
20 Z. Zhu et al.

A Event-Driven Processing

Previous studies [62–64] have demonstrated that the commercial event-driven
processor (e.g., GrAI VIP [55]) can achieve latency and FPS performance com-
parable to embedded GPUs (e.g., Nvidia Jetson Nano [34]) on standard-trained
DNNs while consuming over one order of magnitude less energy per frame
[33, 53, 61] and featuring approximately 54 times smaller chip size (e.g., GrAI
VIP (7.6 mm×7.6 mm) vs. Nvidia Jetson Nano (69.6 mm×45.0 mm). Moreover,
the specific optimization method, event suppression, significantly improves DNN
inference performance by reducing event-triggered computations and memory
accesses in the network, leading to superior latency, FPS, and energy efficiency
compared to embedded GPUs. In the following subsections, we expand upon Sec-
tion 4 with a more detailed explanation of 1) the inherent relationship between
spatial ∆-Σ suppression and its temporal counterpart (Appendix A.1), 2) how
event-driven processors efficiently exploit activation sparsity (Appendix A.2), 3)
the implementation of line-based suppression in event-driven convolution (Ap-
pendix A.3).

A.1 Spatial Redundancy in Images

Segments shift → Camera motion

N segments

segment 0 Parallel Processing n-1 segments

Frame t-1 Frame t

Single Frame

Synthetic Video (through segments shift)time

each a lines

Smaller a → Small motion → More Redundancy

Fig. 8: Illustration of the internal relationship between ELSE and temporal suppres-
sion. Each segment represents an equally-cut tile within a given image, with no limita-
tions in rows, columns, or blocks. The demonstrated shift is primarily horizontal but
may also occur vertically.

The essence of spatial ∆-Σ suppression is to generate a 2-frame video on a given
image through segment shifting, depicted in Figure 8. As shown in the purple

ELSE: Line-based Spatial Sparsity Exploration 21

rectangle, instead of processing ∆-Σ modulation sequentially from the first seg-
ment to the last, we can reconstruct the 0th ∼ n-1th segments as Framet−1 and
the 1th ∼ nth segments as Framet, then subtracting two frames for a delta map.
This delta map is equal to the delta map obtained by the sequential subtraction
between the nth and n-1th segments. We notice that the two newly generated
frames exhibit a shift of one segment in their pixel positions, with each seg-
ment containing a lines. This shift can be seen as camera motion, and when
it’s minimal, the two frames will exhibit a strong correlation. Thus, a should be
set to 1, considering that one line is the smallest component of each segment.
Furthermore, as the synthetic video consists of two frames with identical values
but shifted in pixel positions, the nth line convolution outputs of Framet can be
reused as the n-1th line outputs of Framet−1, leading to the reduction of state
memory footprint. Hence, line-based suppression can attain a sparsity
level comparable to temporal suppression, while only necessitating a
one-line state memory footprint for ∆-Σ modulation. It is worth men-
tioning that the pixel correlation within the synthetic video not only depends
on the shift a but also on the image size. For instance, a one-line shift in a
1920×2180 image results in much less motion than in a 256×512 image. More
details can found in Appendix B.2.

A.2 Event-Driven Convolution

Event-Driven Architectures [12, 13, 43, 53] are a type of dataflow architectures
that emulate the brain’s energy and compute efficiency by executing the net-
works in an asynchronous, parallel and sparsity-aware event-driven manner. The
event-driven convolution is, known as input-centric convolution, operated in a
transposed fashion [4]. As illustrated in Fig. 9, the standard convolution reduces
input values (red) via the weight kernel (yellow); the event-driven convolution
broadcasts non-zero input activations (blue) via the transposed kernel (yellow).
Event processing solely triggers a convolution when there’s an arrival event in
the input activation maps, meaning that the entire accompanying compu-
tations and memory accesses can be skipped in the processing if the
pixel stays inactive.

Standard Convolution Event-Driven Convolution

Activation

Fig. 9: Comparison between Standard Convolution (Output-Centric) and Event-
Driven Convolution (Input-Centric).

22 Z. Zhu et al.

Moreover, given that the event-driven convolution processes inputs in an element-
wise manner, it allows convolutions to be triggered line-by-line sequentially
within the input activation maps. This facilitates DNNs to execute in a deep
layer fusion mode, dubbed depth-first execution [5, 23, 38, 40]. The depth-first
mode promptly deallocates the utilized state memory (e.g., kh lines) once re-
lated computations conclude, thereby only a portion of accumulation maps is
stored in on-chip SRAM, as depicted in Activation Suppression of Figure 10.

A.3 Line-based Event-Driven Convolution

In DNNs, the input activation map usually represents the output of an inter-
mediate activation layer [17,22,39,46] and serves as the input to the succeeding
convolution layer. Our line-based event-driven convolution initially computes
element-wise differences (∆) between adjacent activation lines and processes the
convolution only on non-zero line changes. The convolution output of the ∆ in-
put line is then summed up with the one of the previous line, a process named
Σ. More precisely, as shown in Figure 10, the first line of input activation map
is processed directly by the convolution (green) and accumulate the outputs (Σ,
blue) on the state map (grey), while the second line subtracts the corresponding
values in the first line to generates the sparsified ∆ line, the convolution output
of ∆ line is accumulated on the state of the first line and generates the equiva-
lent convolution output of the second line, then this new output is shfited to its
corresponding state position for state accumualtion. The process is repeated for
the following lines until the whole input activation map is completed.
Note that our line-based event-driven convolution differs from temporal con-
volution in that it integrates ∆-Σ modulation across adjacent activation lines
(spatially) rather than across consecutive frames (temporally). This approach
offers a notable advantage by decreasing the memory usage in hardware de-
ployment. Specifically, the spatial ∆-Σ method enables DNNs to operate in a
depth-first mode, necessitating only the orange region as state, depicted in Line-
based Suppression in Figure 10. This region is substantially smaller compared
to the one required for Temporal Suppression.

B Supplementary Materials for Experiments

B.1 Experimental Setup

Datasets: We employ three widely-used video datasets, namely MPII [3], UA-
DETRAC [56] and Cityscapes [11], as testbeds to evaluate our method ELSE
across various applications, encompassing pose estimation, object detection and
semantic segmentation. MPII and Cityscapes capture footage from moving cam-
eras with distinct motion characteristics, while UA-DETRAC features recordings
from static cameras for traffic surveillance. These video datasets enable the in-
vestigation of our approach in both spatial and temporal domains. Additionally,
to examine the suppression performance of ELSE on single input images, we

ELSE: Line-based Spatial Sparsity Exploration 23

Pr
oc

es
si

ng
 O

rd
er

Event-Driven Convolution

Activated
Neuron

Kernel

Add
Line-based Suppression (Spatial)

Processing
Order

Input Activation Map Event-Driven Convolution Accumulation Map

Activated
Neuron

Accumulation Map

Temporal Suppression (Temporal)

Kernel

Shift

Pr
oc

es
si

ng
 O

rd
er

Input Activation Map Event-Driven Convolution

Activated
Neuron

Kernel

Activation Suppression (Spatial)

Accumulation Map

Input Activation Map

Ours

Fig. 10: Illustration of the proposed line suppression method ELSE on a convolution
layer. The blue segment indicates the activated neurons at execution time t. The gray
segment indicates the activated neurons at execution time t − 1. The orange segment
represents the required state, which reserves memory footprint on hardware for event-
driven convolution processing.

also conduct experiments on the image datasets VOC [18], ImageNet [14], and
DIV2K [1,32] for tasks such as object detection, image classification, and super
resolution, respectively.
Applications: We conduct extensive event suppression experiments to showcase
the effectiveness of our proposed method ELSE and its mixed-strategy variants
in both high-level vision tasks, such as image classification, object detection,
semantic segmentation, and human body pose estimation, as well as low-level
vision tasks like super resolution.
Implementation details: The standard models (except MobileNet/ImageNet)
are trained from scratch but initialized by pre-training on ImageNet [14]. All
event suppression experiments have been conducted on these standard models.
We utilize only half of the standard training epochs and decay the learning
rate by a factor of 10 at 1/3 epoch. To ensure a fair comparison, we adhere to
the same training schedules (if training is necessary). Additionally, for hardware
efficiency and model deployment simplicity, we implement power-of-two values
for all policy thresholds in the examined networks.
Furthermore, previous studies [21,35,61,62,64] focus solely on minimizing event
numbers, neglecting variations in MACs per event, especially in modern lightweight
network architectures like MobileNets and EfficientLite. To ensure fair compar-
ison, we also weight sparsity-inducing penalties with event-triggered computa-
tions in those compared state-of-the-art (SOTA) methods, leading to superior
overall MAC reduction compared to the initial implementations.

24 Z. Zhu et al.

Finally, we minimize event-triggered computations (MAC) within a 0.3% relative
accuracy drop. For human body pose estimation, we report the results on the
validation set of MPII with input size 256×256 and use the PCK metric with a
detection threshold of 0.5 [58]. For object detection, we report the results on the
validation set of UA-DETRAC with input size 300×300 and the validation set
of VOC(2007, 2012) with input size 640×640, using the mean Average Precision
(mAP) with an IoU threshold of 0.5 in VOC format [18]. For semantic segmen-
tation, we report the results on the validation set of Cityscapes with input size
256×512 and use the pixel intersection-over-union averaged across the 19 classes
(mIoU) [10]. For super resolution, we report the results on the validation set of
DIV2K [1] with 4× downscaled input images and use the peak signal-to-noise
ratio(PSNR) [36].

B.2 Effect of image size on ELSE

We set the same threshold value of 2−2 for three experiments with different
event suppression methods on resized images from Cityscapes dataset [11]. Note
that thresholds for quantization and line-based suppression indicate quantization
scales. Figure 11a illustrates the effect of image size on the pixel suppression,
where a higher percentage of non-zeros indicates fewer suppressed pixels. We
observe that thresholding and quantization exhibit similar suppression perfor-
mance, which even slightly decreases as the image size increases. However, our
line-based suppression demonstrates additional suppression gain over the other
two approaches consistently across various image scales. This gain is significantly
enhanced as the image size increases. Thus, larger image sizes yield more bene-
fits in line-based suppression, potentially resulting in comparable or even better
computation savings than temporal suppression, as depicted in Figure 12.

B.3 Effect of quantization on ELSE

We experiment with different threshold values (i.e., quantization scale) for line-
based suppression on resized images from Cityscapes dataset [11]. Figure 11b
illustrates the effect of quantization in line-based suppression, where a higher
percentage of non-zeros indicates fewer suppressed events. We observe that in-
creasing the threshold value in quantization consistently reduces the non-zero
values across images of different sizes. Additionally, the combination of a high
threshold and large image size can effectively suppress events close to zero.

B.4 Layerwise comparison between ELSE and Temporal Method

The layerwise results of state memory cost and computation saving ratio of
ELSE and CATS [62] are presented in Figure 12. As shown in the green boxes,
we observe that ELSE achieves a comparable suppression effect to temporal
suppression (Temporal/ELSE (MAC) is close to 1), while CATS requires exten-
sive additional state memory footprint in those layers. These convolution layers

ELSE: Line-based Spatial Sparsity Exploration 25

(a) Image Size vs. Percentage of Non-Zero
Pixels (Fixed Threshold: 2−2),

(b) Threshold vs. Percentage of Non-Zero
Pixels.

Fig. 11: Study of the suppression effect of image size (a) and threshold value (b) with
resized images from Cityscapes [11]. Specifically, we consider None: 2−5, Conservative:
2−5, Moderate: 2−3, and Aggressive: 2−2 in (b).

share the commonality of having large-size input activation maps, consuming
serious memory footprint for temporal execution. The observation suggests that
replacing temporal suppression of large-size input layers with ELSE could lead
to memory savings and not compromise the achieved computation reduction.
Additionally, it is worth mentioning that ELSE shares the same ∆-Σ modula-
tion and event transmission policy (i.e., quantization) as temporal approaches,
such as CATS [62], DAL [61] and SpArNet [33]. We can efficiently allocate the
replaceable layers following Equation (9) and replace them without incurring any
retraining costs. However, other temporal approaches [16, 45] employ different
event transmission policies than ELSE. To achieve significant memory savings
with these approaches, retraining is required.

B.5 Results on Non-ReLU Activation Networks

Modern deep neural networks [20,24,26,36,52] often incorporate advanced activa-
tion functions (e.g., Swish [46] and SiLU [17]), or even remove ReLU activation
functions (e.g., linear activation [26, 36, 52]) to seek exceptional performance.
However, these Non-ReLU Activation Networks lack natural activation sparsity,
making it challenging for sparsity-inducing penalties [21, 35] to directly induce
sparsity. One promising engineering approach is to simply replace those advanced
activation functions with ReLU, which may result in approximately 1% accu-
racy drop [30, 64]. However, our method ELSE can efficiently induce sparsity
in those networks without compromising accuracy. As illustrated in Figure 13a,
the l1 regularization method [21] barely reduces computations compared to the
dense model, even with a sacrifice in accuracy. In contrast, ELSE can reduce
computations by a factor of 1.95 and it surpasses the state-of-the-art (SOTA)
thresholding method STAR [64] in cases of low accuracy drop. Furthermore, our
mixed spatial approach, Mix(ELSE, STAR), integrates the layerwise strengths
of ELSE and STAR, resulting in a significant computation reduction by a factor
of 1.62 over ELSE.

26 Z. Zhu et al.

(a) Semantic Segmentation

low highlow high

(b) Human Body Pose Estimation

low high

(c) Object Detection

Fig. 12: An extension to Figure 5. Layerwise state memory cost (top) and MAC ratio
(bottom) between our method ELSE and a temporal suppression method CATS [62] for
AI applications: semantic segmentation (a), pose estimation (b), and object detection
(c). Highlighted in green boxes are layers where temporal suppression yields minimal
compute reduction gains compared to ELSE, while incurring heavy memory cost.

ELSE: Line-based Spatial Sparsity Exploration 27

B.6 Results on Various AI Applications

Figure 13 demonstrates accuracy/computation Pareto curves for various high-
level and low-level vision applications. Adjusting the coefficients of sparsity-
inducing penalties for ELSE and its mixed variants, such as Mix(ELSE, STAR)
and Mix(ELSE, CATS), can reduce computational costs but may lead to in-
creased error rates. As illustrated in Figure 13a and Figure 13c, our mixed spa-
tial approach, Mix(ELSE, STAR), consistently outperforms the SOTA spatial
approach STAR [64] on the Pareto frontier, achieving significantly lower com-
putational resources with comparable accuracy. Furthermore, previous works
[16, 45, 61, 62] demonstrate that the temporal suppression approach achieves
state-of-the-art event suppression performance when a video dataset is available.
To reduce the state memory footprint of CATS while maintaining its SOTA sup-
pression performance, we replace the memory-overhead layers in CATS by our
method ELSE. As a result, our spatio-temporal mixed approach, Mix(ELSE,
CATS), yields additional computation savings over ELSE, achieving new Pareto
frontiers across conducted experiments, as illustrated in Figure 13d, Figure 13e,
and Figure 13f.

28 Z. Zhu et al.

1.95 x
1.62 x

(a) Object Detection (b) Super Resolution

(c) Image Classification (d) Semantic Segmentation†

(e) Object Detection†

(f) Pose Estimation†

Fig. 13: Accuracy/computation(GMAC) trade-offs across diverse event suppression
methods on different applications. GMAC denotes billion event-triggered multiply-
accumulates. † indicates datasets include videos for both training and evaluation. Our
proposed mixed approach consistently represent the Pareto frontier in all experiments.

