
ELSE: Efficient Deep Neural Network Inference
through Line-based Sparsity Exploration

Zeqi Zhu1,2 , Alberto Garcia-Ortiz2,3 , Luc Waeijen1 , Egor Bondarev2 ,
Arash Pourtaherian1 , and Orlando Moreira1

1 Snap lnc.
2 Eindhoven University of Technology, Netherlands

3 University of Bremen, Germany

Abstract. Brain-inspired computer architecture facilitates low-power,
low-latency deep neural network inference for embedded AI applications.
The hardware performance crucially hinges on the quantity of non-zero
activations (i.e., events) during inference. Thus, we propose a novel event
suppression method, dubbed ELSE, which enhances inference Efficiency
via Line-based Sparsity Exploration. Specifically, it exploits spatial cor-
relation between adjacent lines in activation maps to reduce network
events. ELSE reduces event-triggered computations by 3.14∼6.49× for
object detection and by 2.43∼5.75× for pose estimation across various
network architectures compared to conventional processing. Additionally,
we show that combining ELSE with other event suppression methods
can either significantly enhance computation savings for spatial suppres-
sion or reduce state memory footprint by > 2× for temporal suppres-
sion. The latter alleviates the challenge of temporal execution exceeding
the resource constraints of real-world embedded platforms. These results
highlight ELSE’s significant event suppression ability and its capacity to
deliver complementary performance enhancements for SOTA methods.

Keywords: efficient neural networks · activation sparsity exploration

1 Introduction

Deep neural networks (DNNs) have demonstrated exceptional performance on
accuracy and efficiency across a spectrum of vision AI benchmarks. Nonetheless,
the substantial computational requirements for DNN inference contribute to
elevated serving costs (e.g., latency, energy and area) on hardware, particularly
evident in edge applications, such as smart wearable sensors and mobile devices.

Novel AI computing architectures are emerging to tackle these challenges. In-
spired by human brain’s efficiency, an innovative paradigm, event-driven com-
puter architecture, has garnered significant attention from both academia [15,
19,28,43,49,53] and industry [2,7,12,13,55]. A fundamental distinction between
event-driven processors and conventional hardware (e.g., GPUs, CPUs) lies in
the way of zero value processing. More precisely, conventional hardware processes
all activations by default. Despite software support, zeros cannot be efficiently

https://orcid.org/0000-0002-8614-9855
https://orcid.org/0000-0002-6461-3864
https://orcid.org/0000-0003-3491-0777
https://orcid.org/0009-0005-2452-7389
https://orcid.org/0000-0003-4542-1354
https://orcid.org/0000-0003-2362-4169

2 Z. Zhu et al.

discarded. In contrast, event-driven processors are designed to efficiently han-
dle dynamic sparse activation patterns, solely triggering memory accesses and
multiply-accumulate (MAC) operations only for non-zero values.

Previous studies [61, 62, 64] have demonstrated that suppressing events can
roughly proportionally reduce latency and conserve energy on real-world embed-
ded platforms. Consequently, devising an efficient event-suppression technique is
crucial for improving the overall efficiency of event-driven processing.

(b) Computation Savings on Mobile Network

(c) Memory Savings(a) Persistence Across Lines

Row-based Suppression
(horizontal line)

Column-based Suppression
(vertical line)

1.22 GMAC/frame

C
ar

 D
et

ec
tio

n

Conventional ELSE

60.19% Sparsity 61.90% Sparsity

Example Image

Neighboring pixels in the same object are highly
correlated

bus row col

road

row

col 0.19 GMAC/frame

0.12 GMAC/frame

Mix (ELSE, Temporal)

Fig. 1: Sparsity Exploration via Line-based Suppression. (a) High spatial correlation
among neighboring pixels within the same object is leveraged for substantial sparsity
through line-based suppression. (b) ELSE demonstrates notable computation savings
even in mobile networks while maintaining high accuracy. (c) A spatio-temporal mixed
approach, Mix(ELSE, Temporal [62]), yields substantial computation and memory foot-
print savings, enabling DNN deployment on resource-constrained embedded platforms.

In this paper, we propose a line-based event suppression method, Line-based
Sparsity Exploration (ELSE), aimed at reducing computations in DNN inference.
Notably, "line" functions as an abstract representation, encompassing rows or
columns. Our approach is motivated by the observation of significant spatial cor-
relation between adjacent lines within an image, where their subtraction yields
a large amount of zeros. Specifically, images contain redundant spatial informa-
tion, with neighboring pixels often representing the same object (e.g., bus, road)
and exhibiting the same values post quantization, as shown in Figure 1.

In event-driven processing, convolution can be sequentially triggered line-by-line,
enabling us to implement ∆-Σ modulation [6,44,60] on activation lines to focus
solely on processing the discrete changes between them (see Appendix A). We
empirically observe that 1) quantization reduces activation resolution, enhancing
spatial correlation and minimizing activation changes; 2) training with sparsity-
inducing penalties decreases non-zero values while maintaining accuracy [21,35].
Thus, we combine quantized ∆-Σ modulation with a training approach that

ELSE: Line-based Spatial Sparsity Exploration 3

penalizes event occurrences in both activation maps and their corresponding
line-based differential maps simultaneously, aiming to encourage event sparsity
in subsequent convolution inputs. Overall, our method, ELSE, achieves 2.43 ∼
6.49× event-triggered computation savings compared to conventional processing.

ELSE is not the sole method for exploring sparsity in the spatial domain. In
recent years, various activation suppression approaches [21,35,63,64] have been
proposed to suppress events in activation maps, leading to significant latency
and power savings for optimized models on event-driven processors. While ELSE
shares the objective of exploiting spatial redundancy with these methods, it can
induce additional sparsity on top of them, particularly when feature maps exhibit
strong line-based correlation.

Moreover, the idea of leveraging spatial line correlation draws inspiration from
temporal suppression methods [9, 16, 44, 45, 47, 61, 62]. However, to harness the
computational reduction facilitated by∆-Σ in temporal processing, the temporal
approach necessitates preserving the complete activation maps (state) from time
t-1 to calculate activation changes at time t, resulting in a considerable increase
in memory footprint [9,16]. This storage demand is particularly burdensome for
embedded devices. For example, MNV2-SSDLite [48] requires 31 MB memory
for 16 bit states, exceeding the equipped on-chip SRAM of most event-driven
processors [12,13,15,28,41,43] (see Figure 3). Storing the state in off-chip DRAM,
while a potential solution, incurs approximately 100× more energy cost than on-
chip access [29,50]. Since ELSE adopts the depth-first inference solution [5,23,40,
54,59] to circumvent writing the complete intermediate feature maps in on-chip
memory, employing a layerwise mixed approach with ELSE and state-of-the-art
(SOTA) temporal methods can reduce the temporal state memory footprint by
up to 2 ∼ 4×, while maintaining computational efficiency at the temporal level.

Extensive experiments have been conducted to demonstrate the effectiveness
of ELSE in reducing the event-triggered computations (MAC). Its combination
with other prominent event suppression methods further addresses the chal-
lenges in enhancing computation savings for spatial methods and reducing state
memory consumption for temporal methods.

The contribution of this work is three-fold:
1. We propose a novel event suppression training method ELSE by exploiting

spatial correlation between adjacent lines in DNN activation maps.
2. We develop a layerwise mixed approach combining ELSE with the spatial

method STAR [64] to enhance sparsity for depth-first DNN inference.
3. We introduce ELSE to complement temporal suppression methods, address-

ing the challenge of the overwhelming memory footprint associated with
large-volume states (i.e., feature maps) for temporal DNN inference.

The remainder of this paper is structured as follow: Section 2 presents an overview
of the related work. Section 3 discusses the motivations behind this paper. Sec-
tion 4 provides a detailed description of ELSE and its mixed-strategy variants.
Section 5 shows the experimental results. Finally, Section 6 concludes the paper.

4 Z. Zhu et al.

2 Related Work

Activation Suppression aims to reduce the number of non-zero activations by
exploiting spatial redundancy. Georgiadis et al. [21] introduce an L1 sparsity-
inducing penalty on activations and update weights through penalty gradients
to induce activation sparsity. Kurtz et al. [35] go beyond L1 and investigate the
Square-Hoyer for sparsity exploration. In a similar vein, Zhu et al. [63] employs an
adaptive training schedule to incrementally adjust the sparsity-inducing penalty
during training. Recently, Zhu et al. [64] improves the accuarcy/computation
tradeoffs by solely penalizing and thresholding low-magnitude activations. Pre-
vious research has encountered limitations in sparsity enhancement, stating that
more aggressive suppression may pose a risk of irrecoverable drops in accuracy.
Temporal suppression decreases the event firing of repetitive locality con-
tents in the adjacent video frames. Habibian et al. (Skip-Conv) [25] truncate
small values in the activation differences between frames to enhance temporal
sparsity but require frequent re-initialization to sustain model accuracy. Parger
et al. (DeltaCNN) [45] and Dutson et al. (EvNets) [16] both address this is-
sue by incorporating long-term changes through ∆-Σ modulation. However, this
mechanism requires additional memory to store the long-term changes and the
complete activation maps, posing high memory requirements on the resource-
constrained embedded devices. Additionally, O’Connor et al. (QSD) [44] propose
to quantize neuron activation changes for temporal redundancy. Yousefzadeh et
al. (DAL) [61] further employ a sparsity penalty on the adjacent activation dif-
ferences for temporal sparsity enhancement. Zhu et al. (CATS) [62] suggest to
simultaneously enhance the activation and temporal sparsity for a synergistic
suppression outcome. These three methods do not necessitate the storage of
long-term changes, yet they still require retaining the complete activation maps
from the previous timestamp at runtime. On the contrary, our method, ELSE,
leverages ∆-Σ modulation to achieve temporal sparsity in the spatial domain, re-
ducing the memory footprint from a complete activation map to a few activation
lines using depth-first convolution execution [5]. This approach largely decreases
memory usage, facilitating deployment on event-driven embedded platforms.
Mix-strategy Suppression. Activation suppression constrains the hardware
performance by inadequately inducing sparsity, while temporal suppression costs
additional state memory, also limiting the performance. Yousefzadeh et al. [61]
have recognized the substantial memory footprint required for temporal state
storage and have proposed the selective use of temporal ∆-Σ modulation for
specific layers within the network, which leads to significant sparsity degrada-
tion. However, our empirical findings reveal that ELSE complements temporal
suppression by substituting high-memory cost temporal layers, achieving com-
parable sparsity with a significantly reduced memory footprint.

3 Motivation

3.1 Proportionally Enhanced Performance via Event Reduction

ELSE: Line-based Spatial Sparsity Exploration 5

Fig. 2: Relation between
event density and run-time
latency across various DNNs
on an event-driven platform
GrAI-VIP [43].

Event-driven architectures mimic the brain bio-
logical principles by featuring memory-processor
co-localization, sparsity exploitation, and data-
flow processing [2, 12, 13, 15, 19, 28, 41–43, 49, 53].
In event-driven processing, events, known as non-
zero activations or activation changes, access
weight memory and trigger heavy computations.
Suppressing an event results in the removal of its
associated memory accesses and computations on
hardware. The approximated linear relationship
between event density and on-chip latency in real
hardware is evident in Figure 2. Hence, our first
motivation is to devise an optimization technique
that intentionally suppresses events within the
inputs of computationally-intensive layers (e.g.,
Conv2D), reducing the overall network MAC computations.

3.2 On-chip Memory Constraints for Temporal Event Suppression

To harness the redundancy in temporally correlated data, retaining full-size fea-
ture maps from the previous timestamp during inference is crucial. However,
as shown in Figure 3 (right), the state memory dominates the memory con-
sumption, which often exceeds the on-chip limits (3∼26 MB) of the available
event-driven processors [7, 12, 13, 15, 28, 42, 43], thereby hindering hardware de-
ployment and high-performance dataflow mapping. Thus, our second motivation
is to develop a suppression method that preserves the attained sparsity and ac-
curacy of temporal methods, while concurrently diminishing the state memory
footprint during temporal execution.

Loihi 2

Loihi 1

NeuroFlow

SpiNNaker 2

Akida

NeuroFlow
Loihi 2

SpiNNaker 2
Loihi 1
Akida

Fig. 3: Network memory footprint estimation vs. on-chip memory constraint of event-
driven processors. The green line represents that over half of the examined networks
meet the target hardware’s memory constraints. ELSE execution (middle) and its
mixed-use with temporal execution (right) reduce network state memory compared
to temporal execution alone (left), enabling mapping on most event-driven processors.

4 Proposed Method
In this section, we elaborate on our proposed method ELSE, addressing three
key questions: 1) how to implement ∆-Σ modulation spatially for event suppres-

6 Z. Zhu et al.

sion; 2) how to enhance line sparsity exploration through training; and 3) how
to integrate ELSE with other suppression methods for improved sparsity and
memory efficiency.

Pr
oc

es
si

ng
 O

rd
er

Event-Driven Convolution

Activated
Neuron

Kernel

Add
Line-based Suppression (Spatial)

Processing
Order

Input Activation Map Event-Driven Convolution Accumulation Map

Activated
Neuron

Accumulation Map

Temporal Suppression (Temporal)

Kernel

Shift

Pr
oc

es
si

ng
 O

rd
er

Input Activation Map Event-Driven Convolution

Activated
Neuron

Kernel

Activation Suppression (Spatial)

Accumulation Map

Input Activation Map

Ours

Fig. 4: Illustration of the proposed line suppression method ELSE on a convolution
layer. The blue segment indicates the activated neurons at execution time t. The gray
segment indicates the activated neurons at execution time t-1. The orange segment
represents the required state, which reserves memory footprint on hardware for event-
driven convolution processing.

4.1 ∆-Σ Line Suppression
Figure 4 illustrates the abstract execution flow of three suppression methods
on the event-driven processor. In DNNs, the input activation map represents
the output of an intermediate activation layer [17, 22, 39, 46] and serves as the
input to the succeeding convolution layer. In contrast to activation suppres-
sion [21, 35, 63], which directly initiate computations based on non-zero activa-
tions (blue), line-based suppression initially computes element-wise differences
(∆) between adjacent activation lines, which induces more zeros due to the strong
spatial correlation. On the other hand, our line-based suppression differs from
temporal suppression by integrating ∆-Σ modulation across adjacent activation
lines rather than consecutive frames. As depth-first DNN execution promptly
deallocates the utilized state memory (orange) once the related computations
conclude, only a portion of accumulation map (e.g., mems

l = kh × lw × ch,
where kh, lw, ch represent the kernel height, line width, and feature channels,
respectively.) is stored on chip for one line computation. This storage incurs neg-
ligible memory consumption compared to temporal suppression, as evidenced by
mems

l /mem
s
f = (kh× lw×ch)/(fh×fw×ch) = fh/kh ∼ 0, if fh >> kh, where f

is feature map. Hence, our line-based method leverages both sparsity exploration

ELSE: Line-based Spatial Sparsity Exploration 7

and memory consumption in the design space. To our knowledge, we are the first
to investigate the ∆-Σ suppression in the spatial domain.

4.2 Quantized ∆-Σ Network
Consider a deep neural network as a stack ofN convolution blocks, each including
1 convolution layer and 1 activation layer. Given a linear function g (e.g., a
convolution) with a kernel w ∈ Rco×ci×kh×kw and an input activation map x ∈
Rci×fh×fw , the output state map after convolution z ∈ Rco×fh×fw is computed
for each frame as z = g(x) = w∗x, where ∗ represents the convolution operation.
Given the input activation map x, such that x(i, j) represents the value of the
activation with column coordinate i and row coordinate j in the input activation
map, the ∆ operation yields element-wise differences between respective pairs
of lines, highlighting the changes between them. The differential feature map
d ∈ Rci×fh×fw through line suppression can be described as:

d(i, j) =

{
x(i, 0), j = 0

x(i, j)− x(i, j − 1), j > 0
(1)

To obtain the values of the transformed differential feature map d, the convolu-
tion zd = g(d) = w∗d is performed. We use zd[j] to represent the convolution out-
puts of the jth line input d[j], then the accumulation operation involves adding
values from the the transformed differential line zd[j] to the corresponding values
of previously processed lines z[j − 1]. This Σ process effectively integrates the
changes to "reconstruct" the equivalent outputs as the standard convolution.

z[j] =

{
z[0], j = 0

zd[j] + z[j − 1], j > 0
(2)

We use the distributive property of the linear transformation, e.g. the convolution
g, the convolution output z[j] of the jth line input x[j] can be obtained:

z[j] = g(x[j]) = g(x[j]− x[j − 1] + x[j − 1]) = g(d[j]) + g(x[j − 1]) = zd[j] + z[j − 1]
(3)

Substituting Equation (1) into Equation (3) yields Equation (2), meaning the
outcomes of standard inference and ∆-Σ line-based suppressed inference remain
identical, effectively preventing the accumulation of errors across layers. This
capability streamlines the hardware deployment process.
Due to the robust spatial correlation between adjacent lines within the same fea-
ture map, d[j] tends to display sparsity. Prior research [44,61,62] illustrates the
efficacy of quantized activation maps in fostering sparsity for temporal suppres-
sion, a phenomenon also observed in enhancing spatial correlation between neigh-
boring lines. To quantize the activation map with a threshold t ∈ Rci×fh×fw , the
following applies to Equation (1) to generate the differential map dq ∈ Rci×fh×fw
for the convolution:

dq(i, j) =

{
⌊x(i, 0)/t⌉ ∗ t, j = 0

⌊x(i, j)/t⌉ ∗ t− ⌊x(i, j − 1)/t⌉ ∗ t, j > 0
(4)

notably, replacing d with dq in Equation (3), the equation still holds.

8 Z. Zhu et al.

4.3 Event Suppression Training

Training plays a pivotal role in enhancing the suppression performance of our
method ELSE and enables exploration of superior accuracy/computation trade-
offs. Therefore, we formulate the event suppression problem as:

min
w,t

Ltotal(w, t)

min
w,t

Ltask(w, t) + βaLact(w, t) + βdLdelta(w, t)
(5)

, where w embodies the network parameters and t represents the spatial thresh-
olds, acting as the scale factor in quantization. Ltask stands for the task loss, Lact
and Ldelta indicates the sparsity-inducing penalties applied on the quantized ac-
tivation maps and the corresponding line-based differential maps, respectively.
βa and βd are the coefficients of Lact and Ldelta used to balance sparsity explo-
ration and accuracy recovery in network learning.
The post-convolution state maps of training example n and layer l ∈ {1, ..., L}
are defined by zl,n ∈ Rco×fh×fw . For simplification, we apply l1 [21] as the
regularization term for sparsity-inducing purpose. Thus, Lact and Ldelta can be
described as follows:

Lact(w1, ..., wL, t1, ..., tL) =
1

N

N∑
n=1

L∑
l=1

ml||⌊f(zl,n(wl, ϕl))/tl⌉ ∗ tl||1

Ldelta(w1, ..., wL, t1, ..., tL) =
1

N

N∑
n=1

L∑
l=1

ml

Rl∑
r=2

||∆r(⌊f(zl,n(wl))/tl⌉ ∗ tl)||1

(6)

, where f represents the activation function [17,22,39,46] and N , L, Rl represents
the amount of training examples, the amount of network layers, and the number
of lines in the lth layer activation maps. We also notice the layerwise computation
and memory access are highly imbalanced, especially in lightweight networks [24,
31,48,51]. Thus, we weight the sparsity-inducing penalties with layerwise MAC
ml to optimize for minimal computations across the entire network.

4.4 Mixed Mapping with Temporal Suppression Mix(ELSE, ϕ†)

Figure 5 shows that layers with large feature size account for over 60% of total
state memory in temporal ∆-Σ execution. However, once checking the green
regions, the computation ratio between ELSE and CATS [62] in these layers,
MACELSEl /MACϕ

†

l , is close to 1 (where a ratio over 1 indicates more event
suppression in temporal; vice versa). Temporal methods ϕ† tend to over-consume
state memory in layers where ELSE explores significant sparsity. Thus, applying
ELSE in these layers can reduce memory usage without increasing computations.
Previous study [61] also claims that it typically requires storing l + 1 states for
temporal execution for l consecutive layers. If l is sufficiently large, the num-
ber of states closely approximates the number of layers. Thus, we propose to
select the temporal conversion in a module-wise manner rather than a layer-
wise. We segment a network into C modules Mc based on layerwise feature map

ELSE: Line-based Spatial Sparsity Exploration 9

size fh × fw. All layers within each module are subjected to one method ψ.
Through Equation (7) and Equation (8), we calculate the MAC computations
and the approximate state memory consumption of each module Mc based on
its assigned method. The amount of MACs in cth module is computed as

m(ψ)
c =

Lc∑
l=0

m
(ψ)
l =

Lc∑
l=0

el × col × fhl × fwl × p(ψ)
el

(7)

, where c denotes the module index, Lc is the number of convolution layers
in module Mc, ψ is the applied suppression method, and ml, el, col , fhl

, fwl
,

and p
(ψ)
el represent the MAC operations, neuron count, layer output channel,

layer output height, layer output width, and the percentage of activated neurons
(events) at the lth layer, respectively. If ψ is static, p(ψ)el is set to 100%.
The state memory footprint in cth module is computed as

s(ψ)
c ≈

Lc∑
l=0

s
(ψ)
l =

Lc∑
l=0

col × f
(ψ)
l × fwl

(8)

, where s(ψ)l represents the required state memory at the lth layer for the hard-
ware execution of method ψ. Meanwhile, f (ψ)l denotes the required number of
line storage for ψ. Specifically, if ψ denotes an activation suppression method,
then fψl = khl

; if ψ represents ELSE, fψl = khl
+ 1; and if ψ indicates a tempo-

ral suppression method, then fψl = fhl
. To get the configuration of block-wise

method ψ for a minimal sparse network computations under given state memory
constraints τ , we define a linear programming problem as follows:

Objective :min
α

C∑
c

(αcm
ELSE
c + (1− αc)m

ϕ†
c)

Constraints :

C∑
c=0

(αcs
ELSE
c + (1− αc)s

ϕ†
c) ≤ τ

(9)

, where ϕ† represents a chosen temporal suppression method to be combined with
our method, ELSE. α is a binary variable, either 0 or 1, where 1 indicates the

low high

high low

low

high

high

low high

low

Fig. 5: Layerwise state memory cost (top) and MAC ratio (bottom) between ELSE
and the temporal suppression method CATS [62] for object detection (left) and pose
estimation (right). Highlighted in green boxes are the layers where temporal suppression
yields minimal compute gains compared to ELSE, while incurring heavy memory cost.

10 Z. Zhu et al.

application of ELSE, and 0 denotes the implementation of the other temporal
method, ϕ†. Minimizing the objective function involves transitioning the layers
in the module towards more event-suppressed execution.

4.5 Mixed Mapping with Activation Suppression Mix(ELSE, ϕ)

Fig. 6: Layerwise MAC reduction of ELSE versus Quantized-ReLU with and without
retraining for object detection (left) and pose estimation (right).
In addition to temporal suppression, ELSE can significantly enhance the activa-
tion suppression effect by 2 ∼ 8× in layers with heavy line-based redundancy, as
depicted in Figure 6. Furthermore, we observe that the layerwise MAC ratio of
ELSE and Quantized Activation (QReLU) remains nearly consistent across all
layers before and after retraining. Therefore, we propose to initially select the
suppression method for each layer based on the standard-trained model, then
proceed with suppression training using a mixed strategy of ELSE and another
spatial method (e.g., STAR [64]). To configure the layerwise method for our
mixed suppression Mix(ELSE, ϕ), we follow Equation (9) but set a conversion
constraint γ on the layerwise compute reduction from ϕ to ELSE:

Objective :min
α

L∑
l=0

(αlm
ELSE
l + (1− αl)m

ϕ
l)

Constraints :mELSE
l /mϕ

l ≥ γ

(10)

5 Experiments and Results

5.1 Experimental Settings

Datasets: We utilize two video datasets MPII [3] and UA-DETRAC [56] as
testbeds to evaluate our method on Pose Estimation and Object Detection.
Network Architectures: We evaluate our suppression method ELSE and its
mixed variants across several DNN architectures: ResNets (RN18, RN50) [27],
MobileNets (MNV1 [31], MNV2 [48]) and EfficientNetLiteB0 (EN-Lite) [51].
These architectures encompass diverse DNN building blocks, including residual
blocks, separable convolution blockss, inverted residual blocks, and NAS searched
blocks, representing a comprehensive spectrum of DNN designs.
Evaluation Protocol: We take the accuracy, million events (MEvt), billion
event-triggered multiply–accumulates (GMAC), event reduction ratio (Err), com-
pute reduction ratio (Mrr) and state-memory-consumption (state mem.) as the

ELSE: Line-based Spatial Sparsity Exploration 11

evaluation protocol metrics for our proposed method. In this paper, the reduction
in MEvt/GMAC is consistently compared between static and dynamic measures.
In Table 1, Table 2 and Table 3, we highlight the lowest MEvt and GMAC
for the suppressed variants meeting hardware memory constraints.
Compared methods: The event suppression methods can fall into two cate-
gories: (1) Spatial methods minimizing the non-zero activations, including L1

[21], Square-Hoyer [35], STAR [64]; (2) Temporal methods suppressing the non-
zero activation changes in time domain, such as EvNet [16], DeltaCNN [45],
DAL [61] and CATS [62]. Note that all the temporal methods in this paper
maintain the same accuracy in both spatial and temporal execution. Imple-
mentation Details can be found in Appendix B.

5.2 Object Detection

Table 1 shows the event suppression results for MNV1-SSD [37] and MNV2-
SSDLite [48] on UA-DETRAC traffic dataset. The first notable observation is
that ELSE achieves MAC reductions of 6.49× and 3.14× for these two detec-
tors, respectively, surpassing the SOTA spatial method STAR by an average of
37% in computation savings. Another salient trend is the significant superiority
of temporal methods over spatial ones in suppression due to the high temporal
correlation in UA-DETRAC. Although CATS leads across four key performance
metrics (mAP@0.5, MEvt, GMAC, Mem.) among temporal methods, and con-
sumes only half the state memory compared to EvNet and DeltaCNN, its sub-
stantial state memory footprint still prevents the suppressed models from fitting
into the on-chip memory of commercial event-driven processors [12,13,43]. How-
ever, our Mix(ELSE, CATS†) can inherit the achieved low computations from
CATS while consuming 2.17× less state memory than CATS. Overall, the MAC
savings achieved by Mix(ELSE, CATS†) can reach up to 10.32× and 3.99× on
MNV1-SSD and MNV2-SSDLite, respectively, without compromising accuracy.

5.3 Human Body Pose Estimation
In addition to Object Detection, we evaluate our method across three widely-
used backbones for SimpleBaseline [58] pose estimator and compare ELSE with
activation suppression and temporal suppression in Table 2 and Table 3. First, we
conjugate that ELSE achieves 2.43 ∼ 5.75× MAC reduction from light to heavy
weight backbones, showing its superior suppression effect for weight-redundant
networks. Secondly, our spatial mixed approach Mix(ELSE, STAR) can further
boost the MAC reduction to 2.53 ∼ 8.83×, significantly surpassing the compared
spatial SOTAs. Furthermore, Table 3 illustrates that our Mix(ELSE, DAL†)
and Mix(ELSE, CATS†) consume the minimal state memory while achieving
comparable event and MAC suppression as their full-temporal counterparts. For
instance, Mix(ELSE, CATS†) with EN-Lite backbone reduces state memory by
2.84× with only a 3.53% increase in computation compared to CATS. Overall,
our spatio-temporal mixed approach Mix(ELSE, CATS†) can achieve 2.68 ∼
6.76× in computation reduction, with substantial state memory savings of 2.78 ∼

12 Z. Zhu et al.

Table 1: A performance comparison with SOTA spatial and temporal methods for
MNV1-SSD and MNV2-SSDLite on UA-DETRAC. We evaluate model accuracy using
mAP@0.5(%) [18] and quantify the state memory footprint in 16 bits. Methods marked
with the symbol † stand for temporal approach. ✓ denotes compliance with on-chip
memory constraints of commercial event-driven processors [12, 13,43].

Backbone Method mAP@0.5 ↑ MEvt ↓
(Err ↑)

GMAC ↓
(Mrr ↑)

Mem. ↓ fit

MNV1-SSD

ReLU 48.13% 6.03 (1.67x) 0.587 (2.08x) 1.28 MB ✓
STAR [64] 48.02% 4.92 (2.05x) 0.333 (3.67x) 1.28 MB ✓
ELSE 47.94% 3.20 (3.16x) 0.188 (6.49x) 1.86 MB ✓
EvNet† [16] 48.01% 2.56 (3.95x) 0.105 (11.61x) 40.40 MB
DeltaCNN† [45] 48.01% 1.73 (5.83x) 0.151 (8.10x) 40.40 MB
CATS† [62] 47.95% 2.28 (4.42x) 0.090 (13.53x) 20.20 MB
Mix(ELSE, CATS†) 47.95% 2.81 (3.59x) 0.118 (10.32x) 9.22 MB ✓

MNV2-SSDLite

ReLU 48.72% 8.62 (1.81x) 0.454 (1.48x) 1.83 MB ✓
STAR [64] 49.02% 7.45 (2.09x) 0.306 (1.48x) 1.83 MB ✓
ELSE 49.04% 4.80 (3.25x) 0.213 (3.14x) 2.76 MB ✓
EvNet† [16] 48.76% 4.35 (3.59x) 0.181 (3.70x) 62.38 MB
DeltaCNN† [45] 48.75% 3.23 (4.83x) 0.189 (3.55x) 62.38 MB
CATS† [62] 49.04% 3.56 (4.39x) 0.149 (4.51x) 31.19 MB
Mix(ELSE, CATS†) 49.04% 4.20 (3.71x) 0.168 (3.99x) 14.56 MB ✓

3.90×, highlighting an excellent computation/memory trade-off. Additionally, we
notice that ELSE and its mixed variants occasionally achieve higher accuracy
than the standard-trained model (ReLU) despite reduced computation. This
may be due to the regularization effect of sparsity-inducing norms.
Table 2: A performance comparison with SOTA activation suppression methods on
SimpleBaseline/MPII with various backbones. We evaluate model performance using
PCK@0.5(%) and quantify the state memory footprint in 16 bits.

Backbone Method PCK@0.5 ↑ MEvt ↓ (Err ↑) GMAC ↓ (Mrr ↑) State Mem. ↓

MNV1 [31]

ReLU 84.06% 5.58 (1.97x) 0.638 (1.85x) 1.15 MB
L1 [21] 83.77% 4.68 (2.35x) 0.450 (2.62x) 1.15 MB
Square-Hoyer [35] 83.78% 4.17 (2.63x) 0.385 (3.05x) 1.15 MB
STAR [64] 84.05% 4.48 (2.45x) 0.400 (2.95x) 1.15 MB
ELSE 84.10% 3.36 (3.27x) 0.216 (5.43x) 1.73 MB
Mix(ELSE, STAR) 84.06% 3.11 (3.53x) 0.177 (6.65x) 1.32 MB

EN-Lite [52]

ReLU 86.17% 7.05 (1.81x) 0.549 (1.57x) 1.76 MB
L1 [21] 85.91% 6.38 (2.00x) 0.416 (2.07x) 1.76 MB
Square-Hoyer [35] 85.93% 6.74 (1.89x) 0.509 (1.69x) 1.76 MB
STAR [64] 86.12% 5.89 (2.16x) 0.360 (2.39x) 1.76 MB
ELSE 86.07% 5.40 (2.36x) 0.355 (2.43x) 2.49 MB
Mix(ELSE, STAR) 86.10% 5.14 (2.48x) 0.341 (2.53x) 1.96 MB

RN50 [27]

ReLU 87.70% 7.76 (2.17x) 3.502 (2.74x) 1.59 MB
L1 [21] 87.42% 3.06 (5.50x) 1.466 (6.54x) 1.59 MB
Square-Hoyer [35] 87.40% 3.41 (4.93x) 1.693 (5.66x) 1.59 MB
STAR [64] 87.44% 2.10 (7.99x) 1.431 (6.70x) 1.59 MB
ELSE 87.46% 3.40 (4.95x) 1.667 (5.75x) 2.63 MB
Mix(ELSE, STAR) 87.63% 1.90 (8.83x) 1.085 (8.83x) 1.73 MB

5.4 Ablation Study

Effect of suppression components in ELSE. Table 4 illustrates the sup-
pression effect of each component in ELSE and its temporal variant Mix(ELSE,

ELSE: Line-based Spatial Sparsity Exploration 13

Table 3: A performance comparison with SOTA temporal suppression methods on
SimpleBaseline/MPII with various backbones. We evaluate model performance using
PCK@0.5(%) and quantify state memory footprint in 16 bits. ✓ denotes compliance
with on-chip memory constraints of commercial event-driven processors [12,13,43].

Backbone Method PCK@0.5 ↑ MEvt ↓
(Err ↑)

GMAC ↓
(Mrr ↑)

State Mem. ↓ fit

MNV1 [31]

EvNet† [16] 83.48% 3.68 (2.99x) 0.306 (3.84x) 43.64 MB
DeltaCNN† [45] 83.54% 4.06 (2.71x) 0.435 (2.70x) 43.64 MB
DAL† [61] 84.09% 3.38 (3.24x) 0.310 (3.79x) 21.82 MB
DAL-Select† [61] 84.09% 5.09 (2.16x) 0.529 (2.22x) 7.65 MB ✓
CATS† [62] 84.10% 2.96 (3.71x) 0.164 (7.18x) 21.82 MB
Mix(ELSE, DAL†) 84.09% 3.66 (3.00x) 0.325 (3.62x) 7.84 MB ✓
Mix(ELSE, CATS†) 84.10% 3.27 (3.35x) 0.174 (6.76x) 7.84 MB ✓

EN-Lite [52]

EvNet† [16] 86.13% 4.66 (2.73x) 0.310 (2.77x) 50.92 MB
DeltaCNN† [45] 86.16% 4.53 (2.81x) 0.347 (2.48x) 50.92 MB
DAL† [61] 85.80% 4.99 (2.55x) 0.350 (2.46x) 25.46 MB
DAL-Select† [61] 85.80% 6.57 (1.94x) 0.473 (1.82x) 8.75 MB ✓
CATS† [62] 86.07% 4.75 (2.67x) 0.311 (2.77x) 25.46 MB
Mix(ELSE, DAL†) 85.80% 5.37 (2.37x) 0.364 (2.37x) 8.97 MB ✓
Mix(ELSE, CATS†) 86.07% 5.18 (2.46x) 0.322 (2.68x) 8.97 MB ✓

RN50 [27]

EvNet† [16] 87.35% 2.48 (6.78x) 1.716 (5.59x) 67.24 MB
DeltaCNN† [45] 87.48% 2.83 (5.94x) 1.323 (7.24x) 67.24 MB
DAL† [61] 87.55% 4.57 (3.68x) 2.449 (3.91x) 33.62 MB
DAL-Select† [61] 87.55% 6.35 (2.65x) 3.152 (3.04x) 8.08 MB ✓
CATS† [62] 87.46% 2.81 (5.98x) 1.516 (6.32x) 33.62 MB
Mix(ELSE, DAL†) 87.55% 5.44 (3.09x) 2.362 (4.06x) 8.61 MB ✓
Mix(ELSE, CATS†) 87.46% 3.15 (5.34x) 1.592 (6.02x) 8.61 MB ✓

ϕ†). We quantify the relative event and MAC improvement of each suppres-
sion component by introducing them sequentially, while monitoring the state
memory consumption. One notable observation is that the highest decrease in
events and MACs happens in two key components: ∆-Σ modulation and training
with sparsity-inducing penalties. Another noteworthy trend is that Mix(ELSE,
CATS†) induces an additional substantial reduction in MAC due to the high
temporal correlation in dataset, resulting in the minimal computations.
Effect of ELSE in spatio-temporal mixed suppression. Figure 7a com-
pares our spatio-temporal mixed approach Mix(ELSE, ϕ†) to the existing mixed
approach [61] with respect to state memory/computation trade-offs. The key dif-
ference lies in the replacement of memory-heavy temporal layers performed by
ELSE or spatially-executed CATS [62]. From left to right, both curves exhibit a
significant reduction in memory usage initially, with this decrease gradually level-
ing off as MAC increases. A comparison of two curves reveals that our proposed
approach Mix(ELSE, ϕ†) in Equation (9) consistently surpasses the reference
method by saving 2 ∼ 3× state memory cost at various computation degrees.
Effect of network architecture in event suppression. Figure 7b illustrates
the normalized accuracy/computation curves of ELSE on various network back-
bones in SimpleBaseline [58], showing that heavy-weight networks (RN, EN-EM,
MNV1) display better event suppression capacity than the light-weight ones
(GN130, EN-Lite). We attribute this to the fact that heavy networks have more

14 Z. Zhu et al.

Table 4: Ablation Study of ELSE components.

Setting SSD-MNV1/UA-DETRAC
Acc change MEvt Evt Imp GMAC MAC Imp State Mem.

Conventional - 10.10 - 1.22 - 1.28 MB
+ ReLU +0.00% 6.03 40% ↓ 0.59 52% ↓ 1.28 MB

ELSE
+ ∆-Σ +0.00% 4.55 25% ↓ 0.46 21% ↓ 1.86 MB
+ quantization +0.33% 3.95 13% ↓ 0.34 27% ↓ 1.86 MB
+ evt-aware penalty -0.62% 3.28 17% ↓ 0.31 10% ↓ 1.86 MB
+ mac-aware penalty -0.42% 3.33 -2% ↓ 0.23 24% ↓ 1.86 MB
+ line-based penalty -0.39% 3.20 4% ↓ 0.19 19% ↓ 1.86 MB
+ mix ϕ: CATS [62] -0.37% 2.82 12% ↓ 0.12 37% ↓ 9.22 MB

removable computations due to their weight redundancy. However, as shown in
Table 1, the compact network (MNV2-SSDLite) do not necessarily achieve lower
MACs after event suppression compared to the redundant one (MNV1-SSD).
Given the importance of event-triggered MACs and memory for power and la-
tency savings on event-driven processors, these findings suggest us to integrate
sparsity into future DNN architecture design [8,57], such as sparsity-aware NAS.

-2%

2x

2x

3x
-8%

-8%

(a) Comparison of memory and computation
aspects between our Mix(ELSE, ϕ†) and the
existing DAL-Select† [61] when integrated
with the temporal method CATS [62].

(b) Normalized accuracy/computation
curves of our ELSE method across different
DNN backbones for SimpleBaseline [58] pose
estimator on MPII dataset.

Fig. 7: Effect of ELSE in spatio-temporal mixed suppression (a) and Effect of network
architecture in event suppression (b).

6 Conclusion

We propose ELSE, a novel event suppression training method aimed at mini-
mizing computations and memory accesses in event-driven DNN processing. Our
primary contribution involves implementing ∆-Σ modulation between activation
lines, promoting significant event sparsity with minimal state memory overhead.
Additionally, ELSE can seamlessly integrate as a plug-and-play suppression mod-
ule within DNN intermediate layers, compatible with other SOTA event suppres-
sion methods. Experimental results demonstrate that our spatial Mix(ELSE, ϕ)
further enhances computation savings while our spatio-temporal Mix(ELSE, ϕ†)
reduces state memory footprint by over 2×, alleviating the challenge of temporal
execution exceeding the resource constraints of real-world embedded platforms.

ELSE: Line-based Spatial Sparsity Exploration 15

Acknowledgements

This work has been partially funded by the NimbleAI project. NimbleAI has
received funding from the EU’s Horizon Europe Research and Innovation pro-
gramme (Grant Agreement 101070679), and by the UK Research and Innovation
(UKRI) under the UK government’s Horizon Europe funding guarantee (Grant
Agreement 10039070).

References

1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution:
Dataset and study. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). pp. 1122–1131 (2017). https://doi.org/10.
1109/CVPRW.2017.150

2. Akopyan, F., Sawada, J., Cassidy, A.S., Alvarez-Icaza, R., Arthur, J.V., Merolla,
P., Imam, N., Nakamura, Y., Datta, P., Nam, G.J., Taba, B., Beakes, M.P., Brezzo,
B., Kuang, J.B., Manohar, R., Risk, W.P., Jackson, B.L., Modha, D.S.: Truenorth:
Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
pp. 1537–1557 (2015)

3. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation:
New benchmark and state of the art analysis. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2014)

4. Bamberg, L., Pourtaherian, A., Waeijen, L., Chahar, A., Moreira, O.: Synapse com-
pression for event-based convolutional-neural-network accelerators. IEEE Trans-
actions on Parallel and Distributed Systems 34(4), 1227–1240 (2023). https:
//doi.org/10.1109/TPDS.2023.3239517

5. Binas, J., Bengio, Y.: Low-memory convolutional neural networks through incre-
mental depth-first processing. ArXiv (2018), https://api.semanticscholar.org/
CorpusID:13755032

6. Boser, B., Wooley, B.: The design of sigma-delta modulation analog-to-digital con-
verters. IEEE Journal of Solid-State Circuits 23(6), 1298–1308 (1988). https:
//doi.org/10.1109/4.90025

7. BrainChip Ltd.: Akida neural processor system-on-chip (Feb 2021)
8. Cai, H., Zhu, L., Han, S.: ProxylessNAS: Direct neural architecture search on tar-

get task and hardware. In: International Conference on Learning Representations
(2019), https://arxiv.org/pdf/1812.00332.pdf

9. Cavigelli, L., Benini, L.: Cbinfer: Exploiting frame-to-frame locality for faster con-
volutional network inference on video streams. IEEE Transactions on Circuits and
Systems for Video Technology (5), 1451–1465 (2020). https://doi.org/10.1109/
TCSVT.2019.2903421

10. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: ECCV (2018)

11. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proc. IEEE CVPR (2016)

12. Davies, M., Srinivasa, N., Lin, T.H., Chinya, G., Cao, Y., Choday, S.H., Dimou, G.,
Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C.K., Lines, A., Liu, R., Mathaikutty,
D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., Weng, Y.H., Wild, A., Yang,

https://doi.org/10.1109/CVPRW.2017.150
https://doi.org/10.1109/CVPRW.2017.150
https://doi.org/10.1109/CVPRW.2017.150
https://doi.org/10.1109/CVPRW.2017.150
https://doi.org/10.1109/TPDS.2023.3239517
https://doi.org/10.1109/TPDS.2023.3239517
https://doi.org/10.1109/TPDS.2023.3239517
https://doi.org/10.1109/TPDS.2023.3239517
https://api.semanticscholar.org/CorpusID:13755032
https://api.semanticscholar.org/CorpusID:13755032
https://doi.org/10.1109/4.90025
https://doi.org/10.1109/4.90025
https://doi.org/10.1109/4.90025
https://doi.org/10.1109/4.90025
https://arxiv.org/pdf/1812.00332.pdf
https://doi.org/10.1109/TCSVT.2019.2903421
https://doi.org/10.1109/TCSVT.2019.2903421
https://doi.org/10.1109/TCSVT.2019.2903421
https://doi.org/10.1109/TCSVT.2019.2903421

16 Z. Zhu et al.

Y., Wang, H.: Loihi: A neuromorphic manycore processor with on-chip learning.
IEEE Micro (1), 82–99 (2018)

13. Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G.A.F., Joshi, P.,
Plank, P., Risbud, S.R.: Advancing neuromorphic computing with loihi: A survey
of results and outlook. Proceedings of the IEEE (5), 911–934 (2021). https://
doi.org/10.1109/JPROC.2021.3067593

14. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: a large-scale
hierarchical image database. In: Proc. IEEE CVPR. pp. 248–255 (Jun 2009)

15. Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., Wu, Y., Yang, Z., Zou,
Z., Pei, J., Wu, Z., Hu, X., Ding, Y., He, W., Xie, Y., Shi, L.: Tianjic: A unified
and scalable chip bridging spike-based and continuous neural computation. IEEE
Journal of Solid-State Circuits (8), 2228–2246 (2020). https://doi.org/10.1109/
JSSC.2020.2970709

16. Dutson, M., Li, Y., Gupta, M.: Event neural networks. In: Computer Vision –
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XI. p. 276–293. Springer-Verlag, Berlin, Heidelberg (2022),
https://doi.org/10.1007/978-3-031-20083-0_17

17. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. CoRR (2017)

18. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (jun
2010), https://doi.org/10.1007/s11263-009-0275-4

19. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Pro-
ceedings of the IEEE pp. 652–665 (2014)

20. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: Exceeding yolo series in 2021.
ArXiv abs/2107.08430 (2021), https://api.semanticscholar.org/CorpusID:
236088010

21. Georgiadis, G.: Accelerating convolutional neural networks via activation map com-
pression. pp. 7078–7088 (06 2019). https://doi.org/10.1109/CVPR.2019.00725

22. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks (01 2010)
23. Goetschalckx, K., Wu, F., Verhelst, M.: Depfin: A 12-nm depth-first, high-

resolution cnn processor for io-efficient inference. IEEE Journal of Solid-State Cir-
cuits (5), 1425–1435 (2023). https://doi.org/10.1109/JSSC.2022.3210591

24. Gupta, S., Akin, B.: Accelerator-aware neural network design using automl. ArXiv
(2020), https://api.semanticscholar.org/CorpusID:212628608

25. Habibian, A., Abati, D., Cohen, T., Bejnordi, B.E.: Skip-convolutions for efficient
video processing. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2021)

26. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: More features
from cheap operations. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 1577–1586 (2020). https://doi.org/10.1109/
CVPR42600.2020.00165

27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

28. Höppner, S., Yan, Y., Dixius, A., Scholze, S., Partzsch, J., Stolba, M., Kelber,
F., Vogginger, B., Neumärker, F., Ellguth, G., Hartmann, S., Schiefer, S., Hocker,
T., Walter, D., Liu, G., Garside, J.D., Furber, S.B., Mayr, C.: The spinnaker 2
processing element architecture for hybrid digital neuromorphic computing. ArXiv
(2021)

https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1007/978-3-031-20083-0_17
https://doi.org/10.1007/s11263-009-0275-4
https://api.semanticscholar.org/CorpusID:236088010
https://api.semanticscholar.org/CorpusID:236088010
https://doi.org/10.1109/CVPR.2019.00725
https://doi.org/10.1109/CVPR.2019.00725
https://doi.org/10.1109/JSSC.2022.3210591
https://doi.org/10.1109/JSSC.2022.3210591
https://api.semanticscholar.org/CorpusID:212628608
https://doi.org/10.1109/CVPR42600.2020.00165
https://doi.org/10.1109/CVPR42600.2020.00165
https://doi.org/10.1109/CVPR42600.2020.00165
https://doi.org/10.1109/CVPR42600.2020.00165
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

ELSE: Line-based Spatial Sparsity Exploration 17

29. Horowitz, M.: 1.1 computing’s energy problem (and what we can do about it). In:
2014 IEEE International Solid-State Circuits Conference Digest of Technical Pa-
pers (ISSCC). pp. 10–14 (2014). https://doi.org/10.1109/ISSCC.2014.6757323

30. Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L.C., Tan, M., Chu, G.,
Vasudevan, V., Zhu, Y., Pang, R., Adam, H., Le, Q.: Searching for mobilenetv3.
In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). pp.
1314–1324 (2019). https://doi.org/10.1109/ICCV.2019.00140

31. Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications (04 2017)

32. Ignatov, A., Timofte, R., et al.: Pirm challenge on perceptual image enhancement
on smartphones: report. In: European Conference on Computer Vision (ECCV)
Workshops (January 2019)

33. Khoei, M.A., Yousefzadeh, A., Pourtaherian, A., Moreira, O., Tapson, J.C.: Spar-
net: Sparse asynchronous neural network execution for energy efficient infer-
ence. 2020 2nd IEEE International Conference on Artificial Intelligence Circuits
and Systems (AICAS) pp. 256–260 (2020), https://api.semanticscholar.org/
CorpusID:216105549

34. Kurniawan, A.: Introduction to nvidia jetson nano pp. 1–6 (01 2021). https://
doi.org/10.1007/978-1-4842-6452-2_1

35. Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr, J., Goin, M., Leiserson,
W., Moore, S., Nell, B., Shavit, N., Alistarh, D.: Inducing and exploiting activation
sparsity for fast neural network inference. In: Proceedings of the 37th International
Conference on Machine Learning. ICML’20, JMLR.org (2020)

36. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks
for single image super-resolution. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW). pp. 1132–1140 (2017). https:
//doi.org/10.1109/CVPRW.2017.151

37. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C.Y., Berg, A.C.:
Ssd: Single shot multibox detector. In: ECCV (1). Lecture Notes in Computer
Science, vol. 9905, pp. 21–37. Springer (2016), http://dblp.uni-trier.de/db/
conf/eccv/eccv2016-1.html#LiuAESRFB16

38. Lv, M., Xu, E.: Efficient dnn execution on intermittently-powered iot devices
with depth-first inference. IEEE Access pp. 101999–102008 (2022), https://api.
semanticscholar.org/CorpusID:252035232

39. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing (2013)

40. Mei, L., Goetschalckx, K., Symons, A., Verhelst, M.: Defines: Enabling fast explo-
ration of the depth-first scheduling space for dnn accelerators through analytical
modeling. In: 2023 IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA). pp. 570–583. IEEE Computer Society, Los Alamitos,
CA, USA (mar 2023). https://doi.org/10.1109/HPCA56546.2023.10071098

41. Moradi, S., Qiao, N., Stefanini, F., Indiveri, G.: A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous
processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. pp. 106–122 (Aug 2017)

42. Moreira, O., Yousefzadeh, A., Chersi, F., Kapoor, A., Zwartenkot, R.J., Qiao, P.,
Cinserin, G., Khoei, M., Lindwer, M., Tapson, J.: Neuronflow: A hybrid neuro-
morphic – dataflow processor architecture for ai workloads. In: 2020 2nd IEEE
International Conference on Artificial Intelligence Circuits and Systems (AICAS).
pp. 01–05 (2020). https://doi.org/10.1109/AICAS48895.2020.9073999

https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1109/ICCV.2019.00140
https://api.semanticscholar.org/CorpusID:216105549
https://api.semanticscholar.org/CorpusID:216105549
https://doi.org/10.1007/978-1-4842-6452-2_1
https://doi.org/10.1007/978-1-4842-6452-2_1
https://doi.org/10.1007/978-1-4842-6452-2_1
https://doi.org/10.1007/978-1-4842-6452-2_1
https://doi.org/10.1109/CVPRW.2017.151
https://doi.org/10.1109/CVPRW.2017.151
https://doi.org/10.1109/CVPRW.2017.151
https://doi.org/10.1109/CVPRW.2017.151
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-1.html#LiuAESRFB16
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-1.html#LiuAESRFB16
https://api.semanticscholar.org/CorpusID:252035232
https://api.semanticscholar.org/CorpusID:252035232
https://doi.org/10.1109/HPCA56546.2023.10071098
https://doi.org/10.1109/HPCA56546.2023.10071098
https://doi.org/10.1109/AICAS48895.2020.9073999
https://doi.org/10.1109/AICAS48895.2020.9073999

18 Z. Zhu et al.

43. Moreira, O., Yousefzadeh, A., Chersi, F., Cinserin, G., Zwartenkot, R.J., Kapoor,
A., Qiao, P., Kievits, P., Khoei, M.A., Rouillard, L., Ferouge, A., Tapson, J.C.,
Visweswara, A.: Neuronflow: a neuromorphic processor architecture for live AI
applications. In: Proc. DATE. pp. 840–845 (2020)

44. O’Connor, P., Welling, M.: Sigma delta quantized networks. In: 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net (2017), https://
openreview.net/forum?id=HkNRsU5ge

45. Parger, M., Tang, C., Twigg, C.D., Keskin, C., Wang, R., Steinberger, M.:
Deltacnn: End-to-end cnn inference of sparse frame differences in videos. In: 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 12487–12496 (2022). https://doi.org/10.1109/CVPR52688.2022.01217

46. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. ArXiv
(2018)

47. Sabet, A., Hare, J.S., Al-Hashimi, B.M., Merrett, G.V.: Similarity-aware cnn for
efficient video recognition at the edge. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems pp. 4901–4914 (2022), https://api.
semanticscholar.org/CorpusID:245371897

48. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Inverted residuals
and linear bottlenecks: Mobile networks for classification, detection and segmenta-
tion. CoRR (2018)

49. Stuijt, J., Sifalakis, M., Yousefzadeh, A., Corradi, F.: µbrain: An event-driven and
fully synthesizable architecture for spiking neural networks. Front Neurosci. pp.
106–122 (May 2021)

50. Sze, V., hsin Chen, Y., Yang, T.J., Emer, J.S.: Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE pp. 2295–2329 (2017),
https://api.semanticscholar.org/CorpusID:3273340

51. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neu-
ral networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th
International Conference on Machine Learning. pp. 6105–6114. Proceedings of Ma-
chine Learning Research, PMLR (09–15 Jun 2019)

52. Tan, M., Le, Q.V.: (04 2020)
53. Tang, G., Safa, A., Shidqi, K., Detterer, P., Traferro, S., Konijnenburg, M.,

Sifalakis, M., van Schaik, G.J., Yousefzadeh, A.: Open the box of digital neu-
romorphic processor: Towards effective algorithm-hardware co-design. In: 2023
IEEE International Symposium on Circuits and Systems (ISCAS). pp. 1–5 (2023).
https://doi.org/10.1109/ISCAS46773.2023.10181505

54. Waeijen, L., Sioutas, S., Peemen, M., Lindwer, M., Corporaal, H.: Convfusion: A
model for layer fusion in convolutional neural networks. IEEE Access pp. 168245–
168267 (2021). https://doi.org/10.1109/ACCESS.2021.3134930

55. Ward-Foxton, S.: GrAI Matter research gives rise to AI processor for the edge (May
2022), https://www.forbes.com/sites/karlfreund/2022/05/27/grai-matter-
labs-brain-inspired-ai-for-the-edge/

56. Wen, L., Du, D., Cai, Z., Lei, Z., Chang, M.C., Qi, H., Lim, J., Yang, M.H.,
Lyu, S.: Ua-detrac: A new benchmark and protocol for multi-object detection and
tracking. Comput. Vis. Image Underst. (apr 2020). https://doi.org/10.1016/j.
cviu.2020.102907

57. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia,
Y., Keutzer, K.: Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In: IEEE Conference on Computer Vision and Pattern

https://openreview.net/forum?id=HkNRsU5ge
https://openreview.net/forum?id=HkNRsU5ge
https://doi.org/10.1109/CVPR52688.2022.01217
https://doi.org/10.1109/CVPR52688.2022.01217
https://api.semanticscholar.org/CorpusID:245371897
https://api.semanticscholar.org/CorpusID:245371897
https://api.semanticscholar.org/CorpusID:3273340
https://doi.org/10.1109/ISCAS46773.2023.10181505
https://doi.org/10.1109/ISCAS46773.2023.10181505
https://doi.org/10.1109/ACCESS.2021.3134930
https://doi.org/10.1109/ACCESS.2021.3134930
https://www.forbes.com/sites/karlfreund/2022/05/27/grai-matter-labs-brain-inspired-ai-for-the-edge/
https://www.forbes.com/sites/karlfreund/2022/05/27/grai-matter-labs-brain-inspired-ai-for-the-edge/
https://doi.org/10.1016/j.cviu.2020.102907
https://doi.org/10.1016/j.cviu.2020.102907
https://doi.org/10.1016/j.cviu.2020.102907
https://doi.org/10.1016/j.cviu.2020.102907

ELSE: Line-based Spatial Sparsity Exploration 19

Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. pp. 10734–
10742. Computer Vision Foundation / IEEE (2019). https://doi.org/10.1109/
CVPR.2019.01099

58. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking.
In: European Conference on Computer Vision (ECCV) (2018)

59. Xu, Y., Shidqi, K., van Schaik, G.J., Bilgic, R., Dobrita, A., Wang, S., Meijer,
R., Nembhani, P., Arjmand, C., Martinello, P., Gebregiorgis, A., Hamdioui, S.,
Detterer, P., Traferro, S., Konijnenburg, M., Vadivel, K., Sifalakis, M., Tang, G.,
Yousefzadeh, A.: Optimizing event-based neural networks on digital neuromorphic
architecture: a comprehensive design space exploration. Frontiers in Neuroscience
18 (2024). https://doi.org/10.3389/fnins.2024.1335422

60. Yoon, Y.C.: Lif and simplified srm neurons encode signals into spikes via a form
of asynchronous pulse sigma–delta modulation. IEEE Transactions on Neural Net-
works and Learning Systems 28(5), 1192–1205 (2017). https://doi.org/10.1109/
TNNLS.2016.2526029

61. Yousefzadeh, A., Sifalakis, M.: Delta activation layer exploits temporal sparsity
for efficient embedded video processing. In: 2022 International Joint Conference
on Neural Networks (IJCNN). pp. 01–10 (2022). https://doi.org/10.1109/
IJCNN55064.2022.9892578

62. Zhu, Z., Pourtaherian, A., Waeijen, L., Akkaya, I.B., Bondarev, E., Moreira, O.:
Cats: Combined activation and temporal suppression for efficient network infer-
ence. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV). pp. 8166–8175 (January 2024)

63. Zhu, Z., Pourtaherian, A., Waeijen, L., Bamberg, L., Bondarev, E., Moreira, O.:
Arts: An adaptive regularization training schedule for activation sparsity explo-
ration. In: 2022 25th Euromicro Conference on Digital System Design (DSD). pp.
415–422 (2022). https://doi.org/10.1109/DSD57027.2022.00062

64. Zhu, Z., Pourtaherian, A., Waeijen, L., Bondarev, E., Moreira, O.: Star: Sparse
thresholded activation under partial-regularization for activation sparsity explo-
ration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops. pp. 4554–4563 (June 2023)

https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.3389/fnins.2024.1335422
https://doi.org/10.3389/fnins.2024.1335422
https://doi.org/10.1109/TNNLS.2016.2526029
https://doi.org/10.1109/TNNLS.2016.2526029
https://doi.org/10.1109/TNNLS.2016.2526029
https://doi.org/10.1109/TNNLS.2016.2526029
https://doi.org/10.1109/IJCNN55064.2022.9892578
https://doi.org/10.1109/IJCNN55064.2022.9892578
https://doi.org/10.1109/IJCNN55064.2022.9892578
https://doi.org/10.1109/IJCNN55064.2022.9892578
https://doi.org/10.1109/DSD57027.2022.00062
https://doi.org/10.1109/DSD57027.2022.00062

