
DC-Solver: Improving Predictor-Corrector
Diffusion Sampler via Dynamic Compensation

Supplementary Material

A Detailed Background of Diffusion Models

A.1 Diffusion Models

In this section, we will provide a detailed background of diffusion probabilistic
models (DPMs) [1, 11]. DPMs usually contain a forward diffusion process that
gradually adds noise to the clean data and a backward denoising process that
progressively removes the noise to obtain the cleaned data. The diffusion process
can be defined either discretely [1] or continuously [11]. We will focus on the latter
since continuous DPMs are usually used in the context of DPM samplers [6,7,14].
Let x0 be a random variable from the data distribution q0(x0), the forward
(diffusion) process gradually adds noise via:

qt|0(xt|x0) = N (xt|αtx0, σ
2
t I), (1)

where αt, σt control the noise schedule and the signal-to-noise-ratio α2
t /σ

2
t is

decreasing w.r.t t. The noise schedule is designed such that the resulting dis-
tribution qT (xT) is approximately Gaussian. The forward process can be also
formulated via an SDE [3]:

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q0(x0) (2)

where f(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t and wt is the standard Wiener

process. The reverse process can be analytically computed under some condi-
tons [11]:

dxt = [f(t)xt − g2(t)∇x log qt(xt)]dt+ g(t)dw̄t, (3)

where w̄t is the standard Winer process in the reverse time. DPM is trained to
estimate the scaled score function −σt∇x log qt(xt) via a neural network ϵθ, and
the corresponding SDE during sampling is

dxt =

[
f(t)xt +

g2(t)

σt
ϵθ(xt, t)

]
dt+ g(t)dw̄t. (4)

2

A.2 ODE-based DPM samplers

Although one can numerally solve the diffusion SDE by discretizing (4), the
stochasticity would harm the sampling quality especially when the step size is
large. On the contrary, the probability flow ODE [11] is more practical:

dxt

dt
= f(t)xt −

g2(t)

2
∇x log qt(xt). (5)

Modern fast samplers of DPMs [6, 7, 14] aim to efficiently solve the above ODE
with small numbers of function evaluations (NFE) by introducing several useful
techniques such as the exponential integrator [6, 13], the multi-step method [7,
13], data-prediction [7], and predictor-corrector paradigm [14]. For example, the
deterministic version of DDIM [10] can be viewed as a 1-order discretization
of the diffusion probability flow ODE. DPM-Solver [6] leverages an insightful
parameterization (logSNR) and exponential integrator to achieve a high-order
solver. DPM-Solver++ [7] further adopts the multi-step method to estimate
high-order derivatives. Specifically, one can use a buffer to store the outputs of
ϵθ on previous points and use them to increase the order of accuracy. PNDM [4]
modified classical multi-step numerical methods to corresponding pseudo numer-
ical methods for DPM sampling. UniPC [14] introduces a predictor-corrector
framework that also uses the model output at the current point to improve
the sampling quality, and bypasses the extra model evaluations by re-using the
model outputs at the next sampling step. Generally speaking, the formulation
of existing DPM samplers can be summarized as follows:

x̃ti = Ati
ti−1

x̃c
ti−1

+

p−1∑
m=1

Bti
ti−m

βθ(x̃ti−m
, ti−m), (6)

x̃c
ti = Cti

ti−1
x̃c
ti−1

+

p−1∑
m=0

Dti
ti−m

βθ(x̃ti−m
, ti−m), (7)

where the corrector step (7) is optional and xc
ti = xti if no corrector is used.

We use βθ to represent different parameterizations during the sampling, such as
the noise-prediction ϵθ [6, 13], data-prediction xθ [7, 14], v-prediction vθ [9], or
the learned parameterization [15]. The coefficients (A,B,C,D) are determined
by the specific sampler and differ across the sampling steps.

B Convergence of DC-Solver

In this section, we shall show that if the original sampler has the convergence
order p+ 1 under mild conditions, then the same order of convergence is main-
tained when combined with our Dynamic Compensation. We will prove for both
predictor-only samplers [7,10] and predictor-corrector samplers [14]. For the sake
of simplicity, we use the ℓ− 2 norm by default to study the convergence.

DC-Solver 3

B.1 Assumptions

We introduce some assumptions for the convenience of subsequent proofs. These
assumptions are either common in ODE analysis or easy to satisfy.

Assumption 1 The prediction model βθ(x, t) is Lipschitz continuous w.r.t. x.

Assumption 2 h = max1≤i≤M hi = O(1/M), where hi denotes the sampling
step size, and M is the total number of sampling steps.

Assumption 3 The coefficients in (7) satisfy that 0 < C1 ≤ ∥Ati
ti−1

∥2 ≤ C2,
0 < C3h ≤ ∥Bti

ti−m
∥2 ≤ C4h, 0 < C5 ≤ ∥Cti

ti−1
∥2 ≤ C6 and 0 < C7h ≤

∥Dti
ti−m

∥2 ≤ C8h for sufficiently small h.

Assumption 1 is common in the analysis of ODEs. Assumption 2 assures that
the step size is basically uniform.

Assumption 3 can be easily verified by the formulation of the samplers. For
example, in data-prediction mode of UniPC [14], we have Ati

ti−1
= αti/αti−1

,

which are constants independent of hi. Note that Bti
ti−1

= σti(e
hi−1)

[∑p
m=1

am

rm
− 1

]
and Bti

ti−m
= −σti(e

hi − 1)am

rm
,m ̸= 1, where am, rm ∈ O(1), we have Bti

ti−m =

O(h). For Cti
ti−1

and Dti
ti−m

, we can analogically derive the bound for the two
coefficients. By examining the analytical form of other existing solvers [4, 6, 7,
10,13,14], we can similarly find that Theorem 3 always holds.

B.2 Local Convergence

Theorem 4. For any DPM sampler of p+1-th order of accuracy, i.e., E∥x̃c
ti+1

−
x̃ti+1

∥2 ≤ Chp+2
i , applying dynamic compensation with the ratio ρ∗i will reduce

the local truncation error and remain the p+ 1-th order of accuracy.

Proof. Denote x̃c,ρi

ti+1
as the intermediate result at the next sampling step by

using dynamic compensation ratio ρi. Observe that ρi = 1.0 is equivalent to the
original updating formula without the dynamic compensation, we have

E∥x̃c,ρ∗
i

ti+1
− x̃ti+1∥2 ≤ E∥x̃c,1.0

ti+1
− x̃ti+1∥2

= E∥x̃c
ti+1

− x̃ti+1
∥2 ≤ Chp+2

i . (8)

Therefore, the local truncation error is reduced and the order of accuracy after
the DC is still p+ 1.

Note that the proof does not assume the detailed implementation of the sam-
pler, indicating that the Theorem 4 holds for both predictor-only samplers and
predictor-corrector samplers.

4

B.3 Global Convergence

We first investigate the global convergence of Dynamic Compensation with a
p-th order predictor-only sampler.

Corollary 1. Assume that we have {x̃ti−k
}p−1

k=1
and {βρ∗

i−k

θ (x̃ti−k
, ti−k)}

p−1

k=2
(de-

noted as {βρ∗
i−k

θ }
p−1

k=2
) satisfying E∥x̃ti−k

− xti−k
∥2 = O(hp), 1 ≤ k ≤ p− 1, and

E∥βρ∗
i−k

θ − βθ(xti−k
, ti−k)∥2 = O(hp−1), 2 ≤ k ≤ p− 1. If we use Predictor-p to-

gether with Dynamic Compensation to estimate xti , we shall get β
ρ∗
i−1

θ and x̃ti

that satisfy E∥βρ∗
i−1

θ − βθ(xti−1
, ti−1)∥2 = O(hp−1) and E∥x̃ti − xti∥2 = O(hp).

Proof. It is obvious that for sufficiently large constants Cβ, Cx, we have

E∥βρ∗
i−k

θ − βθ(xti−k
, ti−k)∥2 ≤ Cβh

p−1, 2 ≤ k ≤ p− 1 (9)

E∥x̃ti−k
− xti−k

∥2 ≤ Cxh
p, 1 ≤ k ≤ p− 1 (10)

When computer xti , we consider 3 different methods in this step. Firstly, if we
continue to use Dynamic Compensation, we have

x̃ti = Ati
ti−1

x̃ti−1
+

p−1∑
m=1

Bti
ti−m

β
ρ∗
i−m

θ . (11)

Otherwise, if we use the standard Predictor-p at this step (which means to do
not replace the βθ(x̃ti−1

, ti−1) with β
ρ∗
i−m

θ), we have the following result:

x̃p
ti = Ati

ti−1
x̃ti−1 +

p−1∑
m=2

Bti
ti−m

β
ρ∗
i−m

θ +Bti
ti−1

βθ(x̃ti−1 , ti−1). (12)

In the third case, we adopt the Predictor-p to previous points on the ground
truth trajectory:

x̄ti = Ati
ti−1

xti−1 +

p−1∑
m=1

Bti
ti−m

βθ(xti−m , ti−m) (13)

Due to the p-th order of accuarcy of Predictor-p, we have

E∥x̄ti − xti∥2 = O(hp+1) (14)

Comparing (13) and (12), we obtain

x̃p
ti − x̄ti = Ati

ti−1
(x̃ti−1 − xti−1)

+

p−1∑
m=2

Bti
ti−m

[
β
ρ∗
i−m

θ − βθ(xti−m , ti−m)
]

+Bti
ti−1

[
βθ(x̃ti−1

, ti−1)− βθ(xti−1
, ti−1)

] (15)

DC-Solver 5

Under Assumption 1, Assumption 3, (9) and (10), it follows that,

E∥x̃p
ti − x̄ti∥2 ≤ C2Cxh

p

+

p−1∑
m=2

C4Cβh
p + C4LCxh

p+1 = O(hp)
(16)

By (14) and (16), we have

E∥x̃p
ti − xti∥2 = O(hp) (17)

Observing that DC-Solver-p is equivalent to Predictor-p when ρi−1 = 1.0, we
have

E∥x̃ti − xti∥2 ≤ E∥x̃p
ti − xti∥2 = O(hp). (18)

Combining with (14), we get

E∥x̃ti − x̄ti∥2 = O(hp) ≤ C9h
p (19)

Subtracting (13) from (11), we have

x̃ti − x̄ti = Ati
ti−1

(x̃ti−1 − xti−1)

+

p−1∑
m=2

Bti
ti−m

[
β
ρ∗
i−m

θ − βθ(xti−m
, ti−m)

]
+Bti

ti−1

[
β
ρ∗
i−1

θ − βθ(xti−1
, ti−1)

] (20)

Thus, given (19), (9), (10), we obtain

E
∥∥∥Bti

ti−1

[
β
ρ∗
i−1

θ − βθ(xti−1
, ti−1)

]∥∥∥
2

=
∥∥∥x̃ti − x̄ti −Ati

ti−1
(x̃ti−1

− xti−1
)

−
p−1∑
m=2

Bti
ti−m

[
β
ρ∗
i−m

θ − βθ(xti−m , ti−m)
]∥∥∥∥∥

2

≤ C9h
p + C2Cxh

p +

p−1∑
m=2

C4Cβh
p

= O(hp)

(21)

Note that ∥Bti
ti−1

∥2 ≥ C3h according to Assumption 3, we have

E∥βρ∗
i−1

θ − βθ(xti−1
, ti−1)∥2 = O(hp−1). (22)

Above all, (19) and (22) establish the correctness of the corollary.

Theorem 5. For any predictor-only sampler of p-th order of convergence, ap-
plying Dynamic Compensation with ratio ρ∗i will maintain the p-th order of con-
vergence.

6

Proof. We will use mathematical induction to prove it. Denote {βρ∗
k

θ }
i−1

k=0
=

{βρ∗
k

θ (x̃tk , tk)}
i−1

k=0
, we define Pi as the proposition that E∥βρ∗

k

θ −βθ(xtk , tk)∥2 =
O(hp−1), 0 ≤ k ≤ i− 1, and E∥x̃tk − xtk∥2 = O(hp), 0 ≤ k ≤ i.

In the first K steps (namely the warm-up steps), we only use the Predictor-p
without the Dynamic Compensation. Since Predictor-p has p-th order of conver-
gence, it’s obvious that E∥x̃tk − xtk∥2 = O(hp), 0 ≤ k ≤ K. Under Assumption
1, we also have

E∥βρ∗
k

θ − βθ(xtk , tk)∥2 = E∥βθ(x̃tk , tk)− βθ(xtk , tk)∥2
≤ E∥x̃tk − xtk∥2 = O(hp) ≤ O(hp−1),∀0 ≤ k ≤ K − 1

(23)

Thus, we show that PK is true. Recall the result in Corollary 1, we can then
use mathematical induction to prove that PM is true, where M is the NFE.
This indicates that E∥x̃tM −xtM ∥2 = O(hp), which concludes the proof that the
convergence order is still p with the Dynamic Compensation

We then provide the proof of the convergence order when applying Dynamic
Compensation to predictor-corrector solvers.

Corollary 2. Assume that we have {x̃c
ti−k

}p−1

k=1
, {x̃ti−k

}p−1

k=1
, and {βρ∗

i−k

θ (x̃c
ti−k

, ti−k)}
p−1

k=2

(denoted as {βρ∗
i−k

θ }
p−1

k=2
), which satisfy E∥βρ∗

i−k

θ −βθ(xti−k
, ti−k)∥2 = O(hp), 2 ≤

k ≤ p − 1 , E∥x̃c
ti−k

− xti−k
∥2 = O(hp+1), 1 ≤ k ≤ p − 1, and E∥x̃ti−k

−
xti−k

∥2 = O(hp), 1 ≤ k ≤ p − 1. Then using Predictor-Corrector-p combined

with Dynamic Compensation to estimate xti , we can calculate β
ρ∗
i−1

θ , x̃c
ti , x̃ti ,

that satisfy E∥βρ∗
i−1

θ − βθ(xti−1 , ti−1)∥2 = O(hp), E∥x̃c
ti − xti∥2 = O(hp+1) and

E∥x̃ti − xti∥2 = O(hp)

Proof. It is obvious that, there exists sufficiently large constants Cβ, Cx, Cy, such
that

E∥βρ∗
i−k

θ − βθ(xti−k
, ti−k)∥2 ≤ Cβh

p, 2 ≤ k ≤ p− 1 (24)

E∥x̃c
ti−k

− xti−k
∥2 ≤ Cxh

p+1, 1 ≤ k ≤ p− 1 (25)

E∥x̃ti−k
− xti−k

∥2 ≤ Cyh
p, 1 ≤ k ≤ p− 1 (26)

When estimating xti , we consider three different methods in this step. First, if
we use Dynamic Compensation, we have

x̃ti = Ati
ti−1

x̃c
ti−1

+

p−1∑
m=1

Bti
ti−m

β
ρ∗
i−m

θ (27)

x̃c
ti = Cti

ti−1
x̃c
ti−1

+

p−1∑
m=1

Dti
ti−m

β
ρ∗
i−m

θ +Dti
tiβθ(x̃ti , ti) (28)

DC-Solver 7

Otherwise, if we use the standard Predictor-Corrector-p without DC at this step,
we get

x̄ti = Ati
ti−1

x̃c
ti−1

+

p−1∑
m=2

Bti
ti−m

β
ρ∗
i−m

θ +Bti
ti−1

βθ(x̃ti−1
, ti−1) (29)

x̄c
ti = Cti

ti−1
x̃c
ti−1

+

p−1∑
m=2

Dti
ti−m

β
ρ∗
i−m

θ +Dti
ti−1

βθ(x̃ti−1 , ti−1)

+Dti
tiβθ(x̄ti , ti)

(30)

Finally, we use Predictor-Corrector-p to previous points on the ground truth
trajectory, we have:

x̂ti = Ati
ti−1

xti−1 +

p−1∑
m=1

Bti
ti−m

βθ(xti−m , ti−m) (31)

x̂c
ti = Cti

ti−1
xti−1

+

p−1∑
m=1

Dti
ti−m

βθ(xti−m
, ti−m) +Dti

tiβθ(x̂ti , ti) (32)

Due to Predictor-Corrector-p’s p+ 1-th convergence order, we have

E∥x̂c
ti − xti∥2 = O(hp+2) (33)

Based on Assumption 1 and (26), we also know that

E∥βθ(x̃ti−1
, ti−1)− βθ(xti−1

, ti−1)∥2
≤ LE∥x̃ti−1

− xti−1
∥2 = O(hp)

(34)

Subtracting (32) from (30), we obtain

x̄c
ti − x̂c

ti = Cti
ti−1

(x̃c
ti−1

− xti−1)

+

p−1∑
m=2

Dti
ti−m

[
β
ρ∗
i−m

θ − βθ(xti−m , ti−m)
]

+Dti
ti−1

[
βθ(x̃ti−1

, ti−1)− βθ(xti−1
, ti−1)

]
+Dti

ti [βθ(x̄ti , ti)− βθ(x̂ti , ti)]

(35)

8

Under Assumption 1, Assumption 3, (34), (24), (25) and (26), it follows that,

E∥βθ(x̄ti , ti)− βθ(x̂ti , ti)∥2 ≤ LE∥x̄ti − x̂ti∥2
= LE∥Ati

ti−1
(x̃c

ti−1
− xti−1

)

+

p−1∑
m=2

Bti
ti−m

[
β
ρ∗
i−m

θ − βθ(xti−m
, ti−m)

]
+Bti

ti−1

[
βθ(x̃ti−1 , ti−1)− βθ(xti−1 , ti−1)

]
∥2

≤ L(C2Cxh
p+1 +

p−1∑
m=2

C4Cβh
p+1 + C4LCyh

p+1)

= O(hp+1) ≤ C10h
p+1

(36)

Therefore, according to Assumption 3, (24), (25), (26), (35) and (36), we get

E∥x̄c
ti − x̂c

ti∥2 ≤ C6Cxh
p+1 +

p−1∑
m=2

C8Cβh
p+1

+ C8LCyh
p+1 + C8C10h

p+2

= O(hp+1)

(37)

Given (33), we have
E∥x̄c

ti − xti∥2 = O(hp+1) (38)

Observe that DC-Solver-p is equivalent to Predictor-Corrector-p when ρi−1 =
1.0, we have

E∥x̃c
ti − xti∥2 ≤ E∥x̄c

ti − xti∥2 = O(hp+1) (39)

Combining with (38), we get

E∥x̃c
ti − x̄c

ti∥2 = O(hp+1) (40)

Comparing (28) and (30), we have

x̃c
ti − x̄c

ti = Dti
ti−1

[
β
ρ∗
i−1

θ − βθ(x̃ti−1
, ti−1)

]
+Dti

ti [βθ(x̃ti , ti)− βθ(x̄ti , ti)]
(41)

Under Assumption 3 and 1, concerning about the order of the coefficients, we
can know that

E∥Dti
ti [βθ(x̃ti , ti)− βθ(x̄ti , ti)] ∥2

≤ L∥Dti
ti∥2∥B

ti
ti−1

∥2E∥β
ρ∗
i−1

θ − βθ(x̃ti−1 , ti−1)∥2

≪ E∥Dti
ti−1

[
β
ρ∗
i−1

θ − βθ(x̃ti−1 , ti−1)
]
∥2

(42)

Leveraging (40), (41) with (42), we have

E∥Dti
ti−1

[
β
ρ∗
i−1

θ − βθ(x̃ti−1 , ti−1)
]
∥2 = O(hp+1) (43)

DC-Solver 9

Thus, considering that ∥Dti
ti∥2 ≥ C7h in Assumption 3, we can get

∥βρ∗
i−1

θ − βθ(x̃ti−1
, ti−1)∥2 = O(hp) (44)

Given (34) and (44), we further obtain

∥βρ∗
i−1

θ − βθ(xti−1 , ti−1)∥2 = O(hp) ≤ C11h
p (45)

Subtracting (31) from (27), we obtain

E∥x̃ti − x̂ti∥2 = E∥Ati
ti−1

(x̃c
ti−1

− xti−1
)

+Bti
ti−1

[
β
ρ∗
i−1

θ − βθ(xti−1
, ti−1)

]
+

p−1∑
m=2

Bti
ti−m

[
β
ρ∗
i−m

θ − βθ(xti−m
, ti−m)

]
∥2

≤ C2Cxh
p+1 + C4C11h

p+1 +

p−1∑
m=2

C4Cβh
p+1

≤ O(hp)

(46)

Since E∥x̂ti − xti∥2 = O(hp+1), we have

E∥x̃ti − xti∥2 ≤ O(hp) (47)

Above all, (39), (45) and (47) imply the validity of the corollary.

Theorem 6. For any predictor-corrector sampler of (p+1)-th order of conver-
gence, applying dynamic compensation with ratio ρ∗i will remain the (p + 1)-th
order of convergence.

Proof. We use mathematical induction to proof this. Suppose we have {x̃c
tk
}i
k=0

,

{x̃tk}
i
k=0 and {βρ∗

k

θ (x̃c
tk
, tk)}

i−1

k=0
denoted as {βρ∗

k

θ }
i−1

k=0
. First, we define Pi as the

proposition that E∥βρ∗
k

θ −βθ(xtk , tk)∥2 = O(hp), 0 ≤ k ≤ i−1 , E∥x̃c
tk
−xtk∥2 =

O(hp+1), 0 ≤ k ≤ i and E∥x̃tk − xtk∥2 = O(hp), 0 ≤ k ≤ i.
In the first K steps, we only use Predictor-Corrector-p without the Dynamic
Compensation. Since Predictor-Corrector-p has (p+ 1)-th order of convergence,
it’s obvious that E∥x̃c

tk
− xtk∥2 = O(hp+1), 0 ≤ k ≤ K, and E∥x̃tk − xtk∥2 =

O(hp), 0 ≤ k ≤ K. Under Assumption 1, we also know, for k ∈ [0,K − 1],

E∥βρ∗
k

θ − βθ(xtk , tk)∥2 = E∥βθ(x̃tk , tk)− βθ(xtk , tk)∥2
≤ LE∥x̃tk − xtk∥2 = O(hp)

(48)

Thus, we show that PK is true. Similarly, using mathematical induction and the
result in Corollary 2 we can know that PM is true, which implies that E∥x̃c

tM −
xtM ∥2 = O(hp+1) and ends the proof. Therefore, we reach the conclusion that
for a predictor-corrector sampler, the Dynamic Compensation will preserve the
p+ 1 convergence order.

10

Table 1: Detailed quantitative results on unconditional sampling. We provide
the comparisons of the FID↓ of our DC-Solver and the previous method on FFHQ [2],
LSUN-Church [12] and LSUN-Bedroom [12] with 5∼10 NFE. We observe that our
DC-Solver achieves the lowest FID on all three datasets.

(a) FFHQ [2]

Method NFE

5 6 7 8 9 10

DPM-Solver++ [7] 27.15 15.60 10.81 8.98 7.89 7.39
DEIS [13] 32.35 18.72 12.22 9.51 8.31 7.75
UniPC [14] 18.66 11.89 9.51 8.21 7.62 6.99
DC-Solver (Ours) 10.38 8.39 7.66 7.14 6.92 6.82

(b) LSUN-Church [12]

Method NFE

5 6 7 8 9 10

DPM-Solver++ [7] 17.57 9.71 6.45 4.97 4.25 3.87
DEIS [13] 15.01 8.45 5.71 4.49 3.86 3.57
UniPC [14] 11.98 6.90 5.08 4.28 3.86 3.61
DC-Solver (Ours) 7.47 4.70 3.91 3.46 3.23 3.06

(c) LSUN-Bedroom [12]

Method NFE

5 6 7 8 9 10

DPM-Solver++ [7] 18.13 8.33 5.15 4.14 3.77 3.61
DEIS [13] 16.68 8.75 6.13 5.11 4.66 4.41
UniPC [14] 12.14 6.13 4.53 4.05 3.81 3.64
DC-Solver (Ours) 7.40 5.29 4.27 3.98 3.74 3.52

C More Analyses

C.1 Quantitative Results

We now provide detailed quantitative results on both unconditional sampling
and conditional sampling. For unconditional sampling, we list the numerical
results on FFHQ [2], LSUN-Church [12] and LSUN-Bedroom [12] in Table 1.
All the pre-trained DPMs are from Latent-Diffusion [8] and we use FID↓ as the
evaluation metric. We demonstrate that our DC-Solver consistently attains the
lowest FID on all three datasets. For conditional sampling, we summarize the

DC-Solver 11

Table 2: Detailed quantitative results on conditional sampling. We provide
the comparisons between our DC-Solver and the previous method on Stable-Diffusion-
1.5 [8] with different classifier-free guidance scale (CFG) and NFE ∈ [5, 10]. The sam-
pling quality is measured by the MSE↓ between the generated latents and the ground
truth latents (obtained by a 999-step DDIM). We demonstrate that DC-Solver consis-
tently achieves the best result for different sampling configurations.

(a) CFG = 1.0

Method NFE

5 6 7 8 9 10

DPM-Solver++ [7] 0.277 0.232 0.204 0.188 0.177 0.169
DEIS [13] 0.299 0.252 0.223 0.203 0.191 0.181
UniPC [14] 0.245 0.206 0.184 0.172 0.166 0.161
DC-Solver (Ours) 0.176 0.163 0.150 0.150 0.147 0.144

(b) CFG = 1.5

Method NFE

5 6 7 8 9 10

DPM-Solver++ [7] 0.288 0.242 0.213 0.195 0.182 0.173
DEIS [13] 0.307 0.260 0.229 0.209 0.194 0.184
UniPC [14] 0.260 0.219 0.194 0.180 0.170 0.163
DC-Solver (Ours) 0.213 0.188 0.169 0.158 0.153 0.149

(c) CFG = 2.5

Method NFE

5 6 7 8 9 10

DPM-Solver++ [7] 0.339 0.293 0.262 0.239 0.221 0.208
DEIS [13] 0.354 0.307 0.274 0.250 0.231 0.217
UniPC [14] 0.321 0.277 0.247 0.226 0.208 0.195
DC-Solver (Ours) 0.293 0.257 0.231 0.212 0.194 0.186

(d) CFG = 3.5

Method NFE

5 6 7 8 9 10

DPM-Solver++ [7] 0.409 0.360 0.323 0.295 0.272 0.255
DEIS [13] 0.419 0.369 0.332 0.303 0.280 0.262
UniPC [14] 0.397 0.349 0.312 0.285 0.262 0.245
DC-Solver (Ours) 0.375 0.331 0.299 0.270 0.251 0.239

(e) CFG = 4.5

Method NFE

5 6 7 8 9 10

DPM-Solver++ [7] 0.490 0.437 0.392 0.358 0.330 0.308
DEIS [13] 0.496 0.441 0.397 0.364 0.336 0.314
UniPC [14] 0.483 0.430 0.386 0.352 0.324 0.302
DC-Solver (Ours) 0.461 0.412 0.369 0.337 0.314 0.291

(f) CFG = 5.5

Method NFE

5 6 7 8 9 10

DPM-Solver++ [7] 0.580 0.517 0.468 0.427 0.395 0.368
DEIS [13] 0.581 0.519 0.469 0.430 0.398 0.372
UniPC [14] 0.577 0.516 0.468 0.428 0.395 0.367
DC-Solver (Ours) 0.551 0.492 0.446 0.406 0.381 0.355

(g) CFG = 6.5

Method NFE

5 6 7 8 9 10

DPM-Solver++ [7] 0.687 0.612 0.556 0.512 0.474 0.441
DEIS [13] 0.684 0.610 0.554 0.511 0.474 0.442
UniPC [14] 0.691 0.618 0.563 0.517 0.479 0.445
DC-Solver (Ours) 0.654 0.587 0.531 0.488 0.457 0.426

(h) CFG = 7.5

Method NFE

5 6 7 8 9 10

DPM-Solver++ [7] 0.812 0.719 0.648 0.597 0.554 0.518
DEIS [13] 0.802 0.712 0.643 0.592 0.552 0.517
UniPC [14] 0.825 0.733 0.666 0.612 0.570 0.530
DC-Solver (Ours) 0.766 0.689 0.620 0.573 0.537 0.501

results in Table 2, where we compare the sampling quality of different methods
on various configurations of classifier-free guidance scale (CFG). Our results
indicate that DC-Solver can outperform previous methods by large margins with
different choices of CFG and NFE.

C.2 Qualitative Results

We present additional visualizations to showcase the superior qualitative per-
formance of DC-Solver in both unconditional sampling and conditional sam-

12

FFHQ
DPM++ [7] DEIS [13] UniPC [14] DC-Solver

LSUN Bedroom
DPM++ [7] DEIS [13] UniPC [14] DC-Solver

LSUN Church
DPM++ [7] DEIS [13] UniPC [14] DC-Solver

Fig. 1: Comparisons of unconditional sampling results across different datasets em-
ploying DC-Solver, UniPC [14], DPM-Solver++ [7] and DEIS [13]. Images are sampled
using only 5 NFE.

pling. Initially, we compare the unconditional sampling quality of four different

DC-Solver 13

Stable-Diffusion 1.5

Text Prompts DPM++ [7] DEIS [13] UniPC [14] DC-Solver

“A realistic photo of a tropical
rainforest with diverse wildlife.”

“Close up of a teddy bear
sitting on top of it.”

Stable-Diffusion 2.1

Text Prompts DPM++ [7] DEIS [13] UniPC [14] DC-Solver

“Group of people standing on
top of a snow covered slope.”

“Close up of a bird perched
on top of a tree.”

Stable-Diffusion XL

Text Prompts DPM++ [7] DEIS [13] UniPC [14] DC-Solver

“Pizza that is sitting on
top of a plate.”

“A serene waterfall in a
lush green forest.”

Fig. 2: Comparisons of text-to-image results on different pre-trained Stable-Diffusion
models using DC-Solver, UniPC [14], DPM-Solver++ [7] and DEIS [13]. Images are
sampled with a classifier-free guidance scale 7.5, using only 5 NFE.

14

D
P

M
+

+
D

C
-S

o
lv

e
r

G
T

U
n

iP
C

DPM-Solver++ UniPC DC-Solver (Ours) Ground Truth

Fig. 3: Comparison with GT (upper part) and more uncurated results (lower part).
For all the compared methods, we adopt NFE=5 and use the same initial noise. We
can clearly find that DC-Solver outperforms other methods.

methods on FFHQ [2], LSUN-Church [12] and LSUN-Bedroom [12] in Figure 1,
employing only 5 NFE. We show that DC-Solver can produce the clearest and
most realistic images across all three datasets. Furthermore, we explore condi-
tional sampling on different pre-trained Stable-Diffusion(SD) models, including
SD1.5, SD2.1 and SDXL, with only 5 NFE. The reuslts in Figure 2 demonstrate
that our DC-Solver is able to generate more realistic images with more details,
consistently outperforming other methods on all three SD models.

D Implementation Details

Our DC-Solver is built on the predictor-corrector framework UniPC [14] by
default. We set the order of the dynamic compensation K = 2 and skip the
compensation when i < K, which is equivalent to ρ0 = ρ1 = 1.0. K = 2 also
implies a parabola-like interpolation trajectory. During the searching stage, we
set the number of datapoints N = 10. We use a 999-step DDIM [10] to generate
the ground truth trajectory xGT

t in the conditional sampling while we found
a 200-step DDIM is enough for unconditional sampling. We use AdamW [5] to
optimize the compensation ratios for only L = 40 iterations and set the learning
rate of learnable parameters as α = 0.1. For the cascade polynomial regression,
we use p1 = p2 = 2 and p3 = 3. For the experiments on Latent-Diffusion [8],

DC-Solver 15

we adopt their original checkpoints and use the default latent size 64×64. For
the experiments of conditional sampling using Stable-Diffusion [8], we use the
default latent size of 64×64, 64×64, 96×96, 128×128 for SD1.4, SD1.5, SD2.1,
SDXL, respectively. It is worth noting that our method can be scaled up to
larger latent sizes and pre-trained DPMs mainly because of the effectiveness of
the designed dynamic compensation, which can be controlled by several scalar
parameters.

References

1. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS 33,
6840–6851 (2020)

2. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: CVPR. pp. 4401–4410 (2019)

3. Kingma, D., Salimans, T., Poole, B., Ho, J.: Variational diffusion models. NeurIPS
34, 21696–21707 (2021)

4. Liu, L., Ren, Y., Lin, Z., Zhao, Z.: Pseudo numerical methods for diffusion models
on manifolds. ICLR (2022)

5. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

6. Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: Dpm-solver: A fast ode solver
for diffusion probabilistic model sampling in around 10 steps. NeurIPS (2022)

7. Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: Dpm-solver++: Fast solver for
guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095
(2022)

8. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR. pp. 10684–10695 (2022)

9. Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models.
ICLR (2022)

10. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. ICLR (2021)
11. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-

based generative modeling through stochastic differential equations. In: ICLR
(2021)

12. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: Construction
of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365 (2015)

13. Zhang, Q., Chen, Y.: Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902 (2022)

14. Zhao, W., Bai, L., Rao, Y., Zhou, J., Lu, J.: Unipc: A unified predictor-corrector
framework for fast sampling of diffusion models. NeurIPS (2023)

15. Zheng, K., Lu, C., Chen, J., Zhu, J.: Dpm-solver-v3: Improved diffusion ode solver
with empirical model statistics. arXiv preprint arXiv:2310.13268 (2023)

	DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation Supplementary Material

