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Abstract. Class-agnostic counting methods enumerate objects of an ar-
bitrary class, providing tremendous utility in many fields. Prior works
have limited usefulness as they require either a set of examples of the type
to be counted or that the query image contains only a single type of ob-
ject. A significant factor in these shortcomings is the lack of a dataset to
properly address counting in settings with more than one kind of object
present. To address these issues, we propose the first Multi-class, Class-
Agnostic Counting dataset (MCAC) and A Blind Counter (ABC123), a
method that can count multiple types of objects simultaneously with-
out using examples of type during training or inference. ABC123 intro-
duces a new paradigm where instead of requiring exemplars to guide
the enumeration, examples are found after the counting stage to help a
user understand the generated outputs. We show that ABC123 outper-
forms contemporary methods on MCAC without needing human in-the-
loop annotations. We also show that this performance transfers to FSC-
147, the standard class-agnostic counting dataset. MCAC is available at
MCAC.active.vision and ABC123 is available at ABC123.active.vision

1 Introduction

Given an image and told to ‘count’, a person would generally understand the
intended task and complete it with accuracy even if there are multiple previously
unseen classes of object present. This natural human ability to count arbitrarily
has not been modelled by today’s methods. Most automated counting meth-
ods are class-specific [1, 6], counting objects of classes that were present during
training. These methods are not generalisable and require retraining for each
new type of object. Class-agnostic methods [19, 21] can count objects of an ar-
bitrary type removing the need for retraining. However, they usually require an
exemplar image as a prior on the class to count and only count a single class at a
time. Recently, exemplar-free or zero-shot class-agnostic counting methods [7,18]
have been developed that do away with the need for exemplars to define type
removing the need for human intervention during deployment. These methods
either perform poorly [18] or are bounded to images that only contain a single
class of object [4, 7].

MCAC.active.vision
ABC123.active.vision
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Fig. 1: ABC123 counts objects of
multiple unseen types. Not only does
our method not need exemplars to de-
fine the type to count, it finds examples
of each type it has counted.

Fig. 2: MCAC Contains images with
up to 4 classes and up to 300 instances
per class. All objects have associated in-
stance labels, class labels, bounding boxes,
centre points, and occlusion percentages.

We propose ABC123, a transformer-based, multi-class class-agnostic counter
which does not need exemplars during training or inference. ABC123 achieves
this by first regressing density maps for each type present then enumerating
the instances using integration. As it is sometimes difficult to interpret what
has been counted given only a density map and count, we design an example
discovery stage which locates instances of the counted object.

A significant factor in the limitations of the current methods is the lack of a
dataset for class-agnostic counting that includes images with more than one class
present, as currently they all focus on the single-class scenario. In order to train
and evaluate our method, as well as other methods in multi-class settings we in-
troduce MCAC, a new synthetic multi-class class-agnostic counting dataset. We
show that methods previously assumed to work in multi-class settings perform
poorly on MCAC and that ABC123 significantly outperforms them while also
generalising to other datasets.
Our main contributions are:

– We propose ABC123, the first exemplar-free multi-class class-agnostic counter
and show it tackles multi-class counting effectively.

– We introduced MCAC, the first multi-class class-agnostic counting dataset
and use it to demonstrate prior methods do not perform as expected in
multi-class settings.

– We introduce the idea of example finding to exemplar-free counting and
demonstrate its utility in aiding a user in understanding what has been
counted.

In the remainder of this paper, we outline the relevant prior work in Section
2 before introducing MCAC in Section 3. In Section 4, we introduce ABC and
detail our experimental setup. Section 5 presents our state-of-the-art results in
single- and multi-class class-agnostic settings. Finally, we summarise the impact
of the work as a whole.
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2 Related Work

Class-specific counting methods aim to enumerate the instances of a single or
small set of known classes [1,6,9,26]. These methods struggle to adapt to novel
classes, needing specific data and training for each type of object. To address
these issues, Lu et al. [14] proposed class-agnostic counting, a framework where
inference-time classes are not present during training. Still, most class-agnostic
methods [19, 21, 22, 28], require exemplar images of the test-time class. These
methods generally work by creating a sufficiently general feature space and ap-
plying some form of matching to regress a density map of the counted objects.

Recent works, RepRPN [18], CounTR [13], ZSC [27], CLIP-count [10], RCC
[7] and LOCA [4] do away with exemplar images at inference-time, removing the
need for intervention during deployment. RepRPN is a two-step method which
proposes regions likely to contain an object of interest and then uses them for
an exemplar-based density map regression method. It proposes more than one
bounding box and enumerates them separately. RepRPN performs poorly in
comparison to other contemporary methods. ZSC [27] uses a multi-stage process
in which a text input is used to generate a generic image of the type to be
counted that is then used to find exemplar patches. These exemplar patches
then act as the input to an exemplar-based method [21]. CounTR [13] uses a
large vision-transformer encoder-decoder to regress a density map of instance
locations. It is trained in a mixed few/zero-shot way, applying understanding
gained from exemplar-based examples to exemplar-free cases. LOCA [4] also
uses a vision transformer backbone and can perform both few- and zero-shot
counting. LOCA separately extract the shape and appearance of exemplar and
non-exemplar objects to create a more informed object prototype. This prototype
is then matched to areas of the image to generate a density map prediction.

It has been assumed that current exemplar-based methods can function in
multi-class settings. However, this has not been proven rigorously as the main
dataset for class-agnostic counting (FSC-133/147 [7, 19]) contains only one la-
belled class per image. In fact, we show in Sec. 5 that these methods perform
poorly in contexts with multiple types present. FSC-133/147 being single-class
has also explicitly motivated work such as RCC, which regresses a single scalar
count from an image. It is trained without exemplar images and uses scalar su-
pervision instead of density maps. Even with the constraint of only counting
one kind of object and with no further direction on the type to count, RCC
achieves competitive results with exemplar-based methods on FSC-147, showing
the limitations of this dataset.

While large models with image inputs [16] like SAM [11] would seem to be
able to effectively count objects of arbitrary types, in fact these methods have
poor numerical understanding [15], and perform unsatisfactorily on counting
tasks especially when images have small objects or a high density of objects. Re-
cently, Paiss et al . [17] attempted to utilise multi-modal deep learning to count.
Specifically, they introduce a method that teaches a CLIP model a coherent un-
derstanding of words related to counting. However, they are only able to achieve
this up to 10 objects.
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3 MCAC Dataset

There are currently no datasets suitable for class class-agnostic counting prob-
lems with multiple types of object present at once. This significantly impacts
the research into addressing these tasks. In order to facilitate the development
of multi-class class-agnostic counting methods as well as the evaluation of prior
work, we introduce MCAC, the first multi-class class-agnostic counting dataset.

While the deployment query scenario, ‘counting given an unlabelled image
of objects’, is natural, the training and quantitative evaluation of methods to
address it is not. To facilitate training and evaluation of methods in multi-class
settings, we need images with multiple objects of multiple types. To evaluate
a methods generalisability to unseen object types, the classes present in the
images need to be mutually exclusive between training, validation and testing.
It is infeasible to gather natural images with (a) a wide variety of classes, (b) a
wide variety of the number of times an object appears in an image, and (c) no
repetition of the types of object between the train, test, and validation splits.
Using synthetic images allows the above constraints to be satisfied while also
providing a high level of precision and accuracy in the labels for each image. As
shown in Sec. 5.2, the understanding gained from training on synthetic data is
general enough to apply to standard photographic datasets.

MCAC contains images with between 1 and 4 classes of object (mean of
1.75) and between 1 and 300 instances per class (mean of 47.66). MCAC has
three data splits: training with 4756 images drawn from 287 classes; validation
2413 images drawn from 37 classes, and testing with 2114 images drawn from
19 classes. MCAC-M1 is the single-class subset of the MCAC images which have
only one class present per image. MCAC-M1 totals 4259 images, with a mean of
114.89 instances per image. These distributions were designed to replicate that
of real-world counting tasks.

All instances in an image have associated class labels, model labels, center
coordinates, bounding box coordinates, segmentation maps, unoccluded segmen-
tation maps, and occlusion percentages. The occlusion percentage is calculated
as 1 − A0

A1
, where A0 is the number of pixels in the final image and A1 is the

number of pixels that would be seen if the object was unoccluded and completely
within the bounds of the image.

Objects are ‘dropped’ into the scene, ensuring random locations and orienta-
tions. As objects in real settings often vary in size, we vary the size of objects by
±50% from a random nominal size. We also vary the number, location, and in-
tensity of lights present. Models and textures are drawn from ShapeNetSem [20].

Both exemplar-based and exemplar-free methods bump into problems of am-
biguity. If there are objects of varied levels of generality, which boundary should
be used? For example, on a chess board with a single white pawn as the ex-
emplar, should the count be of all the pieces, all the white pieces, all the white
pawns, all the pawns, and so on? Figure 8 shows examples from FSC-147 of cases
with an ambiguity of what is to be counted.

Given the infeasibility of defining every possible way of grouping the objects
present in an image, we define a single way of grouping the objects: an identical
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Fig. 3: The ABC123 pipeline. Our method learns to count objects of multiple novel
classes without needing exemplar images. During training and quantitative evaluation,
the matcher aligns the unguided predictions to the ground truth labels. To aid a user
in understanding the results, the example prediction stage locates instances associated
with each generated count.

mesh and texture, independent of size or orientation. We do, however, acknowl-
edge the existence of other valid-but-unknown counts, the unlabelled ways of
grouping the objects.

4 Method

Our method, ABC123, takes an image with multiple instances of objects of
multiple types and regresses the count of each type. This is achieved blind, i.e.
on objects of arbitrary classes with no requirement to have seen the object class
during training or to have an exemplar image to define the type during inference.
We achieve this by first regressing density maps for each type then enumerating
the instances using integration. To facilitate training and evaluating ABC123
in an exemplar-free way, we propose a matching stage. To further increase the
interpretability of the outputs of ABC123, we design an example discovery stage
which finds specific instances of the counted object. The pipeline of ABC123 is
presented in Fig. 3.

4.1 Density Map Regression

For each image, there are m classes present, each with an associated ground truth
count y and density map d. We regress m̂ counts and density map predictions,
ŷ and d̂ respectively. m̂ acts as upper-bound of the number of counts ABC123
can regress.

ŷ =
∑
h,w

d̂(h,w) (1)
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where d̂(h,w) denotes the density value for pixel (h, w). We achieve this by using
m̂ convolutional up-sampling heads on top of a vision transformer backbone [5].
We use a vision transformer backbone due to its globally receptive field and
self-attention mechanism, which Hobley and Prisacariu [7] showed is helpful to
generating a complex understanding in counting settings. Each head regresses a
single pixel-wise density map prediction and count prediction from a patch-wise
low-resolution high-dimensional feature space. Similar to other contemporary
methods [12,13,19,28], we use the pixel-wise error ||d− d̂||1 as our loss, where d

and d̂ are the ground truth and predicted density maps.

4.2 Matching

In single-class or exemplar-based settings, there is a single prediction-label pair.
However, in multi-class exemplar-free settings, there are multiple predictions as
well as multiple labels, without a clearly defined pairing. This resembles other
open-set problems like class-discovery [24, 29] and clustering [8, 25], where the
number and cardinality of new classes is not necessarily known. In keeping with
these fields and to facilitate training and quantitative evaluation, we find cor-
respondences between the set of m known counts and the set of m̂ predicted
counts. The correspondence matrix is defined as X = {0, 1}m̂×m where Xi,j = 1
iff prediction i is assigned to label j. A problem instance is described by an
m̂×m cost matrix C, where Ci,j is the cost of matching prediction i and ground
truth label j. The goal is to find the complete assignment of predictions to labels
of minimal cost. Formally, the optimal assignment has cost

min
X

m∑
i=0

m̂∑
j=0

Ci,j · Xi,j (2)

Specifically, our cost function is defined as the the pixel-wise distance of the
normalised ground truth density map di and the predicted density map d̂j .

Ci,j =

∣∣∣∣∣
∣∣∣∣∣ di
||di||2

− d̂j

||d̂j ||2

∣∣∣∣∣
∣∣∣∣∣
2

(3)

The normalisation ensures the matching is done on the locality of the counted
objects rather than the magnitude of the prediction itself. We use the Hungarian
algorithm, specifically the Jonker-Volgenant algorithm outlined in Crouse [3], to
solve for X robustly.

The supervision loss for each image is the sum of the L1 difference of the
ground truth density maps and their matched predictions as:

L =

m,m̂∑
i,j

||di − d̂j ||1 · Xi,j (4)

It should be noted that every label has an associated prediction, but the
inverse is not the case as generally m̂ > m. This means we do not impose a
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Fig. 4: Example Finding. Instead of using exemplars to define the count, we count
‘blind’ and then find meaningful bounding boxes to aids a user in understanding what
has been counted. The examples are found using the query image, learnt features, our
regressed density maps and a SAM network.

loss on the unmatched density maps. This allows the network to generate more
nuanced count definitions as it does not punish valid-but-unknown counts which
are likely present in any counting setting. As is usual [24,25,29], we use the same
matching procedure to evaluate our performance at inference-time. However,
during deployment, when there are no ground-truth density maps, the matching
is both unnecessary and impossible. We instead combine any similar predictions,
remove predictions of zero, and present the user with the predictions.

4.3 Example Discovery

While exemplar-free counting saves a user time, as no manual intervention is
required, it does require the user to interpret the results. A set of scalar counts or
density maps can be unclear as it is not always obvious which count corresponds
to which type of object in the input image, especially in high density situations;
see Figure 4. To aid the user in understanding to which class a generated count
corresponds, we propose flipping the usual exemplar-based paradigm. Instead of
using exemplar images to define the type to count, we find examples of the type
that was counted.

To find examples corresponding to a given count, we first find example points
which are high in the corresponding density map while low in the others. To
increase the diversity of the found examples we select the points with the largest
latent feature distance. We use these points as seed inputs for a pre-trained
segmentation method, SAM [11]. The end user is presented with cropped areas
of the query image centred on these segmentations, as in Fig. 4.

4.4 Experiments

We use a ViT-Small [5] backbone due to its lightweight nature and for compar-
ison to methods that use the ResNet-50 backbone, such as FamNet and BM-
Net [19,21]. ViT-S has a similar number of parameters (21M vs 23M), through-
put (1237im/sec vs 1007im/sec), and supervised ImageNet performance (79.3%
vs 79.8%) as ResNet-50 [23]. Our choice of ViT-S for ABC123 limits the input
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Fig. 5: Comparison to other methods on MCAC. ABC123 produces more ac-
curate results than the exemplar-based methods without using exemplar images. The
ground truth (GT) and predicted counts are shown in the top right corner of their
respective density maps.

resolution to (224×224) as opposed to the (≥384×384) resolution used by the
method we compare to with ResNet-50 or larger ViT backbones. The effect of
using ResNet or ViT-S backbones in various counting methods was discussed in
detail in Hobley and Prisacariu [7] where they found that neither was inherently
superior and the performance varied dependant on the method.

Since vision transformers typically demand substantial training data, we ini-
tialise our transformer backbone with weights from Caron et al . [2]. This self-
supervised pre-training endows the network with an understanding of meaningful
image features prior to exposure to our dataset and without supervision. This
reduces the risk of overfitting when the model is then trained on MCAC.

Our counting heads, comprised of 3 Conv-ReLU-Upsample blocks, increase
the patch-wise resolution of the trained counting features from k × (28× 28) to
a pixel-wise density map prediction of m̂ × (224 × 224), where k is the dimen-
sionality of the transformer features and m̂ is the number of predicted counts.
For ABC123, k = 384. We set m̂ = 5 to ensure there is the capacity to generate
a count per defined class in MCAC and at least one valid-but-unknown count.

ABC123 trains in less than eight hours using two 1080Tis. It takes less than
two hours to train just the head with a frozen backbone (ABC123^). During
training we use an Adam optimiser, a batch-size of 2 and a learning rate of
3 ∗ 10−5 which halves every 35 epochs for a total of 100 epochs. The example
discovery stage uses a frozen pretrained ViT-B SAM model [11].

Here we lay out our usage of MCAC, which we used to generate our results.
We recommend future works use a similar approach and we will release code for
a PyTorch dataset to enable easy adoption. We exclude objects that are more
than 70% occluded by either other objects or the edge of the frame.

MCAC enables the use of true pixel-wise density maps. While this increases
the accuracy of our method, we found this significantly decreased the perfor-
mance of other methods, especially those with test-time adaptations. For fair-
ness, we use the standard [12, 13, 19, 28] pseudo-density-map for all methods,
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Fig. 6: Results of our method on images with 4 classes. ABC123 is able to
generate accurate counts and meaningful density maps from images with four novel
classes. MCAC has between one and four classes of object per image.

including our own. These are generated by placing a Gaussian kernel centred on
the center pixel of each object.

When training exemplar-based methods, we take bounding boxes randomly
from instances with less than 30% occlusion. We evaluate these methods using
the bounding boxes of the three least occluded instances.

5 Results

We evaluate our method against two trivial baseline methods, predicting the
training-set mean or median count for all inference images. As there are no
previous multi-class exemplar-free class-agnostic counting methods, we compare
ABC123 to exemplar-based methods using separate exemplars from each of the
classes present. We compare our method to FamNet [19], BMNet [21] CounTR
[13] and LOCA [4] on MCAC and FSC-133/147 as these are the current state-of-
the-art methods with publicly available implementations. Additionally, we also
compare to RCC [7] and CounTR in its zero-shot configuration on MCAC-M1,
the subset of MCAC with only a single type of object present per image.

As in Xu et al . [27], we use Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), Normalized Absolute Error (NAE), and Squared Relative Error
(SRE) to evaluate the performance of each method.
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MAE =
1

nm

n∑
j=1

mj∑
i=1

|yi − ŷi|, RMSE =

√√√√ 1

nm

n∑
j=1

mj∑
i=1

(yi − ŷi)2 (5)

NAE =
1

nm

n∑
j=1

mj∑
i=1

|yi − ŷi|
yi

, SRE =

√√√√ 1

nm

n∑
j=1

mj∑
i=1

(yi − ŷi)2

yi
(6)

where n is the number of test images, mj is the number of classes in image j, yi
and ŷi are the ground truth and predicted number of objects of class i in image j.

5.1 MCAC

We achieve significantly better result compared to FamNet, BMNet, CounTR
and LOCA on MCAC both quantitatively and qualitatively without needing ex-
emplars; see Tab. 1 for results and Fig. 5 for comparative examples. As seen in
Fig. 5, FamNet often fails to discriminate between objects of different classes
when they are visually similar or in high density applications. Both quantita-
tively and qualitatively, BMNet and CounTR outperform FamNet. However,
in many cases, they appear to count the ‘most obvious’ objects in the image
regardless of the provided exemplar images. This behaviour is present but is
less prevalent with LOCA. Our method performs well on images with up to 4
classes even when they have high intra-class appearance variation, such as hav-
ing different colours on different sides, and low inter-class variation; see Fig. 6.
A downside to current exemplar-based class-agnostic counting methods is that
while they have some multi-class capabilities, they all take a single exemplar at
a time and produce only one count. This is slow and inefficient as compared to
our approach which generates all counts simultaneously.

As would be expected, the performance of all methods improves when eval-
uating on MCAC-M1, the images from MCAC with only a single class present;
see Tab. 2. This is due to a lack of ambiguity of the type to be counted. This
was more significant when the methods were trained on MCAC-M1 instead of
MCAC. In this training configuration, the methods generally learnt a broader
definition of similarity as there was no chance they would accidentally combine
classes or count instances from another class. RCC performs well on MCAC-M1,
showing the strength of the simple count-wise loss in cases where there is little
ambiguity as to what is to be counted. In contrast to other methods, ABC123
trained on MCAC-M1 has similar performance to when it is trained on the full
MCAC dataset, demonstrating that it avoids issues concerning intra-class vari-
ance and combining classes. Training ABC123 with only a single head (m̂ = 1)
and no matching stage has very similar performance to using its default (m̂ = 5)
configuration with a matching stage. This increases our belief that the matching
head does not provide an unfair advantage to our method’s quantitative results.

5.2 Applicability to FSC-147/133

ABC123 trained on only MCAC, a synthetic dataset, produces accurate results
and outperforms other contemporary methods when applied to FSC-133/147,
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Table 1: Comparison to SOTA methods on MCAC. We significantly outperform
methods which use exemplar images and test-time adaptation without requiring them.
ABC123^ denotes our method trained with a frozen pre-trained backbone.

Val Set Test Set
Method Shots MAE RMSE NAE SRE MAE RMSE NAE SRE

Mean N/A 39.87 53.56 3.07 11.40 42.67 59.68 2.79 10.93
Median N/A 36.25 58.15 1.51 6.70 39.81 65.36 1.38 6.73
Exemplar-based
FamNet+ [19] 3 24.76 41.12 1.12 6.86 26.40 45.52 1.04 6.87
BMNet+ [21] 3 15.83 27.07 0.71 4.97 17.29 29.83 0.75 6.08
CounTR [13] 3 15.07 26.26 0.63 4.79 16.12 29.28 0.67 5.71
LOCA [4] 3 10.45 20.81 0.43 4.18 10.91 22.04 0.37 4.05
Exemplar-free
ABC123 ^ 0 14.64 23.67 0.46 2.97 15.76 25.72 0.45 3.11
ABC123 0 8.96 15.93 0.29 2.02 9.52 17.64 0.28 2.23

the standard, more complex, photographic dataset, as seen in Figure 7 and Ta-
ble 3. As the standard benchmark evaluation metrics rely on absolute count
error they are all very sensitive to even a small number of very dense images.
This phenomenon was discussed in Hobley and Prisacariu [7]. We found that the
errors on the few images with counts between 300 (the largest count in MCAC)
and 3000 (the largest count in FSC) corrupted the metrics, making compari-
son to other literature more difficult. For this reason these images are excluded
from the quantitative evaluation in Table 3. These exclusions amount to 3.0% of
the validation set and 1.1% of the test set. It should be noted that the relative
rankings of the methods with and without this exclusion remain the same.

While ABC123 performs well on FSC, it often finds valid-but-unknown counts.
As seen in Fig. 8, the generated counts are correct for the type of object counted,
but the type counted may not be aligned with the labels in the original dataset.
Classes are often divided into sub-classes, and unlabelled classes are discovered.

This is due to a difference in definition of what is similar. MCAC associates
a count with objects of the same mesh and texture, however, FSC is labelled by
hand uses high-level semantic understanding so often groups objects with sig-
nificantly different geometries, colours, or textures. Interestingly, an unguided
segmentation method [11], which identifies instances’ relations often finds the
same class divisions as ABC123, shown in Figure 8. To generate quantitative
results, we borrow the approach of other open set methods [8,11,15], combining
sub-classes. We perform this mapping by combining the density maps of sub-
class counts, either by the summation of both the separate counts or by trying to
combine the density maps using the maximum density at a given point and then
counting the instances. The maximum density map configuration produces re-
sults which are competitive with other contemporary methods while the density
map summation is clearly SOTA, as presented in Table 3. The two approaches
only differ in cases where sub-class density maps overlap.
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Table 2: Comparison to SOTA methods on MCAC-M1. MCAC-M1 is the
subset of MCAC with only one class present per image. Methods are either trained on
the full multi-class dataset (✓) or MCAC-M1 (✗). ‘m̂’ denotes the number of predictions
the method generates per query and ‘Shots’ denotes the number of exemplar images
per query at inference time. CounTR† is an exemplar-free adaption of CounTR as in
Hobley and Prisacariu [7]. ABC123 outperforms other methods when trained in single
or multi-class settings.

Val Set Test Set

Method Multi-Class Training Shots m̂ MAE RMSE NAE SRE MAE RMSE NAE SRE

Mean N/A N/A N/A 53.36 67.14 3.53 13.46 58.54 75.58 3.37 13.27
Median N/A N/A N/A 45.98 76.64 1.08 6.68 51.35 86.61 1.03 7.00

Exemplar-based Training
FamNet+ [19] ✓ 3 1 24.97 48.63 0.36 3.79 28.31 54.88 0.35 3.97
FamNet+ [19] ✗ 3 1 12.54 24.69 0.37 4.71 13.97 26.19 0.25 2.12
BMNet+ [21] ✓ 3 1 11.70 23.08 0.26 2.39 11.57 22.25 0.24 1.96
BMNet+ [21] ✗ 3 1 6.82 12.84 0.25 2.95 8.05 14.57 0.19 1.43
CounTR [13] ✓ 3 1 11.44 21.37 0.33 2.36 10.91 21.70 0.29 2.01
CounTR [13] ✓ 0 1 13.57 25.53 0.30 2.48 13.09 25.72 0.29 2.41
CounTR [13] ✗ 3 1 9.00 16.91 0.41 3.56 9.96 18.92 0.38 2.93
CounTR [13] ✗ 0 1 9.16 17.13 0.42 3.56 10.10 19.10 0.40 3.02
LOCA [4] ✓ 3 1 5.62 12.24 0.15 1.73 6.25 13.09 0.12 1.14
LOCA [4] ✗ 3 1 5.01 11.47 0.22 3.35 6.52 13.37 0.15 1.36

Exemplar-free Training
CounTR† [13] ✗ 0 1 11.46 21.24 0.35 2.78 12.54 23.84 0.31 2.38
RCC [7] ✗ 0 1 7.78 15.40 0.24 2.71 8.81 16.92 0.19 1.73
LOCA [4] ✗ 0 1 5.46 11.74 0.22 2.90 6.94 14.58 0.19 1.70
ABC123 ^ ✗ 0 5 10.78 18.83 0.28 1.97 13.23 24.57 0.29 2.39
ABC123 ^ ✗ 0 1 11.38 19.73 0.40 3.51 14.31 25.40 0.37 2.79
ABC123 ^ ✓ 0 5 10.98 18.85 0.30 1.93 13.13 23.93 0.29 2.18
ABC123 ✗ 0 5 5.82 11.74 0.15 1.22 7.54 15.30 0.21 1.87
ABC123 ✗ 0 1 5.85 12.91 0.24 3.37 7.53 15.69 0.22 2.19
ABC123 ✓ 0 5 6.08 12.62 0.16 1.22 6.82 14.70 0.16 1.51

5.3 Validating the Number of Predictions

It should be noted that as the matching stage uses the ground-truth density
maps, it could be used to significantly benefit a method’s quantitative results
without improving its deployment capabilities. Specifically, a method could gen-
erate a high number of diverse counts and use the matching stage to select the
best one. We found this to be the case with our method, see Tab. 4 for the com-
plete results. We believe, however, that this does not align with a more useful
method in a deployment situation. This numerical gain derives purely from the
matching stage, which is not present during deployment. In fact, during deploy-
ment, this would correspond to a much more difficult to interpret output as a
user would have to figure out which of the many outputs was most relevant. We
limit ourselves to regressing 5 predictions to minimise this behaviour while still
allowing the network to generate valid-but-unknown counts. We also found that
when high numbers of predictions were generated, fewer than half were used,
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Fig. 7: ABC123 trained on MCAC applied to FSC-147 produces accurate
counts. The ground truth and predicted counts are in the top left and top right corners.

i.e. the outputs of some heads were rarely or never picked. This is likely due to
these heads not being matched frequently during training so the loss is rarely
propagated back through them. There is also significant redundancy between
the heads. The predictions of certain heads over the whole dataset were clearly
similar and could be grouped. Of the 39 utilised heads when m̂ = 100, there were
three groups of, respectively, 13, 6, and 4 heads that were very similar, lowering
the effective number of utilised heads to 19.

6 Conclusion

In this work, we present ABC123, a multi-class exemplar-free class-agnostic
counter, and show that it is superior to prior exemplar-based methods in a
multi-class setting. ABC123 requires no human input at inference-time, works
in complex settings with more than one kind of object present, and outputs easy
to understand information in the form of examples of the counted objects. Due
to this, it has potential for deployment in various fields. We also propose MCAC,
a multi-class class-agnostic counting dataset, and use it to train our method as
well as to demonstrate that exemplar-based counting methods may not be as
robust as previously assumed in multi-class settings.
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Table 3: Comparison to SOTA methods when trained on MCAC and applied
to the cases in FSC147 with fewer than 300 objects. Combining sub-class density
maps with a sum rather than a max is more effective as it is more accurate in cases
where instances of the sub classes are spatially close or overlapping as both instances
are counted completely. CounTR † is an exemplar-free modification of CounTR.

Sub-Class
Combine

Val Set Test Set
Method Shots MAE RMSE NAE SRE MAE RMSE NAE SRE

Exemplar-based
FamNet+ 3 N/A 25.83 46.31 0.50 4.29 28.05 45.59 0.48 4.33
BMNet+ 3 N/A 29.47 53.15 0.51 4.72 30.74 52.00 0.47 4.68
CounTR 3 N/A 21.22 40.28 0.47 3.85 21.09 40.79 0.38 3.66
LOCA 3 N/A 25.70 48.64 0.45 4.30 29.93 49.89 0.48 4.62
Exemplar-free
CounTR † 0 N/A 23.50 45.83 0.42 4.06 23.57 42.00 0.39 3.85
LOCA 0 N/A 29.37 54.01 0.51 4.84 33.96 56.66 0.53 5.17
ABC123 0 Max 19.56 46.71 0.20 3.54 22.43 47.35 0.22 3.70
ABC123 0 Sum 11.13 34.47 0.12 2.44 11.75 33.41 0.11 2.38

Table 4: Effect of using more prediction heads. Increasing the number of pre-
matching predictions improves the quantitative results of our method. However, as
the number of heads increases, the percentage of heads that are frequently (> 0.4%)
matched decreases.

Val Set Test Set
m̂ MAE RMSE NAE SRE MAE RMSE NAE SRE Head Utilisation

4 9.43 17.42 0.31 2.57 10.19 19.44 0.33 2.81 100%
5 8.96 15.93 0.28 2.02 9.52 17.64 0.28 2.23 100%
10 8.39 14.93 0.28 1.97 9.08 16.96 0.27 2.15 100%
20 7.78 13.75 0.26 1.82 8.29 15.53 0.24 1.95 85%
50 7.26 12.80 0.25 1.69 7.99 15.14 0.24 1.81 68%
100 7.11 12.81 0.23 1.59 7.43 14.48 0.21 1.72 39%

Fig. 8: ABC123 trained on MCAC applied to Ambiguous Images in FSC-
147. In cases with class ambiguity, ABC123 often finds valid-but-unknown counts, i.e.
they don’t align with the human annotations. Similar to an unguided segmentation
method (right), ABC123 discovers unlabelled classes, divides labelled classes into sub
classes, or counts component parts of objects. The unguided segmentations are coloured
by latent feature to demonstrate how they would be grouped.
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