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Abstract. The task of video copy localization aims at finding the start
and end timestamps of all copied segments within a pair of untrimmed
videos. Recent approaches usually extract frame-level features and gener-
ate a frame-to-frame similarity map for the video pair. Learned detectors
are used to identify distinctive patterns in the similarity map to localize
the copied segments. There are two major limitations associated with
these methods. First, they often rely on a single feature for each frame,
which is inadequate in capturing local information for typical scenarios
in video copy editing, such as picture-in-picture cases. Second, the train-
ing of the detectors requires a significant amount of human annotated
data, which is highly expensive and time-consuming to acquire. In this
paper, we propose a self-supervised video copy localization framework
to tackle these issues. We incorporate a Regional Token into the Vision
Transformer, which learns to focus on local regions within each frame
using an asymmetric training procedure. A novel strategy that lever-
ages the Transitivity Property is proposed to generate copied video pairs
automatically, which facilitates the training of the detector. Extensive
experiments and visualizations demonstrate the effectiveness of the pro-
posed approach, which is able to outperform the state-of-the-art without
using any human annotated data.
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1 Introduction

With the exponential growth of content uploaded to video sharing platforms
such as TikTok and YouTube, the issue of unauthorized use and distribution of
copyrighted material has become more serious. It is non-trivial to identify copied
videos, as there are numerous content modifications that can be applied, and
users may intentionally make adversarial edits to evade moderation systems [19,
30]. As a result, video copy localization is becoming increasingly important.
Beyond detecting the presence of copied content at the video level [31], video
copy localization precisely identifies the start and end timestamps of all the
copied segments, which is intuitive and valuable in applications such as copyright
protection, video filtering and recommendation [15].

Existing video copy localization methods usually start by extracting frames
at specific time intervals from the input videos. Frame-level features are then
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Fig. 1: Our Self-Supervised Video Copy Localization Framework. We incor-
porate a Regional Token (RT) to the ViT model to build our feature extractor, which is
trained in a two-stage asymmetric process. Our temporal localization model/detector
is trained using generated copied video pairs in a self-supervised manner.

extracted to generate a frame-to-frame similarity map for the video pair. Fi-
nally, temporal localization models are used to identify distinctive patterns of
the copied segments in the similarity map, which localize them and output the
respective time ranges [18,19,22]. While these methods have achieved good per-
formance, there are two major limitations. First, they often rely on a global
feature for each frame, which is inadequate for typical scenarios in video copy
editing. For example, in cases of camcording or in picture-in-picture scenarios,
the copyrighted content might only occupy a small region within the entire frame.
Using a single feature may not effectively capture the specific region of interest
without being affected by the unrelated content in the rest of the frame [31].
Second, to deal with the wide variety of appearance of copied segments in the
similarity map, these methods often employ object detectors that require a sig-
nificant amount of human annotated data to train. However, acquiring such
annotated data can be very expensive and time-consuming [19].

Two strategies are proposed to cope with picture-in-picture scenarios in the
winning solutions of recent image and video copy detection competitions [11,30].
The first strategy involves generating multiple crops for the input and extract-
ing features for each crop, which results in a feature set for each image or frame
for similarity measurement. The crops can be human-defined regions [39] or
generated via region proposals and detection-based techniques [28,39]. The sec-
ond strategy concatenates two images as input to a Vision Transformer, which
outputs a binary prediction indicating whether copied content exists [21]. This
method implicitly handles copies in local regions through the patch tokens and
the self-attention mechanism. While these strategies produce improved results,
they require a significant increase in computational cost.
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To address these issues, we propose a self-supervised framework for video
copy localization, as illustrated in Fig. 1. To better capture local information in
feature extraction, we make simple yet effective modifications to the architecture
and training process of the Vision Transformer (ViT) [7]. A Regional Token is
introduced into the ViT model, which provides an additional feature vector for
each frame. The feature extractor is trained in a two-stage asymmetric proce-
dure with a contrastive loss. Our model effectively extracts local features and
produces improved performance, with only a minimal increase in parameters
and computational cost. It is also noteworthy that our Regional Token learns to
focus on picture-in-picture regions without the need for explicit supervision.

To alleviate the need for human-annotated data, we propose a novel strat-
egy to generated video pairs automatically, which are used to train our detector
for temporal localization in a self-supervised manner. In the generation pro-
cess, video segments are randomly selected from source videos. These segments
undergo spatial and temporal transformations and are then inserted into an-
other video to create the “copy video”. In addition, we utilize the Transitivity
Property [19,23] to expand the set of generated video pairs, which introduces a
broader range of similarity patterns to the copied video pairs, leading to better
performance in models trained on these data.

Our contributions can be summarized as follows:
– We propose a self-supervised approach for video copy localization, where our

feature extractor and temporal localization model are both trained in a self-
supervised manner. Without using any human-annotated data, our model
achieves state-of-the-art performance on the VCSL and VCDB datasets.

– We make an interesting discovery: by simply adding a new token and modi-
fying the training process, our model can effectively learn regional represen-
tation and improve performance. The visualization of the attention weights
for our Regional Token demonstrates a distinct focus on local regions.

– The performance of our model can be further improved by fine-tuning the
detector using human-annotated data. With only 1% of the VCSL training
data, our model outperforms the supervised training model that uses the
entire training set. The fully fine-tuned model achieves a segment-level F1
score of 71.56% and a video-level F1 score of 96.46% on the VCSL dataset,
surpassing previous best-performing methods by a significant margin.

2 Related Work

2.1 Image and Video Copy Detection

The task of image copy detection is to determine whether two images are de-
rived from the same original source, potentially altered by image editing. Both
traditional descriptors [8, 24, 43] and deep features [42] are explored for image
copy detection. Recently, self-supervised learning approaches achieve impressive
performance [31,41]. These methods are well-suited for this task, as the data aug-
mentation used to generate positive pairs resembles the process of “copy editing”,
making the training objective consistent with copy detection [11].
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Video copy detection methods aim to determine whether any copied seg-
ments exist in a pair of videos [2, 20, 25–27]. In addition to a video-level label,
video copy localization provides the start and end timestamps for all copied
segments in a pair of untrimmed videos [10, 15, 19]. Existing methods follow a
common pipeline [19], where temporal localization models are utilized to identify
distinctive patterns in the similarity map to localize copied segments [18]. The
similarity maps are usually constructed using frame-level features [25,35,41]. For
temporal localization, traditional methods such as Hough Voting [9], Dynamic
Programming [5], Dynamic Time Warping [3], and Temporal Network [34] have
been employed. Object detection models are also used to localize copied seg-
ments in the similarity map, which learn to account for the diverse appearance
of copied segments from a large amount of human-annotated video pairs [19],
and are able to produce more precise localization [18,22].

2.2 Self-supervised Learning for Image and Video

Early self-supervised learning approaches for image and video focus on the de-
sign of pretext tasks, such as relative position prediction [6] and frame order
prediction [29,40]. Contrastive methods then become prevalent in self-supervised
learning [4,14,17,32,33], which learn by pulling positive pairs closer and pushing
negative samples apart. Masked image modeling also achieves impressive perfor-
mance, which learns by masking some patches of the input images and then
reconstructing them from the visible ones [1, 12,16,36].

Although self-supervised learning is popular in the video domain, its appli-
cations to video copy detection and localization are still uncommon [20,26]. The
concept of self-supervision is used in [2, 15] to generate copied video pairs for
video copy localization. However, the data augmentation strategies are relatively
straightforward, leading to preliminary results. Currently, state-of-the-art per-
formance is still achieved by models trained on human-annotated datasets [18].
In our work, we incorporate Transitivity Propagation [23] for self-supervised data
augmentation, which introduces more diverse similarity patterns to the copied
video pairs, leading to better performance in models trained on these data.

3 Method

Our self-supervised video copy localization framework contains two key compo-
nents: a frame feature extractor, which incorporates a Regional Token into the
ViT architecture to capture local information, and a temporal localization model,
which is an object detector trained with a self-supervised data augmentation. In
this section, we first give the problem definition of video copy localization, and
then introduce our feature extractor and temporal localization model.

3.1 Problem Definition of Video Copy Localization

We denote a query video as vq = {fq
i }

Q
i=1 and a reference video as vr = {fr

j }Rj=1,
where Q and R are the numbers of extracted frames, and fq

i and fr
j are the
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i-th and j-th frames for the query and reference videos, respectively. If a frame
subsequence {fq

i }e
q

i=sq in vq and a frame subsequence {fr
j }e

r

j=sr in vr are derived
from the same original source, subjected to possible editing, they are considered
as a pair of copied segments. This copied segment pair can be represented as
{sq, eq, sr, er}, where sq and eq are the start and end frame indices (or times-
tamps) of the segment in the query video vq, and sr and er are the corresponding
indices in the reference video vr. There might be one or more copied segment
pairs in a copied video pair, which can be represented as a list of 4-tuples. The
objective of video copy localization is to provide the exact start and end times-
tamps for all copied segments between the query video and the reference video.

3.2 Self-Supervsed Feature Extraction

To tackle typical video copy scenarios where the copyrighted content may occupy
only a small portion of the entire frame, we make simple modifications to the
architecture and training process of the Vision Transformer (ViT) [7] to serve
as our feature extractor. We introduce an additional token, referred to as the
Regional Token, into the ViT architecture. This token, xregion, is concatenated
with the CLS token and the patch tokens. Learnable position embeddings are
then added to these token embeddings following [7]. The resulting sequence,
denoted as z0, serves as the input to the multi-head self-attention (MSA) [7,38]
and MLP layers. The final feature vectors of the Regional Token and CLS token
are produced by a linear layer:

z0 = [xregion;xcls;x1;x2; ...;xP ] +Epos, Epos ∈ R(P+2)×D (1)
z′l = MSA(LN(zl−1)) + zl−1, l = 1, ..., L (2)
zl = MLP(LN(z′l)) + z′l, l = 1, ..., L (3)
fregion, fcls = Linear(zL[0], zL[1]), (4)

where L is the number of layers and Epos is the position embedding.
The feature extractor is trained in a contrastive manner, where common

copy editing augmentations are used to generate the positive samples [21, 31].
We adapt the NT-Xent loss [4] as the objective function, with the loss for a
positive image pair (Ii, Ij) defined as follows:

ℓi,j = − log
exp(sim(Ii, Ij)/τ)∑2N

k=1 1[k ̸=i] exp(sim(Ii, Ik)/τ)
, (5)

where 1[k ̸=i] is an indicator function that equals 1 iff k ̸= i, τ is the temperature
parameter, and sim(·, ·) denotes the similarity between two samples. The final
loss is computed across all positive pairs in the mini-batch of size N .

We employ a two-stage asymmetric training process for the feature extractor,
as illustrated in Fig 1. In the first stage, we fix the Regional Token and our model
learns general features using the CLS token. The similarity function sim(·, ·) is
defined as the cosine similarity between the CLS token features fcls. In the
second stage, we unlock the Regional Token for further training. The similarity
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Fig. 2: Visualization of the training process. The upper part shows the evolution of the
self-attention maps for the Regional Token. The bottom part compares the “Regional
Token Hit Rate” for a symmetric training and our asymmetric training procedure.

function is adjusted to compute the maximum cosine similarity across all pairwise
combinations of the fregion and fcls features between the two images. This training
strategy creates an asymmetry between the Regional Token and CLS token,
which enables the Regional Token to focus on local regions and the CLS token
to focus on global information, as demonstrated in Section 4.5.

Analysis. We conduct preliminary experiments to demonstrate the effectiveness
of our asymmetric training. Figure 2 visualizes the training process of our model,
with the upper part showing the evolution of the self-attention maps for the
Regional Token. As training progresses, the attention gradually concentrates on
the local regions of the picture-in-picture areas.

We also define a metric called the “Regional Token Hit Rate” to analyze the
training process, which is the percentage of time when the similarity between
two frames is obtained using at least one feature from the Regional Token. This
metric is evaluated using 200 randomly selected VCSL testing video pairs that
include picture-in-picture editing. In the second stage of our asymmetric training,
the “Regional Token Hit Rate” begins at a low value, as shown in the bottom part
of Figure 2. This indicates that the frame similarity is initially dominated by the
CLS token feature, which learns to produce a global feature in the first stage.
When the model encounters picture-in-picture data during training, leveraging
local features will produce better similarity measures for the inputs, which in
turn leads to a decrease in the objective function. This encourages our Regional
Token to gradually focus on local regions as training progresses. As a result, the
metric gradually increases to 94.36%, which reflects the learning process and
indicates the increasing effectiveness of the Regional Token.

As a comparison, we also test a symmetric training process where the CLS
token and the Regional Token are trained together in a single stage. The “Re-
gional Token Hit Rate” for this method approximates 75%, aligning with the
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Fig. 3: Self-Supervised Copied Video Pair Generation. A) Vanilla Strategy: In
this example, three source video segments are selected and inserted into the background
video to create three copied video pairs. Only one pair is visualized in this figure for
clarity. B) Transitivity Propagation: Two copy videos containing segments derived
from the same source video with temporal overlap form a copied video pair. C) More
examples of visualized similarity maps.

probability of random selection. Note that each frame has a CLS token feature
and a Regional Token feature, and the similarity between two frames is computed
as the maximum cosine similarity among the four possible combinations. There-
fore, the expected “Regional Token Hit Rate” for random selection would be 3
out of 4, or 75%. This demonstrates that it is our asymmetric training process
that enables the Regional Token to effectively learn the local information.

3.3 Self-Supervised Temporal Localization

Object detectors are employed for temporal localization in recent models [18,22],
which learn from the diverse appearances of copied segments in the similarity
map of human-annotated video pairs [19], producing more precise localizations
than traditional methods. However, manual annotation is very expensive and
time-consuming to acquire, posing a significant obstacle to scaling the training
data. To tackle this issue, we generate copied video pairs automatically and
train our temporal localization model/detector in a self-supervised manner. In
the generation process, we use a vanilla strategy to generate copy videos and
then use the Transitivity Property to extend the set of copied video pairs.

Vanilla Strategy. Given an arbitrary set of videos V = {vi}Ni=1, we randomly
select one background video vb and several source videos Vs = {vs1, vs2, . . . , vsk}
to create a copy video. Video segments are randomly clipped from the source
videos, undergo spatial and temporal augmentations, and are then inserted at a
random timestamp in the background video, as illustrated in Fig. 3 (A). Tempo-
ral augmentation is performed by varying the frame sampling rate within a ratio
of 0.5 to 2, resulting in either a slowdown or speedup of the original segment by a
factor of up to 2. Spatial augmentation includes standard image transformations
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(e.g. resized-crop, blur, color jitter, etc.), as well as video copy editing-styled
transformations (e.g. superimpose objects or emojis on frames, overlay frames
on a blurry background or other videos, etc.). Finally, the copy video vc and the
source videos in Vs form k copied video pairs, with the ground truth start and
end timestamps being recorded during the augmentation process.

Transitivity Propagation. In real-life video copy scenarios, there are often
semantic relations between the source and background videos, such as sharing the
same topic or containing the same characters. However, this is not considered
in the vanilla strategy, and the source video segments are often inserted into
irrelevant background videos. In this case, the frames of the source segments
exhibit higher similarity with each other than with the frames of the background
videos. This leads to the appearance of a highlighted strip in the similarity map,
which marks the start and end timestamps of the segments in one of the videos,
as shown in Case A of Fig. 3 (C). The detector may take this additional hint as
a shortcut to localize the copied segments, which might not generalize well to
realistic scenarios. To mitigate this issue, we utilize the Transitivity Property [23]
to expand the set of copied video pairs and enrich the data for the training of
our detector.

The basic idea of the Transitivity Property is that if two copy videos contain
segments derived from the same source video and these segments have temporal
overlap, then the two videos form a copied video pair. The ground truth is the in-
tersection of the segments, while the frames of the segments that are outside the
intersection serve as a high similarity neighborhood. This produces an improved
similarity map, where the pattern of the copied segments (e.g., a diagonal line)
is embedded within a block of relatively high amplitude compared to the back-
ground, as shown in Fig. 3 (B) and Case B of Fig. 3 (C). Moreover, the segments
in the two videos are augmented independently, which further increases the di-
versity of similarity patterns among the copied video pairs, leading to better
performance in models trained on these data. In practice, we identify potential
video pairs with intersecting segments by examining the copy video pool gener-
ated using the vanilla strategy. This process ensures that there is minimal cost
associated with employing the Transitivity Property for generation.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate our model on the VCDB [23] and VCSL [19] datasets.
The VCSL dataset is currently the largest realistic dataset for video copy local-
ization, consisting of over 160K user-generated copied video pairs with manually-
labeled segment-level annotations. The VCSL testing set comprises 55,530 video
pairs, including 27,765 copied pairs and an equal number of negative pairs serving
as distractors. The VCDB dataset has a smaller scale, comprising 6,140 realis-
tic copied video pairs with segment-level annotations. Our feature extractor is
trained on the DISC dataset [11], which comprises 1M images designated for
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copy detection training. We generate 602K video pairs from the VCSL training
videos, including 240K positive pairs, to train our temporal localization model.
Evaluation Metrics. We follow the evaluation protocol in [19] and take the
untrimmed video pairs as input to identify all potential copied segments. The
segment-level metric assesses the amount of correctly predicted frames in both
videos, which indicates how accurate the copied segments are temporally lo-
calized within the video pairs [19]. We also emphasize the importance of using
the video-level metric. Standard precision and recall are used to evaluate for
identified copied pairs. The video-level F-score evaluates how well the models
can determine the presence or absence of copied segments in the video pairs,
providing a complementary perspective on model performance.
Implementation Details. We incorporate ViT-small [7,37] as our backbone for
the feature extractor. The input resolution is 384, patch size is 16, the embedding
dimension is 384 and the output feature are projected to a dimension of 256.
Each image of the DISC dataset [11] is used as query to retrieve the most similar
48 images from the dataset to form a mini-batch to train the model, with Adam
optimizer and constant learning rate 1e-5 for 240K iterations. The detection
model used for localization is YOLOX-s [13], which is trained using SGD with
momentum 0.9, batch size of 64, initial learning rate of 0.01 and weight decay
of 0.0005. More details can be found in our codes1.

4.2 Comparison with Previous Methods

We compare our method with previous well-performing video copy localization
methods on the VCSL and VCDB datasets in Table 1. The results of TransVCL
are from the original paper [18]. The results of other comparing methods are re-
produced using the code provided by the VCSL benchmark [19]. Previous works
put more emphasis on the segment-level results [19], while we also report their
video-level results. Note that previous methods perform differently under these
two metrics. Some methods, such as TransVCL and SPD, are effective at localiz-
ing the copied segments with precise boundaries, resulting in good segment-level
performance. On the other hand, methods such as HV and DP may lack the pre-
cision to pinpoint the exact location but are able to identify challenging copied
segments in a video pair, leading to good video-level performance. This variation
in performance demonstrates the importance of using both metrics to evaluate
the capabilities of copy localization methods.

As shown in Table 1, our self-supervised video copy localization model (Ours-
ssl), which is trained without using any human-annotated data, consistently
outperforms previous methods in both segment-level and video-level F-scores.
The performance can be further improved by fine-tuning the detector of Our-
ssl using the manually labeled VCSL training set, achieving segment and video
level F-scores of 71.56% and 96.46%, respectively, which surpass the previous
best models by a large margin. More analysis can be found in Section 4.4.

1 https://github.com/eccv1818rtr/ECCV1818
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Table 1: Video copy localization performance comparison on the VCSL and VCDB
datasets. Our self-supervised model (Our-ssl) is trained without any human-annotated
data. Our-ft model is obtained by fine-tuning the detector on the VCSL training set.

Segment-level Video-level
Dataset Method Recall Precision F-score↑ Recall Precision F-score↑

VCSL

HV [9] 86.94 36.82 51.73 89.08 98.98 93.77
TN [34] 62.49 66.50 64.43 82.88 99.95 90.62
DP [5] 49.56 60.63 54.53 85.98 99.43 92.21
DTW [3] 45.10 56.67 50.23 68.12 99.94 81.02
SPD [22] 71.47 56.27 62.97 86.15 81.90 83.97
TransVCL [18] 65.59 67.46 66.51 83.34 97.97 90.06
Ours-ssl 69.51 68.17 68.83 91.35 99.87 95.42
Ours-ft 75.76 67.81 71.56 93.93 99.14 96.46

VCDB

HV [9] 89.23 58.70 70.81 85.99 100.00 92.47
TN [34] 73.01 77.54 75.21 73.58 100.00 84.78
DP [5] 63.90 73.52 68.37 72.35 100.00 83.95
DTW [3] 61.78 72.26 66.61 62.77 100.00 77.13
SPD [22] 78.68 74.18 76.36 83.39 100.00 90.94
TransVCL [18] 76.69 74.09 75.37 78.47 100.00 87.94
Ours-ssl 78.98 75.61 77.26 87.46 100.00 93.31
Ours-ft 80.74 76.91 78.78 88.89 100.00 94.12

*The VCDB dataset has no negative pairs, therefore the video-level precisions are 100%.

Table 2: The effectiveness of the Transitivity Property for generating copied video
pairs. Performance is evaluated on the VCSL dataset, using the feature from previous
methods (eff256d) as well as our Regional Token Representation (RTR).

Segment-level Video-level
Feature Training Data Recall Precision F-score↑ Recall Precision F-score↑

eff256d ssl-vanilla 69.39 61.42 65.16 89.36 99.26 94.05
ssl-transitivity 68.04 66.78 67.40 88.96 99.90 94.12

RTR ssl-vanilla 71.15 63.24 66.96 90.87 99.69 95.08
ssl-transitivity 69.51 68.17 68.83 91.35 99.87 95.42

4.3 Ablation Study

We demonstrate the effectiveness of the Transitivity Property used to generate
copied video pairs in Table 2. The models trained with video pairs generated by
the Transitivity Propagation achieve better results than those trained with the
vanilla strategy. The performance gain is greater at the segment level than at
the video level. The Transitivity-based generation introduces a greater diversity
of appearances in the similarity map, which is more beneficial for localizing
precise segment boundaries in testing scenarios. As shown in Table 2, our self-
supervised trained model outperforms all previous methods when utilizing the
same feature, eff256d [18,19,41]. Furthermore, with the adoption of the Regional
Token Representation, our model achieves even better results.
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Table 3: Model performance for various configurations with differing numbers of to-
kens. The 1-token configuration corresponds to the vanilla ViT model, where the repre-
sentation of the CLS token is used for computing similarity. The 2-token configuration
denotes our model, which includes 1 CLS token and 1 Regional Token. Additionally,
we add 1 and 2 tokens to build the 3-token and 4-token models, respectively.

Segment-level Video-level
Number of Tokens Recall Precision F-score↑ Recall Precision F-score↑
1 (1cls, ViT) 67.98 67.93 67.96 89.93 99.80 94.61
2 (1cls + 1r, ours) 69.51 68.17 68.83 91.35 99.87 95.42
3 (1cls + 1r + 1t) 69.76 68.13 68.93 91.18 99.90 95.34
4 (1cls + 1r + 2t) 68.92 68.27 68.59 90.86 99.82 95.13

Table 4: Performance comparison of vari-
ous configurations on the DISC dataset.

Number of Tokens µAP R@P90
1 (1cls, ViT) 55.39 40.81
2 (1cls + 1r, ours) 58.66 44.96
3 (1cls + 1r + 1t) 59.38 45.31
4 (1cls + 1r + 2t) 59.40 45.51

Table 3 presents an analysis of how
model performance varies with the use
of different numbers of tokens on the
VCSL dataset. We perform a simi-
lar analysis on the DISC dataset, fol-
lowing the standard metrics for eval-
uating image copy detection [11], as
shown in Table 4. Our model, which
contains 2 tokens, achieves better re-
sults than the vanilla ViT model on
both the VCSL and DISC datasets. This demonstrates the effectiveness of the
additional Regional Token employed in our model. The 3-token and 4-token
models are built by adding more tokens and using stage-wise training based on
our model. When adding more tokens, there is a slight increase in performance
on the DISC dataset, but no significant performance gain is observed on the
VCSL dataset. This suggests that more tokens may be beneficial for more com-
plex cases of copy editing, but a single Regional Token is currently sufficient for
the VCSL dataset. The plateau in performance with two tokens on the VCSL
dataset could be attributed to the scarcity of video data containing multiple
picture-in-picture local regions.

4.4 Comparison with Supervised Training

We compare our self-supervised model to its counterpart that has the same ar-
chitecture but is trained in a supervised manner using human-annotated data.
As illustrated in Table 5, our self-supervised model (Ours-ssl) achieves a higher
video-level F-score than the supervised model (Ours-sup), while it has a lower
F-score at the segment-level. Specifically, the segment-level performance is com-
parable to the Ours-sup model across regular topic categories, but Ours-ssl model
underperforms in the “kichiku” category, as detailed in the Supplementary Ma-
terial. This can be attributed to the nature of “kichiku” videos, which remix or
mash up content from various sources and often contain repetitive and rapid
temporal edits, which are challenging for an algorithm to mimic effectively. Ex-
ample similarity maps are shown in Case C of Fig. 3 (C). The difference in
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Table 5: The comparison of our self-supervised model (Ours-ssl) with its supervised
counterpart (Ours-sup), where the detector is trained using human-annotated data
from the VCSL dataset. We also provide the performance where Ours-ssl model is
further fine-tuned using different percentages of the VCSL training set. Performance is
evaluated on the VCSL testing data, utilizing the eff256d and our RTR features.

Segment-level Video-level
Feature Method Recall Precision F-score↑ Recall Precision F-score↑

eff256d

Supervised

TransVCL [18] 65.59 67.46 66.51 83.34 97.97 90.06
TransVCL-imp 69.63 67.90 68.76 87.84 99.67 93.38
Ours-sup 71.85 66.77 69.22 88.25 99.11 93.37

Self-supervised

Ours-ssl 68.04 66.78 67.40 88.96 99.90 94.12

Self-supervised & fine-tuned

Ours-ft-1% 71.98 66.44 69.10 90.31 99.65 94.75
Ours-ft-5% 73.33 66.57 69.78 89.72 99.32 94.28
Ours-ft-20% 73.15 68.33 70.66 90.71 99.95 95.11
Ours-ft 73.46 68.19 70.73 90.94 99.80 95.17

RTR

Supervised

Ours-sup 74.52 65.49 69.71 91.38 98.77 94.93

Self-supervised

Ours-ssl 69.51 68.17 68.83 91.35 99.87 95.42

Self-supervised & fine-tuned

Ours-ft-1% 70.21 69.58 69.90 90.51 99.89 94.97
Ours-ft-5% 74.77 67.87 71.15 92.16 99.43 95.66
Ours-ft-20% 75.54 67.43 71.26 92.36 99.64 95.86
Ours-ft 75.76 67.81 71.56 93.93 99.14 96.46

performance of the models suggests a complementary property between the gen-
erated and human-annotated copy pairs.

The supervised model (Our-sup) shares the same backbone detector with the
baseline model of TransVCL [18] but achieves better results. This improvement
is attributed to our substitution of the dual-softmax similarity map used in [18]
with a cosine similarity map. When using the same setting, the performance of
TransVCL is also improved, as indicated by TransVCL-imp in Table 5. However,
in this configuration, the added value of the Transformer layers incorporated in
TransVCL appears to diminish.

We fine-tune the detector of our self-supervised model with different percent-
ages of the VCSL training set. With only 1% of the manually-labeled data, our
model achieves similar or slightly better results than the fully-supervised model
(Our-sup) which is trained using the entire training set. When fine-tuned on
the entire training set, our model (Ours-ft) achieves even better results, attain-
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Fig. 4: Attention maps of our model. Row 1 and 4: the original frames; Row 2 and 5:
the attention maps for the Regional Token; Row 3 and 6: the attention maps for the
CLS token. White circles are drawn over human faces to protect identities.

ing segment-level and video-level F-scores of 71.56% and 96.46%, respectively,
surpassing previous methods by a large margin, as detailed in Table 1.

4.5 Visualization

Figure 4 shows the self-attention maps for the Regional Token and the CLS
token of the last layer in our feature extractor. Our input has a resolution of
384, which results in a sequence of 578 tokens, including the Regional Token
and the CLS token. We take the attention weights for the patch tokens when
the Regional Token and CLS token serve as the queries. These weights are then
averaged across all heads and scaled to the range of [0, 255] to produce the
visualization. It can be observed that the attention of our Regional Token is pri-
marily focused on the local regions, whereas the CLS token tends to concentrate
more on global information. This demonstrates the effectiveness of our Regional
Token in capturing information from picture-in-picture areas, which is crucial
for detecting the copied content.
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Table 6: Comparison with recent competition winning solutions on the VCSL dataset.

Segment-level Video-level
Dataset Method Recall Precision F-score↑ Recall Precision F-score↑

VCSL

MultiCrop [39] 74.38 69.93 72.09 93.10 99.79 96.33
ImConcat [21] 57.54 67.19 62.00 91.60 97.83 94.61
SAM [28] 65.87 67.51 66.68 91.60 96.40 93.94
Ours-ft 75.76 67.81 71.56 93.93 99.14 96.46

4.6 Comparison with Competition Winners

We adapt the winning solutions [21, 28, 39] from recent image and video com-
petitions [11,30] and evaluate them on the VCSL dataset. The approach in [39]
employs a multiple crops strategy, we implement a 13-crop version and extract
features for each crop for similarity measure. Two images are concatenated as
input for a Vision Transformer (ViT) in [21]. We apply this method by feeding
the corresponding frame pair to the model to compute each pixel of the similarity
map for the video pair. The Similarity Alignment Model (SAM) proposed in [28]
are also evaluated. These methods are not directly comparable to our model, as
their excessive processing requires computational costs that are at least an or-
der of magnitude larger (More details in Supplementary Material). As shown in
Table 6, our model, while being much simpler and more time-efficient, achieves
similar or better performance than these methods.

5 Conclusion and Discussion

In this work, we propose a self-supervised approach for video copy localization,
where our feature extractor and temporal localization model are both trained
in a self-supervised manner. By adding a Regional Token to the ViT model
and utilizing an asymmetric training procedure, our feature extractor effectively
learns regional representations and improves performance. We introduce a novel
strategy that leverages the Transitivity Property to generate copied video pairs,
which facilitates the training of the temporal localization model. Without the use
of any human-annotated data, our model achieves state-of-the-art performance
on the VCSL and VCDB datasets.

Ethical considerations. We use public datasets DISC [11], VCSL [19], and
VCDB [23] in our experiments. To protect identities, human faces in the result
figures have been masked. Copy detection is an adversarial task, and there is
a risk that publishing research on this problem may offer insights that enable
users to circumvent moderation systems. However, we believe that research in
this direction provides a net benefit to society, as also discussed in [19,31].
Future work. Our feature extractor is limited by being trained with only image
input, without considering the relationships between frames. It remains unclear
whether and how temporal information in videos is useful for the copy localiza-
tion task. This represents an interesting direction for future work.
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