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A Details of the AQA Network

Fig. S1 illustrates the network architecture of our AQA framework, employing
the I3D+MLP paradigm. Following the previous work [16], we introduce the re-
parameterization technique [4] to ensure robust score regression.

+

Clip features

...

10
24

10
24

25
6

+

×

1

1

1
Video-level feature

Variance �

Random variable �

Mean �

(b) Score regression(a) Feature aggreation

Predicted 
score �

Fig. S1: The network architecture for score regression: (a) depicts feature aggregation
and (b) delineates score regression.

Feature Aggregation. To address computational challenges in Action Quality
Assessment (AQA), methods like [1, 7, 8, 13, 16] often opt to divide videos into
clips. This process involves uniformly dividing the entire video sequence x into
10 clips c1, c2, · · · , c10. Each of these clips is then fed into the I3D backbone
to extract clip features. The division helps manage the computational intensity
associated with processing large video datasets, enabling more efficient compu-
tation and improved memory utilization.

These clip features are aggregated using the widely used average pooling
method to obtain the whole video-level representation h. Thus, the aforemen-
tioned process can be represented as:

h = AvgPool(i3d(ci), i3d(c2), · · · , i3d(c10)), (S1)

where AvgPool(·) denotes the average pooling function. While the simple process
is effective, it has limitations, such as its coarse-grained temporal approach,
which may not capture fine-grained action quality [3, 16]. It is noted that our
main focus is on the integration of CL and AQA, and addressing these limitations
is out of our work.
Score Regression. The video-level representation is then utilized in MLPs
for the final score regression. The detailed illustration (see Fig. S1(b)) provides
clarity on the sequential steps involved in the score regression process.

We employ a probabilistic layer to transform the video-level feature h into
a random score variable y. The encoded score variable y follows a Gaussian
distribution defined by:

p(y;h) =
1√

2πσ2(h)
exp

(
− (y − µ(h))2

2σ2(h)

)
, (S2)

where µ and σ2 are the mean and variance parameters with respect to the
feature representation. These parameters quantify the quality and uncertainty



2

of the action score, respectively. To sample from the distribution, we apply the re-
parameterization trick [4], which involves sampling from another random variable
ϵ following the standard normal distribution N (0, 1). In this way, the predicted
score ŷ can be calculated as:

ŷ = µ(h) + ϵ · σ(h), (S3)

where σ(·) represents the standard deviation. This ensures that the score distri-
bution sampling process is differentiable, allowing feasible training of our score
regression network.

B Additional Experimental Details

This section provides supplementary information on the datasets and implemen-
tation details used in our experiments.

B.1 Deatils of Datasets

MTL-AQA [8] serves as a robust resource for AQA research, offering a compre-
hensive collection of 16 distinct diving events. With a total of 1412 samples, it
encompasses a wide range of scenarios, featuring both male and female athletes
participating in single and double diving competitions across 3 m springboard
and 10 m platform categories. Notably, MTL-AQA provides detailed annota-
tions for action categories and commentary alongside AQA scores, enhancing
the dataset’s utility for comprehensive analysis. A total of 1059 samples were
allocated for training purposes, while 353 samples were reserved for testing.
FineDiving [11] is a recently introduced large-scale fine-grained diving dataset
comprising 3000 diving samples extracted from various prestigious events includ-
ing the Olympics, World Cup, World Championships, and European Aquatics
Championships. This dataset covers 52 action types, 29 sub-action types, and 23
difficulty degree types, providing rich annotations for detailed analysis. Addition-
ally, FineDiving includes fine-grained annotations such as action type, sub-action
type, coarse-grained and fine-grained temporal boundaries, and action scores in
addition to AQA scores. A total of 75% of the samples were allocated for training
purposes, while the remaining 25% were reserved for testing.
UNLV-Dive [9] comprises 300 training videos and 70 testing videos, selected
from the (semi-) final of the 10-meter platform diving event in the 2012 London
Olympics. The dataset’s final scores range from 21.6 to 102.6, with execution
scores falling within the [0, 30] range.
JDM-MSA [15] comprises 14 types of actions categorized into three groups:
time-related actions, position-related actions, and uncertain actions. Time-related
actions are evaluated based on completion duration, and position-related actions
on body part movement magnitude and position, while uncertain actions require
subjective judgments of difficulty. For this study, we focus on six challenging
actions, prioritizing those requiring subjective assessment. Data collection effi-
ciency was enhanced using an iPad, an iPhone, and two USB cameras. To ensure
consistency, all samples were normalized to the same resolution and frame count.
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B.2 Implementation Details

In the detailed architecture presented in Fig. S1, the video-level representation
undergoes an initial encoding process, resulting in a 1024-dimensional vector.
This vector then traverses a series of Multi-Layer Perceptrons (MLPs). The first
MLP layer, with a dimensionality of 256, serves as the initial transformation.
Following this, two additional MLP layers process the vector further, ultimately
mapping it to mean and variance scores. These mean and variance parameters
play a crucial role in shaping the final prediction. The MP module in MAGR fol-
lows a similar structure with a 2-layer MLP. The input dimension is set to 1024,
the hidden size is 256, and the output size remains at 256. This design choice
aims to capture the intricate relationships within the data manifold, enhancing
the ability to align features with evolving data distributions across sessions.

C Additional Experiments

This section delves into additional computational analysis, online performance,
the inclusion of difficulty degree, additional ablation study, the impact of memory
size, and offers visualizations to further verify the effectiveness of our method.

C.1 Model Size and Computational Time Comparison

We conducted measurements on both model size (backbone + regressor) and
offline training time (with the same hyper-parameter setting using 2 Nvidia RTX
3090 GPUs in distributed parallel computing on the same machine). The results
are reported in Tab. S1. It can be seen that our method employs comparable
model size and computational time while achieving much better performance
than the most recent strong baselines. Specifically, the inclusion of a manifold
projector slightly increases our model size compared to these baselines, while
our training time remains competitive.

Table S1: Computational performance on the MTL-AQA dataset.

Method Param.
(M)

Training
Time (h)

Offline Performance
ρavg (↑) ρaft (↓) ρfwt (↑)

SLCA [14] 13.62 2.27 0.7223 0.1852 0.1665
NC-FSCIL [12] 12.62 2.33 0.8426 0.1146 0.0718
Feature MER 12.62 2.22 0.7283 0.2255 0.0535
MAGR (Ours) 12.63 2.23 0.8979 0.0223 0.1914

C.2 Real-Time Performance

In our online continual learning setting, we evaluate the performance of models
in real-time scenarios where data arrives sequentially and models need to learn
and adapt continuously without revisiting previous data. Each method is trained
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and updated in an online manner, processing one data point or a small batch at
a time (training 1 epoch for all models), simulating real-world conditions where
retraining on the entire dataset is infeasible. The results in Tab. S2 highlight the
superior online CL performance of MAGR, which achieves the highest average
correlation (ρavg) across all datasets: MTL-AQA (0.5196), FineDiving (0.4641),
UNLV-Dive (0.4202), and JDM-MSA (0.2029). These results demonstrate that
MAGR’s graph regularization effectively preserves the feature space structure,
making it a strong contender for real-time action assessment.

Table S2: Online continual learning (ρavg is the main metric).

Method
MTL-AQA FineDiving UNLV-Dive JDM-MSA

ρavg (↑) ρaft (↓) ρfwt (↑) ρavg (↑) ρaft (↓) ρfwt (↑) ρavg (↑) ρaft (↓) ρfwt (↑) ρavg (↑) ρaft (↓) ρfwt (↑)

SLCA [14] 0.4880 0.0430 -0.0282 0.3935 0.3360 0.2346 0.3119 0.1641 -0.3082 0.1726 0.0589 0.0382
NC-FSCIL [12] 0.4971 0.0291 -0.0463 0.3810 0.0079 0.2518 0.3136 0.1282 -0.4892 0.1540 0.0355 0.0378
Feature MER 0.3571 0.1444 -0.0213 0.1935 0.0998 0.1559 0.1308 0.2126 -0.4571 0.1699 0.0356 0.0382
MAGR (Ours) 0.5196 0.0269 -0.0337 0.4641 0.0062 0.2020 0.4202 0.1947 -0.0499 0.2029 0.0356 0.0449

C.3 Comparison with the Inclusion of Difficulty Degree

Previous research [1, 13, 16] has indicated that integrating difficulty degree la-
bels can significantly enhance the performance of AQA models, particularly on
the MTL-AQA dataset. In alignment with this observation, we conducted ex-
periments incorporating difficulty degree labels in our evaluation, as depicted in
Tab. S3. The setting is the same as the previous work [13]. The results reconfirm
the beneficial impact of leveraging difficulty degree information on AQA perfor-
mance. Notably, MAGR maintains its superiority over recent strong baselines,
reaffirming its effectiveness in addressing AQA challenges.

Table S3: Results on the MTL-AQA dataset with the difficulty degree.

Method Publisher Memory
MTL-AQA

ρavg (↑) ρaft (↓) ρfwt (↑)

Joint Training - None 0.9587 - -
Sequential FT - None 0.8684 0.1418 0.2282
EWC [5] PNAS’17 None 0.8625 0.1267 0.1776
LwF [6] TPAMI’17 None 0.7852 0.1501 0.0912
DER++ [2] NeurIPS’20 Raw Data 0.9037 0.1230 0.3122
TOPIC [10] CVPR’20 Raw Data 0.8782 0.1394 0.2304
SLCA [14] ICCV’23 Feature 0.6885 0.2029 0.0958
NC-FSCIL [12] ICLR’23 Feature 0.9034 0.0878 0.1456
MAGR (Ours) - Feature 0.9237 0.0615 0.1944

C.4 Ablation Study

The ablation results in Tabs. S4 and S5 on both the UNLV-Dive and JDM-MSA
datasets demonstrate the vital role each component our MAGR model.
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Ablation Study on UNLV-Dive. From the results in Tab. S4, it is evident
that each component of our MAGR model plays a crucial role in its performance.
Omitting the MP module leads to a 21% decline in ρavg and a marked 69% in-
crease in ρaft, emphasizing its significance in managing feature deviation. The
graph regularizers, both local (II-GR) and global (J-GR), when removed individ-
ually or together, induce notable reductions in ρavg and substantial increments
in ρaft, emphasizing their essential role in regularizing the feature space. Lastly,
without the OUS strategy, we observe a decrease in all performance metrics,
underlining its importance in model robustness across sessions. The collective
results underscore the intertwined significance of all the components in achiev-
ing the peak performance of MAGR on the UNLV-Dive dataset.

Table S4: Ablation results on the UNLV-Dive dataset.

Setting ρavg (↑) ρaft (↓) ρfwt (↑)

MAGR (Ours) 0.7668 0.0827 0.1227
w/o MP 0.6026 ↓21% 0.1396 ↑69% 0.1075 ↓12%

w/o II-GR 0.7189 ↓6% 0.1726 ↑109% 0.1226 ↓0%

w/o J-GR 0.6549 ↓15% 0.1267 ↑53% 0.1466 ↑20%

w/o IIJ-GR 0.6261 ↓18% 0.2102 ↑154% 0.1442 ↑18%

w/o OUS 0.7356 ↓4% 0.0599 ↓28% 0.0867 ↓29%

Ablation Study on JDM-MSA. The ablation study on the JDM-MSA dataset
provides insight into the importance of the components in our MAGR model.
The results demonstrate that each component significantly contributes to the
model’s performance. Omitting the MP module resulted in a 20% decrease in
ρavg and a 10% decrease in ρaft, highlighting its role in addressing feature de-
viation. Similarly, removing the graph regularizers, including II-GR, J-GR, and
IIJ-GR, led to notable reductions in ρavg, emphasizing their essential role in
regularizing the feature space. The proposed OUS strategy proved to be crucial
for maintaining model performance, with its removal resulting in performance
declines across all metrics. These findings emphasize the critical nature of each
component for achieving optimal AQA performance on the JDM-MSA dataset.

Table S5: Ablation results on the JDM-MSA dataset.

Setting ρavg (↑) ρaft (↓) ρfwt (↑)

MAGR (Ours) 0.7166 0.1069 0.4957
w/o MP 0.5725 ↓20% 0.1185 ↓10% 0.4942 ↓0%

w/o II-GR 0.6755 ↓6% 0.1962 ↑83% 0.4956 ↓0%

w/o J-GR 0.6066 ↓15% 0.0933 ↓13% 0.3953 ↓20%

w/o IIJ-GR 0.5792 ↓19% 0.1055 ↓10% 0.4085 ↓18%

w/o OUS 0.6880 ↓4% 0.1280 ↓16% 0.4945 ↓0%
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Fig. S2: Memory size comparisons with replay-based methods on UNLV-Dive.
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Fig. S3: Memory size comparisons with replay-based methods on JDM-MSA.

C.5 Impact on the Memory Size

The performance comparison of various replay methods on the UNLV-Dive and
JDM-MSA datasets for different memory sizes is presented in Figs. S2 and S3,
respectively. On the UNLV-Dive dataset, our method consistently outperforms
other approaches, achieving the highest overall correlation (ρavg). When memory
size is small, all methods experience performance degradation. However, as the
memory size increases, our method exhibits superior resilience and maintains
strong performance, while the performance of other methods tends to saturate
or even decline. On the JDM-MSA dataset, similar trends are observed, with
our method achieving the highest ρavg and demonstrating greater stability as
memory size increases. These results highlight the effectiveness and robustness
of our approach across varying memory sizes and datasets.

C.6 Visualization of Mitigating Catastrophic Forgetting

The visualization presented in Fig. S4 offers valuable insights into the effective-
ness of MAGR in mitigating catastrophic forgetting on the UNLV-Dive dataset.
The TSNE plots (Figs. S4(a) to S4(f)) showcase the distribution of feature rep-
resentations learned by MAGR (top) and feature MER (bottom) across different
sessions. It is evident that MAGR’s MP and IIJ-GR contribute to maintaining
the consistency and continuity of feature distributions over sequential sessions,
thereby alleviating the adverse effects of catastrophic forgetting. Notably, the
correlation plots (Figs. S4(g) and S4(h)) further emphasize MAGR’s superior
performance in preserving the correlation between predicted quality scores and
ground truth labels, even amidst evolving feature distributions. This highlights
MAGR’s robustness and efficacy in addressing the challenges posed by non-
stationary data distributions and underscores its potential to enhance CL and
AQA research.
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Fig. S4: Visualizations of feature distribution (a-f) and score correlation (g-h) on the
UNLV-Dive dataset: MAGR (top) and Feature MER (bottom).

C.7 Visualization of Performance Changes

In Fig. S5, the performance changes (ρavg) of several recent strong baselines
across different sessions on the MTL-AQA dataset are illustrated. Initially, all
methods exhibit comparable performance. However, as sessions progress, our
method consistently maintains a stable level, while other methods experience
substantial fluctuations. This underscores the effectiveness of our approach in
balancing learning plasticity and memory stability over sequential sessions.
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Fig. S5: Performance comparison across different sessions.

D Discussions

Larger Dataset Validation. We evaluated our method, MAGR, across four
AQA datasets of varying scales, consistently achieving leading performance.
Given the typically scarce training samples for AQA tasks, FineDiving is one
of the largest available datasets. We plan to update our results with larger AQA
datasets as they become available.
Overfitting with Smaller Datasets. We acknowledge the potential risk of
overfitting with smaller datasets or fewer feature points, as noted. To address
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this, we conducted experiments with reduced training samples, as shown in Fig.
8(a) of our main paper. When reducing the number of training samples per
session, the performance of several recent strong baselines, especially those with
non-graph feature replay methods like SLCA [14] and NC-FSCIL [12], decreases
significantly. In contrast, our method maintains relatively stable performance,
resulting in a significant performance lead. This stability is attributed to the use
of graph construction, which captures and retains relationships between feature
points, thereby reducing the risk of overfitting.
Handling Difficult Cases of Actions and Qualities. We also analyzed the
specific errors related to actions and qualities in our main paper. Fig. S5 evalu-
ates the performance of specific actions learned in respective sessions. Our per-
formance remains consistently high across different actions, whereas other strong
baselines experience performance degradation in specific actions, particularly in
session 2. Additionally, Fig. 9(g) and 9(h) evaluate the performance of specific
qualities of each action. Compared to Feature MER in Fig. 9(h), our method,
shown in Fig. 9(g), aligns much better with the ground truth, indicating fewer
specific errors. While our method shows slight deviations within the low-score
area due to limited training samples, the high-score area, which is densely sam-
pled, is more accurate. This issue can be mitigated by collecting or re-sampling
more training samples in the low-score area.
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