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Abstract. We introduce AutoVER, an Autoregressive model for Vi-
sual Entity Recognition. Our model extends an autoregressive Multi-
modal Large Language Model by employing retrieval augmented con-
strained generation. It mitigates low performance on out-of-domain enti-
ties while excelling in queries that require visual reasoning. Our method
learns to distinguish similar entities within a vast label space by con-
trastively training on hard negative pairs in parallel with a sequence-
to-sequence objective without an external retriever. During inference,
a list of retrieved candidate answers explicitly guides language genera-
tion by removing invalid decoding paths. The proposed method achieves
significant improvements across different dataset splits in the recently
proposed Oven-Wiki benchmark with accuracy on the Entity seen
split rising from 32.7% to 61.5%. It demonstrates superior performance
on the unseen and query splits by a substantial double-digit margin,
while also preserving the ability to effectively transfer to other generic
visual question answering benchmarks without further training.

Keywords: Language Model · Visual Entity Recognition

1 Introduction

Multimodal Large Language Models (MLLMs) have demonstrated superior per-
formance on a variety of vision-and-language tasks such as visual question an-
swering, image captioning, zero-shot image classification, among others [40, 55].
Their abilities can be transferred with few-shot tuning [2,69] or even learning in
context without parameter updates [5,73]. Given their remarkable generalization
abilities and prior knowledge based on large-scale pre-training, we consider there
is still great potential for using them on tasks that require knowledge grounding.

A recently proposed task requiring knowledge grounding is the Open-domain
Visual Entity Recognition (Oven-Wiki) [28] task. In this task, given an input
image and a question about the image, the goal is to answer with a very specific
entity from Wikipedia. For instance, the answers could be a specific model of
airplane, e.g . ATR 42, or British Aerospace 146. This is a very challenging
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Fig. 1: A representative query-entity pair from Oven-Wiki. We briefly illustrate
the model inference process and compare predictions from PaLI-17B (in red) and
AutoVER-7B (in green) which obtains the correct answer: ATR 42. AutoVER re-
trieves entity candidates without an external retriever (step 1), dynamically constructs
a prefix tree (trie) (step 2), and performs decoding-time augmentation to guide autore-
gressive generation (step 3).

task where MLLM-based solutions are prone to hallucinations, or producing
answers that are not at the right level of granularity. Importantly, visual entity
recognition requires recognizing entities that never appear in the training data
(unseen split). Moreover, a portion of the Oven-Wiki benchmark (query split)
extends the task beyond recognition, requiring non-trivial reasoning to resolve
the query question.

Visual Entity Recognition (VER) presents unique challenges compared to
general Visual Question Answering (VQA) [1,45]. The first challenge lies in the
answer label space comprising over 6 million Wikipedia entities, which is pro-
hibitive for classifier-based VQA models [58] as many entities considered in this
ontology are visually very similar. The second issue involves generation-based
VQA solutions [18, 40], where hallucinations can lead to generated text that
is not grounded to the entity space. Lastly, existing VQA approaches fail to
consider the visual information of candidates [41, 65]. Entity images from the
knowledge base also play a significant role when disambiguating between enti-
ties with similar identifiers but different visual appearance. These methods also
struggle with out-of-domain generalization and multi-hop reasoning, challenges
which are covered by the unseen and query split of the Oven-Wiki dataset.

In this work, we introduce an Autoregressive Visual Entity Recognizer (Au-
toVER), the first approach that enables multimodal language models to perform
accurate visual entity recognition over a massive knowledge base. AutoVER
addresses entity recognition by reformulating the problem as a sequence-to-
sequence generation problem, as depicted in Fig. 1. The query image is translated
into the token embedding space using a learnable projection layer, in a manner
akin to treating images as a foreign language [43, 72]. This allows us to utilize
pre-trained multi-modal language models and enormously improves performance
on the query split of Oven-Wiki which requires reasoning over spatial relations,
commonsense, and other visually-situated contexts.
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To take advantage of visual clues on the entity side and enhance the gener-
alization capability of the model on unseen entities, we propose a unified and
compact retrieval-augmented generation (RAG) framework upon AutoVER.
Specifically, a special token <ret> is added to the vocabulary, whose last-layer
hidden states serve as the representation for the query side. A lightweight two-
layer Transformer is responsible for fusing visual features from entity images
and textual features from entity descriptions and producing a representation
for the entities, allowing contrastive learning with query-entity positive pairs in
parallel with language modeling. Unlike other RAG systems that directly use
retrieved items as context [57, 75] or infuse them into the model’s intermedi-
ate hidden states [17, 24, 39], AutoVER dynamically constructs a prefix tree
(trie) from the retrieved entity identifiers, and then generates entity identifiers
by leveraging a methodology that constrains the next possible tokens and elim-
inates invalid options based on the trie, thus ensuring the generated text can
always be grounded in retrieved candidates. To alleviate the entity granularity
problem, two hard negative sampling strategies are proposed in our contrastive-
generative framework to encourage the model to maximally distinguish between
similar entities.

In summary, AutoVER offers several advantages over baselines and prior
work on VQA in the realm of visual entity recognition: (i) It refines the recog-
nition process by integrating contrastive training into an MLLM. (ii) The pro-
posed retrieval-augmented constrained decoding framework guarantees correct
grounded entity prediction and enhances prediction over unseen entities; (iii)
AutoVER leverages pre-trained visual models and knowledge graphs for hard
negative mining which significantly strengthens our contrastive-generative frame-
work in fine-grained entity recognition; (iv) Experimental results show that
AutoVER consistently outperforms fine-tuned CLIP and PaLI variants on all
Oven-Wiki splits. For instance, AutoVER-7B achieves a 61.5% accuracy on the
Oven-Wiki entity seen split over PaLI-17B’s 30.6%, and 21.7% on entity
unseen over PaLI-17B’s 12.4%. Additionally, we evaluate AutoVER along-
side public multimodal LLMs on entity-related questions from the A-OKVQA
dataset, demonstrating that our model can effectively zero-shot transfer to out-
of-domain VQA datasets beyond Oven-Wiki. Furthermore, ablation studies con-
firm the effectiveness of the introduced retrieve-generate framework. Code is
released at https://github.com/MrZilinXiao/AutoVER.

2 Related Work

Visual Entity Recognition (VER) [28] is an emerging task for assessing the
ability of a model to perform multi-modal knowledge grounding [29,53,79]. It can
be regarded as a variant of visual question answering [1,45,59] with the key dis-
tinction that the choice set will comprise all entities in a specific knowledge base.
Earlier solutions view this problem as an image-text-to-image-text retrieval task,
where CLIP-based models [56] are fine-tuned and the top-scored answer in infer-
ence is treated as the model prediction. Alternatively, others rely on fine-tuning

https://github.com/MrZilinXiao/AutoVER
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generative language models such as PaLI [12] and GiT [8, 71] in an attempt to
match the generated text with candidate entity identifiers using sparse match-
ing approaches such as BM25 [61]. Entity Linking (EL) has been a long-standing
text-only counterpart to VER, which entails locating mentions in the document
and disambiguating them against a set of candidate entities. Our method bears
the closest resemblance with the recent generative EL paradigm [7,47,78], which
also reduces the knowledge-grounding problem into a sequence-to-sequence gen-
eration task. However, we stand out with several distinct advantages, including
the seamless integration of retrieval capabilities into the language model and the
use of explicit guidance for sequence generation.

Multimodal LLMs (MLLMs) are motivated by the remarkable reasoning abili-
ties of Large Language Models (LLMs). LLaVA [43] builds upon LLaMA [68] and
uses instruction-tuning to align visual features to the language space. The com-
mon practice of prompting MLLMs to produce proxy representations for down-
stream usage is to expand the vocabulary of language models. Such expansion
augments the MLLM functionality beyond language generation. FROMAGe [34],
GILL [33], GenLLaVa [26] and LISA [37] achieve satisfactory results over image-
text-to-text retrieval, image generation and reasoning segmentation by inserting
special tokens to augment the MLLMs original functionality. Our approach, built
upon one of the latest MLLM model architecture, presents a compelling alterna-
tive to the bi-encoder shallow dot-product interaction or encoder-decoder sparse
surface form matching employed in previous works on visual entity recognition.
Our method also integratives contrastive learning on the outputs of entities
and question pairs, analogous to the image-text contrastive learning used in
CLIP-like models [54, 56, 66] and among visual features used for self-supervised
contrastive learning [3, 11,16,25].

Retrieval-Augmented Language Models (RALMs) represent a class of NLP
solutions focusing on knowledge-intensive tasks. RALMs typically condition a
language model on relevant documents from a grounding corpus during gener-
ation, thereby enhancing the performance in knowledge-intensive language un-
derstanding tasks. Lewis et al . [39] jointly fine-tune a retriever with an encoder-
decoder model, enabling the community to explore the RALM paradigm in
language understanding. Guu et al . [23] train a bi-directional variant and also
demonstrate superior performance. Apart from retrieved items in context, Févry
et al . [17] are the first to integrate retrieved entity supervision by injecting in-
termediate representations. While augmented context helps in mitigating the
well-known issue of hallucination, it does not ensure a faithful prediction with
respect to an external knowledge base. Our retrieve-generate framework is dis-
tinct from existing retrieval-augmented methods. AutoVER reduces the candi-
date entity set from millions to hundreds for generative language models through
retrieval [30] and dynamically constrains language model generation using a pre-
fix tree. This framework coincides with the design philosophy of agents [22] in
Interactive NLP [74], where an agent interacts with the dynamic environment
by performing beam-search on all available options.
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Fig. 2: Joint training of in-batch contrastive learning and language modeling in Au-
toVER. For each training quadruple consisting of an entity image, an entity descrip-
tion, a query image and a query question, a lightweight Transformer encoder produces
the fused entity representation Ei (left half). A special retrieval token prompts the
multimodal language model to generate the query representation Qi. The query-to-
entity contrastive training (Lquery2ent) encourages the correct retrieval of entities given
the query pair, and the language modeling (LLM) helps the successful entity grounding.

3 Methodology

We first formulate the Visual Entity Recognition problem in Sec. 3.1. Then we
present the overview design of AutoVER in Sec. 3.2. We illustrate hard-negative
mining with knowledge base source and pre-trained visual model in Sec. 3.3 and
retrieval-augmented constrained decoding process in Sec. 3.4.

3.1 Problem Definition

Visual Entity Recognition can be viewed as a multimodal knowledge grounding
task, in which the model is required to process an image-text pair input x =
(Qim,Qt) and predict an entity e. Qt describes the specific intent that prompts
the model to ground some entity e in the image Qim to a label space E . Each
entity e ∈ E is a member of the knowledge base K = {(e,Eim,Edesc) | e ∈ E}
where Edesc is a text description and Eim is a set of relevant images of the entity.
To circumvent trivial solutions for some query questions, all image-text pairs are
annotated so the question cannot be correctly answered without the image.

3.2 Model Overview

AutoVER consists of two main modules: a multi-modal language model fϕ
initialized with pre-trained weights ϕ, and a multi-modal entity encoder Fφ
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that fuses the entity image and textual description. To integrate the retrieval
functionality into fϕ, we insert a special token <ret> into the vocabulary of fϕ
with its corresponding token embedding denoted as H<ret>.

We illustrate the training process in Fig. 2. For a training sample (Qim,Qt,
Eim,Edesc), we first use a frozen pre-trained CLIP visual encoder gvision and a
learnable projection Wq to extract query image features Him and the embedded
query text representations Ht as follow:

Him = Wq · gvision (Qim) ,

Ht = Wembed ·Qt,

where Wembed is the token embedding layer associated with fϕ, thus, treating the
query image features as a foreign language. We concatenate the embedded query
text representations and the query image features with the retrieval token em-
bedding to organize the input instruction to model H = [Him,Ht,H<ret>]. The
last-layer hidden states of <ret> token undergo dimension-matching projection
and L2 normalization to a hyperspherical space, serving as the representation
on the query side denoted as Q. The use of a causal attention mask in fϕ allows
this representation to incorporate the multi-modal query without leaking any
label information.

On the entity encoder side, a frozen CLIP visual encoder gvision transforms
entity image Eim into grid image features Zim, and the frozen CLIP text encoder
gtext encodes the entity identifier and description into text features Ztext. A two-
layer Transformer encoder handles the fusion of two modalities by a fusion token
as a soft prompt [38], whose design was also adopted in [32]. The final-layer
hidden states of the fusion token are also subjected to dimension matching and
L2 normalization, providing the entity representation E.
In-Batch Contrastive Training. Given normalized representations from both
the query and entity side, Q and E, we formally introduce our in-batch con-
trastive training method specifically designed for query-to-entity retrieval. While
image-text retrieval has been popular in learning joint vision and language rep-
resentations [31, 56], few studies have delved into image-text-to-image-text re-
trieval, which happens to be the focus of query-to-entity retrieval. We adopt
contrastive learning [13] and the InfoNCE loss [50] used in previous image-text
retrieval work. Starting with computing the cosine similarity for a pair of repre-
sentations,

sim(Q,E) =
Q · E

∥Q∥∥E∥
,

we minimize the InfoNCE loss for query-to-entity on a mini-batch consisting of
N query-entity pairs (Qi, Ei). Each corresponding pair is considered a positive
pair and others are treated as negatives. τ is a learnable temperature parameter.
Our formulation is as follows:

Lquery2ent = − 1

N

N∑
i=1

(
log

exp (sim (Qi, Ei) /τ)∑N
j=1 exp (sim (Qi, Ej) /τ)

)
.
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Fig. 3: Retrieval-augmented constrained decoding illustration of our proposed Au-
toVER inference process. The representation Q will query a pre-cached entity
database constructed using the multimodal entity encoder, and get the top-k can-
didate entities. A prefix-constrained tree is dynamically built based on retrieved entity
identifiers and guides the language model to autoregressively generate the next token,
thereby ensuring the successful grounding of generated content.

Note that we do not train for the reversed objective, i.e. entity-to-query, as it
does not align with our retrieval-augmented intuition.

In contrast to image-text retrieval which offers a unique correspondence be-
tween images and texts, query-to-entity mapping is subjective, i.e. multiple
queries in the training data are associated with the same entity. This requires
a particular sampling strategy during training to ensure that a batch does not
include the same entity, referred to as a “conflicting batch”. To preserve the in-
tegrity of the training data distribution, we implement a rejection sampling [20]
method as an alternative to standard random sampling, resorting to resampling
upon encountering conflicting batches.

Language Modeling. With organized input instruction H, we optimize the
following cross-entropy loss, which is known as the next token prediction loss in
causal language modeling:

LLM = − 1

N − n

N∑
i=n

logP (yi | H, . . . , yi−1) ,

where n is the length of H, N denotes the length of the concatenation of H
and the expected output, i.e. entity text identifier (Bugatti Veyron in Fig-
ure 2). Note that we do not backward the next token prediction loss on the input
sequence, but only on the target sequence.

The final training loss is a linear combination of the language modeling loss
and in-batch contrastive loss, denoted as follows:

L = LLM + λr · Lquery2ent,

where λr is an empirically determined trade-off hyperparameter.
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3.3 Hard-Negative Mining

To alleviate the entity granularity problem, two hard negative sampling ap-
proaches are proposed in our contrastive-generative framework, i.e. vision-hard
and kb-hard. Both approaches create entity groups used for constructing an in-
batch sampler that prefers sampling similar entities in contrastive training, yet
they differ in how they generate these similar groups. vision-hard relies on a
pre-trained ViT [15] image classifier to identify visually similar entities based
on shared prediction classes. In contrast, kb-hard uses the category hierarchy
of Wikidata as an external knowledge source, considering entities that share a
parent node in the category hierarchy as knowledge-similar entities. We refer
readers to the supplementary material for details about the construction of hard
negative groups.

3.4 Retrieval-augmented Constrained Decoding

We illustrate the proposed model inference in Fig. 3. After training, all entity
candidates are cached using the multi-modal entity encoder Fφ to construct
an entity vector database V ∈ Rn×d for efficient retrieval. Given an evaluation
sample (Qim,Qt), we first forward the MLLM for the normalized representa-
tion of the <ret> token, and query database V using top-k similarity search to
get k entity candidates. The model dynamically generates a prefix tree (trie)
that covers k entity candidates, and the trie will explicitly guide entity identi-
fier generation by eliminating impossible decoding paths when autoregressively
generating tokens. The retrieval process takes into consideration the image of
entities and improves the model towards out-of-domain entities. Moreover, the
retrieval-augmented constrained decoding guarantees the grounding of the gen-
erated content to the knowledge base, alleviating the issue of hallucinations.

4 Experiments

We describe the experimental setting in Sec. 4.1 and report the main results
in Sec. 4.2. We present the zero-shot generalization results in Sec. 4.3 and ab-
lation study in Sec. 4.4 with discussions. For an intuitive demonstration of our
model, we present the case study in Sec. 4.5.

4.1 Settings

Metrics. We follow the standard setup in Hu et al . [28], which uses accuracy
and harmonic mean to evaluate model performance on different data splits. The
harmonic mean of each split will equally weigh the importance of the seen
and unseen subsets and penalize models that show weakness in either aspect.
Finally, we report the overall harmonic mean on the Entity and Query splits
as the final metric for the validation and test sets.
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Table 1: Comparison among models on the Oven-Wiki validation set. We report
accuracies for the seen and unseen subsets and the harmonic mean of each split (hm).
Metrics of CLIP and PaLI variants are from [28]. For each subset, bold indicates the
best metric.

Entity Split Query Split Overall

Category Method seen unseen hm seen unseen hm hm

Discriminative
CLIPViTL14 5.4 5.3 5.4 0.8 1.4 1.0 1.7
CLIP FusionViTL14 32.7 4.3 7.7 33.4 2.2 4.2 5.4
CLIP2CLIPViTL14 12.6 10.1 11.2 4.1 2.1 2.8 4.4

Generative PaLI-3B 21.6 6.6 10.1 33.2 14.7 20.4 13.5
PaLI-17B 30.6 12.4 17.6 44.2 22.4 29.8 22.1

Zero-shot BLIP-2Flan-T5-XXL 8.6 3.4 4.9 24.6 17.7 20.6 7.9
GPT-4V 29.8 19.3 23.4 56.5 52.7 54.5 32.9

Ours AutoVER-7B 61.5 21.7 32.1 69.0 31.4 43.2 36.8
AutoVER-13B 63.6 24.5 35.6 68.6 32.3 43.9 39.2

Data Pre-processing and Models. We pre-process all query and entity im-
ages by resizing them into 336 × 336 pixels with padding to keep an identi-
cal aspect ratio. Entity descriptions are truncated to 77 tokens to fit the con-
text window size of CLIP by cutting off sentences to the maximum available
ones. Since query texts are typically short, no truncation is needed for query
texts. Encoders on the entity side and visual encoder in MLLM are pre-trained
CLIP-ViTL/14-336px. The MLLM is initialized with the vicuna-7b-v1.5 or
vicuna-13b-v1.5 checkpoint and corresponding visual projectors pre-aligned
on a 558k subset of LAION [63], CC [9] and SBU [52] curated by Liu et al . [42].
Training and Evaluation. We train on the entity train and query train splits of
Oven-Wiki, which consists of nearly 5 million query-entity pairs. We conduct all
pieces of training in a batch size of 256 on 32 V100-SXM2-32GB GPUs. We refer
to the supplementary material for hyper-parameter choices and training details.
We set λr to 1 for all training settings. Due to a limited compute budget, we select
10% and 50% of the training data through weighted sampling according to entity
occurrence frequency to facilitate ablation studies and reporting final results.
For the same reason, we do not run a hyperparameter search. In evaluation, the
number of retrieved entities k is set to 300 according to empirical trials on the
validation split.

4.2 Main Results

Results on the validation set are presented in Tab. 1. Our experimental results
demonstrate a consistent improvement in all data splits and subsets on Oven-
Wiki. Specifically, we observe a double accuracy improvement in the entity
seen subsets of both Oven-Wiki validation and test splits. This indicates that
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Table 2: Results of methods on the Oven-Wiki test set and human evaluation set.
Human evaluation results from [28] are highlighted in gray .

Entity Split Query Split Overall Human Eval

Method seen unseen seen unseen hm seen unseen hm

Human+ Search - - - - - 76.1 79.3 77.7

CLIPViTL14 5.6 4.9 1.3 2.0 2.4 4.6 6.0 5.2
CLIP FusionViTL14 33.6 4.8 25.8 1.4 4.1 18.0 2.9 5.0
CLIP2CLIPViTL14 12.6 10.5 3.8 3.2 5.3 14.0 11.1 12.4

PaLI-3B 19.1 6.0 27.4 12.0 11.8 30.5 15.8 20.8
PaLI-17B 28.3 11.2 36.2 21.7 20.2 40.3 26.0 31.6
GER-400M [8] 31.5 17.7 - - - - - -
llava-v1.5-7b [43] 7.5 2.1 41.9 37.4 6.2 - - -

AutoVER-7B 62.8 16.0 63.7 31.9 31.8 64.7 39.9 49.4
AutoVER-13B 65.0 18.6 65.7 32.0 34.6 68.4 44.2 53.7

AutoVER can more effectively utilize its parameter capacity, achieving stronger
in-domain visual entity recognition capabilities with fewer model parameters.
The improvement on the query seen subsets is slightly lower compared with
the entity seen improvement but still significant with +24.8% relative accu-
racy difference. We attribute this to the inherent reasoning and visual local-
ization capabilities within the MLLM, a proficiency that has been extensively
demonstrated across various benchmarks targeting MLLMs [10,48].

On unseen subsets, accuracy is severely impacted by queries whose answers
involve out-of-domain entities, particularly in the Entity split. Nevertheless, Au-
toVER still outperforms the largest model, PaLI-17B, which can be attributed
to the retrieval-augmented framework eliminating many improbable options for
the decision-making of the MLLM.

We report results on test and human evaluation set in Tab. 2. Similarly,
AutoVER-13B achieves the best performance on subsets and splits of the test
set. However, it must be acknowledged that there remains a gap between our
results and those of Human + Search in the human validation set, particularly
in the human unseen subset, where the difference reaches 35.1%.

In addition, we report the zero-shot visual entity recognition abilities of the
largest BLIP-2 [40] checkpoint and GPT-4V3 [51] on the validation set in Tab. 1,
whereas no fine-tuning is performed on the training dataset. For BLIP-2, zero-
shot generated outputs are grounded to Wikipedia using BM25, following gen-
erative baseline methods. As for GPT-4V, its elaborate generation, a result of
instruction tuning, impedes effective evaluation with BM25. Hence, we adopt a
partial matching evaluation strategy, treating the presence of the entity identi-

3 Due to the limited budget, we only conduct experiments on 10% of Entity Split(Val)
and 50% of Query Split(Val). Also, the detail of the image is set to low to minimize
prompt token consumption.
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fier in the generated text as a true positive. While BLIP-2 performance is antici-
pated, as its lack of fine-tuning hinders the acknowledgment of entity grounding
intents, GPT-4V has surprisingly exceptional performance on the query split.
Nevertheless, GPT-4V poor performance on the entity split still leaves it trail-
ing behind AutoVER. Furthermore, the opacity of its training data prevents
us from determining if GPT-4V excellent zero-shot performance is attributable
to possible data leakage.

4.3 Zero-shot Generalization Results

Although Oven-Wiki has already incorporated 14 classic datasets4 from im-
age recognition and visual question answering, along with extensive annotation
efforts that ground answers to the knowledge base, we still hope to test the gen-
eralization capability of our method using additional out-of-domain datasets. As
such, we manually curated a subset from the A-OKVQA [64] validation dataset.
The subset does not overlap with any dataset sources in Oven-Wiki and covers
all question-answer pairs in the A-OKVQA validation split whose answer can
be grounded to entities in the Wikipedia knowledge base. We name the subset
A-OKVQA-Ent to emphasize this distinct property. Following the design of
Oven-Wiki, we divide the subset into seen and unseen splits depending on
whether the answer entity is in the Oven-Wiki train set. This subset includes
478 entries out of 1,145 in the A-OKVQA validation set, of which 322 are iden-
tified as seen, while the remaining 156 are classified as unseen.

To adhere to the evaluation setting of A-OKVQA, we adopted two evaluation
approaches – multi-choice and entity match. In the multi-choice setting,
AutoVER constructs a prefix tree with four available options to guide gener-
ation, while for other models, options are numbered in the prompt and either
the correct option number or an exact entity identifier match in the response is
considered a true prediction. In the entity match setting, a partial match of
the entity text identifier within the generated response qualifies a correct pre-
diction. To ensure equitable comparison, baselines included are other generative
models comparable in size with AutoVER-7B, specifically LLaVA [43] and its
improved v1.5 version [42], OpenFlamingo [4], and InstructBLIP [14]. While
we expect that all models have not seen the A-OKVQA dataset so that we can
assess the zero-shot generalization ability, it is important to acknowledge that
LLaVA-v1.5 has been fine-tuned with 50k A-OKVQA multi-choice instructions,
potentially giving it an edge. For context, we still include LLaVA-v1.5 results
although they are not directly comparable.

We present results on A-OKVQA-Ent in Tab. 3 and Tab. 4, and refer read-
ers to the supplementary material for qualitative analysis on this dataset. Our
method still outperforms baseline models across all evaluation settings, with the
exception of multiple-choice LLaVA-v1.5 which has been tuned with in-domain

4 ImageNet21k-P [60,62], iNaturalist2017 [70], Cars196 [35], SUN397 [77], Food101 [6],
Sports100 [19], Aircraft [44], Oxford Flower [49], Google Landmarks v2 [76], VQA
v2 [21], Visual7W [80], Visual Genome [36], OK-VQA [46], Text-VQA [67]
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Table 3: Model accuracies on A-OKVQA-Ent under multi-choice evaluation. Here
methods are provided with multiple choices for answers in the prompt. (∗) Denotes
unusual results due to failure to adhere to the provided multiple-choice prompts. Bold
indicates the best metric under the same setting.

Supervision Method seen unseen Overall

Zero-shot

OpenFlamingo-9B∗ 5.9 9.0 6.9
InstructBLIPvicuna-7B 53.7 49.4 52.4
LLaVA-v1-7B∗ 13.0 10.3 12.1
AutoVER-7B (Ours) 67.7 52.5 62.8

Fine-tuned LLaVA-v1.5-7B 72.4 73.7 72.8

Table 4: Model hit rates on A-OKVQA-Ent under entity match evaluation. Here
methods are not provided with multiple choices in the prompt and are deemed suc-
cessful if they produce the right entity anywhere in their output.

Supervision Method seen unseen Overall

Zero-shot

OpenFlamingo-9B 39.8 30.8 36.8
InstructBLIPvicuna-7B 38.8 34.0 37.2
LLaVA-v1-7B 45.7 36.5 42.7
AutoVER-7B (Ours) 61.3 42.3 55.0

Fine-tuned LLaVA-v1.5-7B 47.8 42.9 46.2

instructions. Interestingly, we find that LLaVA-v1.5 in the entity match eval-
uation setting still falls short of AutoVER-7B, although it has seen in-domain
samples. We also observed that LLaVA-v1 and OpenFlamingo, with inadequate
instruction tuning, find it challenging to comply with the multiple-choice setting,
and instead generate content unrelated to the given options, leading to their sig-
nificantly lower metrics. Those findings reveal that generative language models
struggle to adapt well to out-of-domain instructions and that unrestricted gen-
eration is prone to hallucinations in tasks requiring precise recognition. This
further emphasizes the advantages of retrieval-assisted decoding-time augmen-
tation for such tasks.

4.4 Ablation Study and Discussion

We present ablation studies exploring the effect of retrieval augmented genera-
tion, constrained decoding, and hard negative mining in Tab. 5. Ablations are
conducted with 10% of the training data and as such the metrics in ablations
differ from our main results and we refer to our model as AutoVER-7B-0.1.
Retrieval Augmentation. We first focus on the absence of retrieval augmenta-
tion in AutoVER. Without retrieval, the model performs constrained decoding
over a prefix tree composed of all Wikipedia entity identifiers instead of a set of
retrieved candidates. We notice a slight performance gain on the seen subset,
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Table 5: Ablation study of AutoVER-7B-0.1 on Oven-Wiki entity Split(Val).

Method seen unseen hm

AutoVER-7B-0.1 48.9 19.0 27.4
+ w/o retrieval 50.7 0.6 1.2
+ w/o constrained decoding 46.8 0.6 1.2
+ w/ LoRA 43.5 2.8 5.3

AutoVER-7B-0.1-[CLS] 12.8 0.1 0.2

likely due to the gold entity not being covered in retrieval. Conversely, the inte-
grated retrieval design is found to significantly improve the performance of Au-
toVER on the unseen subset from non-viable to viable. Retrieval-augmented
constrained decoding narrows down the decision-making scope of the language
model, allowing AutoVER to generate entity identifiers that are never seen
during training.

Constrained Decoding. Upon the excluding of retrieval augmentation, we pro-
ceed to disable the entire constrained decoding mechanism, reverting AutoVER
to greedily decode the next token, where grounding to an external knowledge
base is no longer assured. The consequent decrease in seen accuracy demon-
strates that constrained decoding effectively alleviates hallucinations of the model
in predicting entities. Unfortunately, since neither checkpoints of encoder-decoder
variants from [28] in Table 1 and 2 nor PaLI pre-trained weights are publicly
available, we are unable to assess whether our proposed decoding-time augment-
ing methods can bring universal improvement on generative baselines.

Parameter-Efficient Tuning (LoRA). Our ablations extend to the impact
of parameter-efficient tuning methods on AutoVER. Specifically, we configure
a low-rank adapter (LoRA) [27] with a rank of 128 and alpha set at 256 and
train this LoRA-variant of AutoVER. The results reveal that the efficacy of
LoRA falls short of expectation and explicitly harms the recognition performance
on the seen subset. We leave more specialized efficient tuning methods for the
generative VER framework as future work.

Autoregressive Model or Classifier. One may attribute the success of Au-
toVER to the large model size of its underlying MLLM and accompanied ex-
pressive capacity instead of our proposed design. In response to that, we de-
vise a [CLS] variant of AutoVER. It follows the classical design of treating a
decoder-only LM as a classifier. Specifically, we introduce a new [CLS] token
into the MLLM vocabulary and append this token at the end of each query
image-question pair. The corresponding last-layer hidden states are then fine-
tuned for classifying the query into the 20,549 existing entities in Oven-Wiki.
We observed a significant performance degradation in this setting, particularly
in the unseen subset. This highlights the ineffectiveness of classifier-based VQA
methods in the realm of visual entity recognition, indicating that our model
performance stems from more than just its size.
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What is the model of this aircraft?

What is the manufacturer of this 
aircraft?

Input Retrieved Candidates

Boeing	717

MLLM Decision

Douglas	DC-8 Boeing	777 Airbus	A320 Boeing	767 Boeing	767

Boeing Fairchild	Aircraft British	AerospaceCessna Suzuki Boeing

What is the topping on the hot dog 
called?

What kind of food is it?

Green	sauce Relish Curry Omelette Marmite Relish

Cheeseburger Taco Hot	dog Ham	sandwich Pizza Hot	dog

Fig. 4: Illustration of selected query image-question pairs, retrieved candidates and
AutoVER-7B decisions. AutoVER adeptly captures slight variations in the query
text and retrieves entirely different entity candidates, which forms the basis for the
generative decisions from the language model.

4.5 Case Study

We illustrate the retrieved entity candidates and model decisions on four repre-
sentative image-question pairs. We note that for the same query image, questions
with different intents lead to retrieval representations with semantic relevance
to the intent, laying a solid foundation for the subsequent constrained genera-
tion. For instance, in the upper part of Fig. 4, the question asking for the specific
model of airplane prompts the model to retrieve various kinds of airplanes. With
a slight modification from “model” to “manufacturer” in the query question, the
model adapts to retrieve famous airplane manufacturer brands instead of plane
models. Likewise, the model is also proficient in managing queries that demand
visual localization and reasoning abilities, as depicted in the lower part of Fig. 4.
We refer to the supplementary material for the error analysis and more case
studies with comparisons against GPT-4V.

5 Conclusion

We present AutoVER, a compact retrieval-augmented generation framework
specifically designed for visual entity recognition. Utilizing a novel constrained
decoding technique, this approach effectively overcomes the challenges of low
performance in recognizing out-of-domain entities while demonstrating remark-
able proficiency in questions that require visually-situated reasoning. AutoVER
marks a significant advancement in visual entity recognition by doubling accu-
racy on nearly all challenging subsets of benchmarks. We discuss limitations in
the supplementary material.
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