427 0.6516 0.7539 0.7711 0.7220
LPIPS↓ 0.2858 0.2819 0.2830 0.3745 0.3333 0.4537 0.3331 0.3142 0.3864
DISTS↓ 0.2144 0.2089 0.2103 0.2417 0.2297 0.2724 0.2322 0.2230 0.2606
FID↓ 155.62 147.66 146.38 164.87 148.18 160.67 173.40 147.00 164.68

MANIQA↑ 0.3441 0.3435 0.3311 0.3342 0.3897 0.4602 0.4551 0.5077 0.5713
CLIPIQA↑ 0.5061 0.4525 0.4522 0.5984 0.6321 0.6445 0.6365 0.6893 0.7360
MUSIQ↑ 57.16 54.27 53.01 51.37 58.72 61.06 63.69 64.75 67.84

4.2 Comparisons with SOTA Methods

To verify the effectiveness, we compare XPSR with other SOTA GAN-based and
Diffusion-based ISR methods4, i.e., BSRGAN [73], Real-ESRGAN [63], SwinIR-
GAN [37], LDM [4], StableSR [61], DiffBIR [39], PASD [69] and SeeSR [67].

Quantitative comparisons. In Tab. 1, some observations can be found. First,
XPSR outperforms other SOTA methods in MAINIQA, CLIPIQA, and MUSIQ
across all datasets by large margins, reflecting excellent restoration results. For
example, XPSR surpasses the second-best method SeeSR by 10.34%, 8.57%,
and 1.64% in DIV2K-val, respectively. Second, Diffusion-based methods gen-
erally fall behind GAN-based methods in reference metrics (e.g ., PSNR, SSIM).
4 All methods are tested based on their official code and models.
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LR Real-ESRGANHR StableSR PASD SeeSR XPSR(Ours)BSRGAN

Fig. 5: Qualitative comparisons with different SOTA methods. XPSR is adept at pre-
cisely restoring the textures and details of specific objects, such as hair and buildings,
even under challenging conditions of degradation. Zoom in for a better view.

This is mainly because Diffusion-based methods can produce more realistic de-
tails but at the expense of fidelity to the LR images. Furthermore, we give several
examples that highlight the limitations of current reference metrics in Fig. 4. Our
restoration results exhibit higher quality in human perception, yet they
lag in reference metrics. This phenomenon has also been confirmed in many
previous studies [61, 67, 69]. We believe there is a need to update the metrics
used to evaluate ISR, aiming to closely mimic human perception.

Qualitative comparisons. In Fig. 5, we present visual comparisons on the test set,
revealing key observations. First, diffusion-based methods can generate more
realistic results than GAN-based methods, showing the advantage of inherent
generative priors. Second, XPSR surpasses StableSR in generating results that
are semantically accurate and rich in detail (e.g ., the 1st, 2nd, 4th, and 5th row),
exhibiting the benefit of employing high-level semantic conditions. Third, XPSR
also outperforms PASD and SeeSR in detail generation and degradation removal.
In the 2nd row, XPSR distinguishes itself as the sole method adept at under-
standing the semantic context of the LR image, thus producing detailed and
lucid depictions of the house. Moreover, in the 1st, 4th, and 5th rows, XPSR can
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✗ Negative Prompt

(b) Effectiveness of Negative Prompt

(a) Effectiveness of Semantic Priors

✗ High-level Prompt
✗ Low-level Prompt 

✗ High-level Prompt
✓ Low-level Prompt 

✓ High-level Prompt
✗ Low-level Prompt 

✓ High-level Prompt
✓ Low-level Prompt 

The image is blurry, which affects
its overall quality. The colors are
not vibrant, and the lighting appears
to be poor, making it difficult to
discern details. The image is also
noisy, which further contributes to
the overall lack of clarity.

Low-level PromptsHigh-level Prompts

The image features a green tray
filled with various herbs and flowers.
The tray is placed on a table, and
the herbs are spread out, creating a
visually appealing display. The
herbs are of different sizes and
shapes, adding to the diversity of the
ingredients.

The image is kind of blurry, making
it difficult to discern the details of the
books. The focus is not sharp, and
the contrast between the books and
the background is low. This results in
a poor quality image that does not
provide a clear representation of the
books.

The image features a stack of books
with Asian writing on them. The
books are arranged in a pile, with
the top book being the largest and
the bottom book being the smallest.
The writing appears to be in a
foreign language, possibly Chinese.
The books are the main focus.

✗ Negative Prompt ✓ Negative Prompt✓ Negative Prompt ✓ Negative Prompt ✗ Negative Prompt

Fig. 6: Effectiveness of cross-modal semantic priors and negative prompts.

Table 2: Ablation on the types of semantic priors.

Semantic Priors DrealSR RealSR
high-level low-level SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑ SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑

% % 0.7157 0.4033 188.78 0.6078 67.31 0.6767 0.3739 157.73 0.6426 70.95
% ! 0.7114 0.4145 195.37 0.6213 68.73 0.6710 0.3796 162.68 0.6438 71.05
! % 0.7254 0.3776 160.78 0.5505 65.79 0.6938 0.3461 139.54 0.5752 68.74

! ! 0.7220 0.3864 164.68 0.5713 67.84 0.6870 0.3517 141.95 0.6059 70.23

produce more detailed animal hair, clearer leaves, and walnut textures, respec-
tively. These examples highlight the benefits of utilizing cross-modal semantic
priors from MLLM over-relying on dispersed object tagging information. We are
equally impressed by the generative capabilities of all diffusion-based methods,
as the outcomes in row 6 show their tremendous potential in the realm of ISR.

4.3 Ablation Study

Effectiveness of semantic priors. To assess the influence of cross-modal semantic
priors, the trained XPSR is utilized for inference across various input conditions.
The results are given in Tab. 2 and Fig. 6. First, the absence of high-level priors
leads to a substantial decrease in fidelity metrics (i.e., SSIM, FID). This can be
explained that the loss of high-level semantics promotes SFA to overly rely on
low-level priors for degradation removal. Although this may yield some gains to
MANIQA, it will lead to discrepancies in the content of the restoration images as
given in Fig. 6 (a). Second, the absence of low-level priors significantly worsens
the quality metrics (i.e., MANIQA, MUSIQ). This occurs as SFA gives prece-
dence to high-level priors, leading to a marginal enhancement in SSIM, yet it
may produce images that are excessively blurry or marred by noise and artifacts.
Overall, the integration of dual-level priors facilitates balancing, permitting the
restorations that preserve semantic details while also showcasing vivid content.
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Low-level Semantic Prompts

The image is a close-up of a text, possibly a paragraph or a section 
of a book. The quality of the image is average because it appears 
somewhat blurry and unclear. The text is slightly blurry, but it can be 
roughly recognized. The lighting in the image is not ideal, which 
further contributes to the overall quality.

The image is a close-up of a text, which appears to be a paragraph 
or a section of a book. The text is written in a bold, capitalized font, 
and it seems to be discussing the importance of protecting one's 
identity. The text is centered in the image, and it appears to be the 
main focus of the image.

High-level Semantic Prompts

(a) Effectiveness of Semantic-Fusion Attention
HRLR High-level Attention Low-level Attention Serrial Connection Semantic-Fusion Attention

(b) Effectiveness of Degradation-Free Contraint

✓ Pixel Contraint
✓ latent Contraint

✗ Pixel Contraint
✓ latent Contraint

✓ Pixel Contraint
✗ latent Contraint

✗ Pixel Contraint
✗ latent Contraint

HRLR

Fig. 7: Effectiveness of Semantic-Fusion Attention and Degradation-Free Constraint.

Table 3: Ablation on the SFA using different fusion types.

Semantic-Fusion
Methods

DrealSR RealSR
SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑ SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑

High-level 0.7298 0.3674 160.04 0.5472 65.04 0.6878 0.3500 134.68 0.5911 68.89
Low-level 0.7578 0.3616 161.04 0.5034 63.97 0.7047 0.3465 144.71 0.5305 66.87

Serial connection 0.6834 0.4134 155.23 0.5614 65.99 0.6526 0.3908 137.49 0.6034 69.69

SFA(Ours) 0.7220 0.3864 164.68 0.5713 67.84 0.6870 0.3517 141.95 0.6059 70.23

Effectiveness of Semantic-Fusion Attention. Besides the adopted parallel cross-
attention mechanisms in SFA, we further test using: (1) only high-level cross-
attention, (2) only low-level cross-attention, and (3) a serial concatenation cross-
attention. As shown in Tab. 3 and Fig. 7 (a), the parallel version achieves the
highest results (i.e., generating clear text without any artifacts). First, it further
verifies the effectiveness of jointly utilizing high-level and low-level semantic
priors to enhance ISR. Second, this confirms the efficacy of employing multiple
types of conditions in parallel as opposed to a straightforward serial approach.

Effectiveness of Degradation-Free Constraint. We verify different forms of con-
straints. As shown in Tab. 4, both pixel-level and latent-level constraints con-
tribute to generating more realistic images, resulting in improvements across
multiple metrics. We claim that these two constraints aid in preventing the gen-
eration of confusing and incomprehensible content. As depicted in Fig. 7 (b),
the application of DFC significantly reduces image noise and alleviates the pres-
ence of aliasing artifacts. The output images exhibit textures with smooth edges,
highlighting the effectiveness of DFC.

Effectiveness of negative prompts. We validate the impact of negative prompts,
as described in Sec. 3.6, by setting negative prompts as null text. In Tab. 5a, it
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Table 4: Ablation on the Degradation-Free Constraint.

Degradation-Free
Constraint DrealSR RealSR

Pixel Latent SSIM↑ LPIPS↓ DISTS↓ MANIQA↑ MUSIQ↑ SSIM↑ LPIPS↓ DISTS↓ MANIQA↑ MUSIQ↑

% % 0.6979 0.3943 0.2649 0.5684 67.50 0.6341 0.3677 0.2525 0.6043 70.28
! % 0.7095 0.3938 0.2610 0.5445 64.29 0.6783 0.3629 0.2610 0.6042 69.91
% ! 0.7066 0.3848 0.2580 0.5774 67.62 0.6681 0.3665 0.2537 0.6000 70.08

! ! 0.7220 0.3864 0.2606 0.5713 67.84 0.6870 0.3517 0.2471 0.6059 70.23

Table 5: Ablation on the negative prompts and the base T2I diffusion models.

Negative Prompts DrealSR RealSR
SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑ SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑

% 0.7355 0.3731 157.32 0.4778 61.70 0.6987 0.3419 134.22 0.5241 65.89
! 0.7220 0.3864 164.68 0.5713 67.84 0.6870 0.3517 141.95 0.6059 70.23

(a) Ablation on the negative prompts.

Pretrained Model DrealSR RealSR
SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑ SSIM↑ LPIPS↓ FID↓ MANIQA↑ MUSIQ↑

stable-diffusion-2-1 0.7378 0.3632 155.09 0.4910 63.79 0.6912 0.3329 138.12 0.5148 67.10
stable-diffusion-1.5 0.7220 0.3864 164.68 0.5713 67.84 0.6870 0.3517 141.95 0.6059 70.23

(b) Ablation on the base T2I diffusion models.

significantly improves the perceptual quality based on MAINIQA and MUSIQ.
We also provide some visual results in Fig. 6 (b). By applying negative prompts,
the images exhibit clearer textures, resulting in more realistic and higher quality.

Different base diffusion models. To explore the impact of the generative prior
in the pre-trained T2I model, we analyze different versions of StableDiffusion5

in Tab. 5b. Observations indicate a performance drop when employing SD-v2.1.
We speculate that this is due to a mismatch in the pre-training resolution, where
SD-v2.1 is 768× 768 (different from our setting) and SD-v1.5 is 512× 512. How-
ever, this does not imply that the pre-training model has achieved its saturation
point. XPSR is orthogonal to these foundational models. As the industry
introduces superior base models, further improvements can be explored.

5 Conclusion

To address the challenge of accurately restoring semantic details in ISR tasks,
we propose the XPSR framework. We explore the role of different semantic
priors in ISR and propose leveraging MLLMs to extract accurate cross-modal
semantic priors as textual prompts. To facilitate the integration of semantic
priors, the SFA module is proposed. To retain semantic-preserved information
from degraded images, the DFC is applied. Extensive experiments validate the
strong performance of XPSR in generating images with clear details and semantic
fidelity. We hope this work can inspire exploring the cross-model priors in ISR.
5 https://huggingface.co/stabilityai/stable-diffusion-2-1
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