
Supplementary Material: Category Adaptation
Meets Projected Distillation in Generalized

Continual Category Discovery

Grzegorz Rypeść⋆1,2 , Daniel Marczak1,2 , Sebastian Cygert1,3 ,
Tomasz Trzciński1,2,4 , and Bartłomiej Twardowski1,5,6

1 IDEAS NCBR
2 Warsaw University of Technology
3 Gdańsk University of Technology

4 Tooploox
5 Autonomous University of Barcelona

6 Computer Vision Center

A CAMP training loss in detail

In this section, we describe the details of CAMP method, more specifically –
representation learning during phase 1. Representation learning in CAMP consists
of contrastive and entropy-based learning, which we describe below and conclude
in a total loss function for CAMP at the end.

Contrastive learning We use unsupervised and supervised contrastive losses,
namely SimCLR [5] and SupCon [12].

We calculate SimCLR [5] loss as:
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where xi and x′
i are two views (random augmentations) of the same image in

a mini-batch B, hi = g(F(xi)), and τ is a temperature value. F is the feature
extractor, and g is a multi-layer perceptron (MLP) projection head used in
SimCLR method.

For data where labels are available (T t
L) we can simply use supervised learning.

Specifically, we employ SupCon [12] loss:
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where BL corresponds to the labeled subset of B and Ni is the set of indices of
other images that have the same label as xi. We use the same projector as in
SimCLR to produce representations hi = g(F(xi)) and the same temperature
parameter τ .
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Entropy based learning
We also utilize two additional loss functions for training the feature extractor

following [26] and applied in the self-distillation [1,4] fashion. We noticed that this
improved results achieved by CAMP even though we do not utilize parametrical
classifier like [26]. Formally, for a total number of categories K, we randomly
initialize a set of prototypes C = {c1, . . . , cK}, each representing one category.
During training, we calculate the soft label for each augmented view xi by
performing softmax on cosine similarity between the hidden feature zi = F(xi)
and the prototypes C scaled by 1/τs:
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and the soft pseudo-label q′
i is produced by another view xi with a sharper

temperature τt in a similar way. The loss functions are then cross-entropy loss
ℓ(q′,p) = −

∑
k q

′(k) log p(k) between the predictions and pseudo-labels:
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or known labels:
LCE =
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where yi denotes the one-hot label of xi. For the unsupervised objective, we
additionally adopt a mean-entropy maximisation regulariser [1]. Here, p =
1

2|B|
∑

i∈B (pi + p′
i) denotes the mean prediction of a batch, and the entropy

H(p) = −
∑

k p
(k) log p(k).

Total loss for CAMP On all data provided in a given task: X t = X t
U +X t

L,
we calculate the following loss as LSSL = LSimCLR + Lpseudo

Loss that we calculate only on the labeled data X t
L is equal to LSL =

LSupCon + LCE Finally, the total loss function for CAMP is then equal to:

LCAMP = (1− α)((1− β)LSSL + βLSL) + αLKD, (6)

where α, β ∈ [0, 1] are hyperparameters defining contribution of regularization
and supervision respectively and LKD is knowledge distillation loss calculated
using a distiller and defined in Section 3 (main paper). In experimental section
we set α to 0.5 or 0.1 (when exemplars are present) and β to 0.35. In case of
Class Incremental Learning scenario we set α to 0.9.

B Experimental setup - details

B.1 Generalized Continual Class Discovery

In order to fairly compare existing methods, which often were created for a
very specific continual scenario, we evaluate them in a Generalized Continual
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Category Discovery framework (GCCD). GCCD consists of an arbitrary number
of disjoint tasks and can include exemplars. Each task consists of labeled and
unlabeled data from known and novel classes. We extend well-established category
incremental setting [3, 21] by adding unlabeled data and novel classes to each
task. We formally define it in Section 3 of the main paper. We present differences
between GCCD and other setting in Tab.1.

Setting
Characteristics

Partially Novel Sequence Arbitrary
Methods labeled classes of disjoint number

classes tasks of tasks

Class incremental learning LwF [16], EWC [14], iCaRL [21], DER [3] × × ✓ ✓
Self-supervised continual learning CaSSLe [7], PFR [9], LUMP [17], POCON [8] × ✓ ✓ ✓
Semi-supervised continual learning NNCSL [11], CCIC [2], ORDisCo [25] ✓ × ✓ ✓
Generalized category discovery GCD [24], SimGCD [26] ✓ ✓ × ×
Incremental generalized category discovery IGCD [29] ✓ ✓ × ✓
Continual generalized category discovery PA [13] ✓ ✓ ✓ ×
GCCD (ours) ✓ ✓ ✓ ✓

Table 1: Generalized Continual Category Discovery is the most general setting. It
includes partial labels, contrary to supervised and self-supervised learning, and re-
quires discovering novel (unlabeled) classes, contrary to supervised and semi-supervised
learning. Moreover, it works on a sequence of disjoint tasks, contrary to Incremental
Generalized Category Discovery, which assumes that unlabeled data samples become
labeled in the next task. Finally, unlike Continual Generalized Category Discovery,
GCCD is not limited to only a single category incremental step.

Overall, the proposed setting in this paper is a generalization of the previous
ones as we learn both known and novel classes in each of the learning stages and
allow for partially-labeled classes, thus we make no distinction between the initial
and subsequent learning stages. This scenario holds in many real-life applications,
mostly when data comes sequentially and there are insufficient resources to label
all images. Additionally, our experiments focus on equal split tasks (so without
a sizeable first task) on many incremental steps and investigate the effect of
different setting parameters, such as the fraction of novel classes or labeled data
proportion, on models performance. For most GCCD experiments (Tab. 1, Fig.6,
Fig.9 of the main body) we assume that methods know the number of novel
classes due to simplicity purposes. We will publish the code of the framework
and our method upon the acceptance of the manuscript. We present data splits
which we used for evaluation of GCCD protocol in 2.
Exemplars In our experimental setting we utilize exemplars only for known
classes as only they are given labels. We randomly choose which exemplars to
store in the buffer. For each past, known class we store the same amount of
exemplars.

B.2 Class Incremental Learning

Here, we provide setup details for results presented in Tab.2 of the main body of
the paper. Class Incremental Learning [16, 18] is a special case of GCCD, where
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Dataset N Known Novel Lab. known (%)

CIFAR100 5 16 4 50%
Stanford Cars 4 40 9 50%
CUB200 5 32 8 50%
Aircrafts 5 16 4 50%
DomainNet 6 8 2 50%

Table 2: Datasets we utilized in experiments, their splits and characteristics.

each data sample is labeled and there are no novel classes. To combat forgetting,
typical approaches utilize exemplars [10,21], expendable architectures [22, 27] or
regularization [14, 16, 28] techniques. We compare CAMP to regularization base-
lines that consider a single neural network with constant number of parameters
and no exemplars.

For the simplest baselines we utilize fine-tuning (no technique to combat
forgetting) and joint that trains the network on the whole dataset. Then, we
utilize LwF [16] which utilizes knowledge distillation, EWC [14] that regularizes
weights of the neural network and PASS [32] as a prototype augmentation
technique. Additionally, we use IL2A [31] and [20]. For all this methods we run
their implementations in FACIL [18] and if the implementation is not available,
we use PyCIL [30]. For all methods we use default hyperparameters and the same
augmentations.

To compare CAMP to baselines, we utilize three commonly used benchmark
datasets in the field of Continual Learning (CL): CIFAR-100 [15] (100 classes),
ImageNet-Subset [6] (100 classes) and DomainNet [19] (345 classes, from 6
domains). DomainNet contains categories of different domains, allowing us to
measure models’ adaptability to new data distributions. We create each task
with a subset of classes from a single domain, so the domain changes between
tasks. We split datasets to N equal tasks.

We train CAMP and CIL baseline methods from scratch. We compare all
approaches with standard CIL evaluations using the classification accuracies
after each task, and average incremental accuracy, which is the average of those
accuracies [21].

C Baseline methods details

In the following, we describe details of training feature extractors F of baseline
methods.

GCD [24] combines contrastive unsupervised loss from Eq. 1 and supervised
loss from Eq. 2 to train F t on task t. Combined, the total LGCD loss equals:

LGCD = (1− β)LSimCLR + βLSupCon, (7)

where β ∈ (0, 1) is a weighing parameter and is equal to 0.35 in our experiments
following the original work [24].
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GCD+FD GCD method was not designed to tackle continual scenarios as it
suffers from catastrophic forgetting. In order to adapt it for the GCCD we follow
most distillation-based continual learning methods [7, 9, 16]. We freeze previously
trained feature extractor F t−1 and regularize currently trained feature extractor
F t with the outputs of F t−1:

LFD =
1

|B|
∑
i∈B

||F t(xi)−F t−1(xi)||2, (8)

This form of distillation does not require labels and all the data from the current
task can be used for a regularization.

The final loss function for feature extractor training is defined as follows:

LGCD+FD = (1− α)LGCD + αLFD, (9)

where α ∈ [0, 1] is a hyperparameter defining the contribution of regularization.
GCD+EWC In this baseline method we improve GCD by enforcing Elastic

Weight Consolidation regularization on F parameters using λ parameter as
described in [14]. We additionally add a linear head for training and change
LSupCon to cross entropy loss. In our experiments we set λ to 5000 following the
original work.

SimGCD [26] improves training F t over GCD by adding two additional loss
functions: popular cross entropy loss for labeled data which improves clustering
capabilities and adapted mean-entropy maximisation regularisation [1] applied
to all data present in the task. The loss is equal to

LSimGCD = ((1− β)LSSL + βLSL) (10)

IGCD [29] uses the same loss function as SimGCD to train the feature
extractor. However, it adapts SimGCD for continual settings by adding a replay
buffer that helps to mitigate forgetting and provides for support sample selection.
In each incremental step a random subset of data samples of each class in the
task is added to the buffer. For classification IGCD utilizes Soft-Nearest-Neighbor
classifier.

PA [13] utilizes proxy anchors to train F and a replay buffer to fight the
forgetting. Proxy anchor loss is defined as:

LSupPA =
1
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where µ > 0 is a scaling factor and δ > 0 is a margin which we set to 32 and
0.1 respectively, following the original work. Here, the function s(·,·) denotes the
cosine similarity score. P 0+ represents same class PAs(e.g .negative) in the batch.
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Each proxy p divides the set of embedding vector Z0 as Z0+

p and Z0−

p = Z0−Z0+

p .
Z0+

p denotes the same class embedding points with the proxy anchor p. The goal
of the first term in the equation is to pull p and its dissimilar but hard positive
data together, while the last term is to push p and its similar but hard negatives
apart. The proxies are incrementally added in each task.

Following the original work [13], the total loss for PA method for training F
is equal to:

LPA = LSupPA + LKD (12)

D Additional experiments

Comparison to baselines
We provide additional average accuracy after each task plots in Fig. 1. They

represent results achieved by exemplar and exemplar-free methods on Stanford-
Cars, CUB200, and FGVC Aircraft. CAMP achieves the best final accuracy,
and results are consistent on all datasets. CAMP also achieves the best average
accuracy after most of the tasks. However, on FGVCAircraft CAMP with 20
exemplars, is worse than GCD, with 20 exemplars after the second, third, and
fourth tasks.
Impact of β hyperparameter We verify the impact of beta hyperparameter
(trade-off between SL and SSL losses) on CUB200. We measure average accuracy
for all classes for β equal to 0, 0.2, 0.4, 0.6, 0.8 and 1.0 and present results in 2.
CAMP achieves very low results for β = 0 as SL loss is not utilized in this case.
Interestingly, accuracy for novel categories drops for β > 0.6 showcasing that the
SSL part is crucial in obtaining good results for novel categories.
Impact of number of exemplars on centroid adaptation We verify how the
number of exemplars (0, 5, 20 per each category) influences distance of memorized
centroid to the real category centroid (denoted as distance to real-mean). We
plot the results for CUB200 dataset split into 5 tasks in Fig. 3. We measure the
distance to the real-mean before and after performing the centroid adaptation.
Intuitively, the more exemplars are available, the better is the centroid estimation.
This results are consistent for known and novel categories.
Distillers vs adapters for known and novel classes

We verify the impact of using different distillation functions and different
adapters for CAMP on StanfordCars dataset split into four tasks. We utilize the
same setup as in 4.4 (main body). We provide final all, known, novel accuracies
in Fig. 3. The combination of MLP distiller and Linear adapter achieves 38.1%,
43.2%, and 15.0% on all, known and novel categories, respectively, which is the
best result. This shows, that such combination improves results for known and
novel classes. The results are consistent with Fig.5 (main paper). That proves
the design choice of our architecture.
Extended analysis of latent spaces in CAMP

In Fig. 4, we present an analysis of latent spaces in different GCCD methods.
We observe that using no distillation (GCD) leads to the best performance on
the second task but the worst performance on the first task, as the model is



Title Suppressed Due to Excessive Length 7

Fig. 1: Average accuracy after each task on three datasets. CAMP achieves the best
accuracy after most of tasks.

optimized to fit the new data without regard for the past task. A rigid distillation
(GCD + Feature Distillation) helps prevent forgetting but hinders learning new
tasks. Moreover, we can see that feature distillation leads to the overlap between
tasks. Our CAMP method uses projected knowledge distillation that enhances
the ability to learn new tasks and learn representations that overlap less with
those of old categories.
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Fig. 2: Impact of β hyperparametrer on
known and novel accuracy achieved on
CUB200.

Fig. 3: Distance to real-mean before and
after adaptation for 0, 5, 20 exemplars on
CUB200.

Fig. 4: CAMP utilizes a projected knowledge distillation that results in: (1) predictable
drift in latent space that is revertible via centroids adaptation and leads to high
performance on the first task and (2) high plasticity of the model and its ability to
learn new tasks leading to high performance on the second task. Vanilla GCD fails
to prevent forgetting. However, GCD with feature distillation reduces forgetting but
diminishes the ability to learn new tasks. We report the nearest centroid classification
accuracy. On the first task, we report accuracy using stored prototypes (Acc old) and
adapted prototypes (Acc adapted).
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Adapter
Distiller None FD Linear MLP T-ReX

None 20.6 28.3 25.2 22.5 21.3
Linear 25.6 28.5 35.5 38.1 26.5
MLP 26.6 26.0 34.4 33.7 23.1
T-ReX [23] 24.3 23.9 33.4 28.9 21.8
SDC [28] 23.8 28.1 29.4 31.0 23.8

Adapter
Distiller None FD Linear MLP T-ReX

None 23.9 32.1 28.9 25.8 24.5
Linear 29.4 32.5 40.2 43.2 30.1
MLP 30.3 30.1 39.5 38.8 26.5
T-ReX [23] 28.5 27.8 38.5 32.9 24.9
SDC [28] 28.0 32.4 33.3 35.5 27.0

Adapter
Distiller None FD Linear MLP T-ReX

None 5.8 11.3 8.2 7.7 7.0
Linear 8.6 10.2 14.3 15.0 10.5
MLP 9.7 7.4 11.4 11.1 8.2
T-ReX [23] 7.2 6.3 10.5 10.7 8.0
SDC [28] 6.9 10.3 9.8 11.0 9.6

Table 3: Impact of different adapters and distiller on our method on StanfordCars.
We report all (top), known (middle) and novel (bottom) accuracy after the last task.
Combination of MLP distiller and Linear adapter achieves the best results on all types
of categories proving the design choice of CAMP.
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