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1 Additional methodology details

1.1 Description of the pre-trained LDM for SISR

The proposed StableVSR is built upon a pre-trained Latent Diffusion Model
(LDM) for single image super-resolution (SISR). We use Stable Diffusion ×4
Upscaler (SD×4Upscaler)4. It follows the LDM framework [14], which performs
the iterative refinement process into a latent space and uses the VAE decoder
D [7] to decode latents into RGB images. Starting from a low-resolution RGB
image LR (conditioning image) and an initial noisy latent xT , the denoising UNet
ϵθ is used to generate the high-resolution counterpart via an iterative refinement
process. In this process, noise is progressively removed from xt guided by LR.
After a defined number of sampling steps, the obtained latent x0 is decoded using
the VAE decoder D [7] into a high-resolution RGB image HR. The obtained
image HR has a ×4 higher resolution than the low-resolution image LR, as
D performs ×4 upscaling. In practice, the low-resolution RGB image LR and
the initial noisy latent xT are concatenated along the channel dimension and
inputted to the denoising UNet.

1.2 Bidirectional information propagation in the Frame-wise
Bidirectional Sampling strategy

We show in Figure 1 a graphical representation of the proposed Frame-wise Bidi-
rectional Sampling strategy to better show the bidirectional information propa-
gation. We take a sampling step t in video time i = 1, ..., N before moving to the
3 https://github.com/claudiom4sir/StableVSR
4 https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler

https://github.com/claudiom4sir/StableVSR
https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler
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Fig. 1: Graphical representation of the proposed Frame-wise Bidirectional Sampling
strategy. The green flow propagates information forward in sampling time while the
blue flow alternately propagates it forward and backward in video time. Forward prop-
agation is shown with dashed lines, while backward propagation with dotted lines.

next sampling step t− 1. At every sampling step, we invert the video time order
for processing: from i = 1, ..., N to i = N, ..., 1. For the generation of xi

t−1, we
start from x̃i−1

0 and xi
t. Since x̃i−1

0 is related to the previous frame, it provides
information from the past. In addition, since xi

t is generated starting from x̃i+1
0

and xi
t+1, it contains information from future frames, which is implicitly prop-

agated to the current sampling step. As a consequence, xi
t−1 benefits from past

information from x̃i−1
0 due to the forward direction of the current sampling step,

and future information from xi
t due to the backward direction of the previous

sampling step.

2 Additional experiments

2.1 Architecture details

We report the StableVSR architecture details in Table 1. We can identify three
main components: denoising UNet, Temporal Conditioning Module (TCM), and
VAE decoder [7]. Following ControlNet [21], we freeze the weights of the denois-
ing UNet during training. We only train TCM for video adaptation. We apply
spatial guidance on the low-resolution frame via concatenation, i.e. the noisy la-
tent xi

t (4 channels) is directly concatenated with the low-resolution frame LRi

(3 channels) along the channel dimension. The temporal guidance is instead pro-

vided via TCM, which receives Temporal Texture Guidance H̃R
i−1→i

as input
(3 channels). Once the iterative refinement process is complete, the VAE de-
coder D [7] receives the final latent of a frame i as input, i.e. xi

0, and converts it
into an RGB frame. This latent-to-RGB conversion applies ×4 upscaling, hence
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Table 1: Architecture details of StableVSR.

Denoising UNet Temporal Conditioning Module VAE decoder

Downscaling ×8 ×8 -
Upscaling ×8 - ×4

Input channels 7 3 4
Output channels 4 - 3

Trainable No Yes No
Parameters 473 M 207 M 32 M

Table 2: Additional quantitative comparison with state-of-art methods for VSR us-
ing no-reference perceptual metrics. Best results in bold text. Almost all the metrics
highlight the proposed StableVSR achieves better perceptual quality.

Method Vimeo-90K-T REDS4

MUSIQ↑ CLIP-IQA↑ NIQE↓ MUSIQ↑ CLIP-IQA↑ NIQE↓

Bicubic 23.27 0.358 8.44 26.89 0.304 6.85
ToFlow 40.79 0.364 8.05 - - -
EDVR - - - 65.44 0.367 4.15
TDAN 46.54 0.386 7.34 - - -

MuCAN 49.84 0.379 7.22 64.85 0.362 4.30
BasicVSR 48.97 0.376 7.27 65.74 0.371 4.06

BasicVSR++ 50.11 0.383 7.12 67.00 0.381 3.87
RVRT 50.45 0.387 7.12 67.44 0.392 3.78

RealBasicVSR - - - 67.03 0.374 2.53
StableVSR (ours) 50.97 0.414 5.99 67.54 0.417 2.73

the output of the decoder represents the upscaled frame. The overall number of
parameters in StableVSR (including the VAE decoder [7]) is about 712 million.

2.2 Additional comparison with state-of-the-art methods

As in the main paper, we compare the proposed StableVSR with ToFlow [20],
EDVR [17], TDAN [15], MuCAN [10], BasicVSR [2], BasicVSR++ [3],
RVRT [11], and RealBasicVSR [4].
Frame quality results. We report additional results using no-reference per-
ceptual quality metrics, including MUSIQ [9], CLIP-IQA [16] and NIQE [12].
The results are reported in Table 2. All the metrics highlight the proposed Sta-
bleVSR achieves superior perceptual quality. The only exception is NIQE [12]
on REDS4 [13], which indicates StableVSR achieves the second-best results. We
show in Figure 2 an additional qualitative comparison with BasicVSR++ [3]
and RVRT [11] on Vimeo-90K-T [20] (Figure 2a) and with RVRT [11] and Re-
alBasicVSR++ [4] on REDS4 [13] (Figure 2b). We can observe the proposed
StableVSR is the only method that correctly upscales complex textures while
the other methods fail, producing blurred results.
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Reference frame Bicubic BasicVSR++ RVRT StableVSR (ours) Reference

(a) Results on Vimeo-90K-T.

Reference frame Bicubic RVRT RealBasicVSR StableVSR (ours) Reference

(b) Results on REDS4.

Fig. 2: Additional qualitative comparison with state-of-the-art methods for VSR. Only
the proposed StableVSR correctly upscales complex textures.
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Table 3: Comparison with the DM video baseline. Perceptual metrics are marked with
⋆, reconstruction metrics with ⋄, and temporal consistency metrics with •. Best results
in bold text. The proposed StableVSR achieves better results in terms of frame quality
and temporal consistency. Results computed on center crops of 512× 512 resolution of
REDS4.

Method tLP•↓ tOF•↓ LPIPS⋆↓ DISTS⋆↓ PSNR⋄↑ SSIM⋄↑

Video baseline 13.08 2.92 0.113 0.075 26.27 0.771
StableVSR (ours) 6.16 2.84 0.095 0.067 27.14 0.799

Temporal consistency results. We can qualitatively assess the temporal
consistency aspect of the proposed StableVSR in the demo videos. We compare
StableVSR with SD×4Upscaler, which represents the baseline model used by
StableVSR, and RealBasicVSR [4], which represents the second-best method on
REDS4 [13] in terms of temporal consistency.

2.3 Comparison with the DM video baseline

We compare the proposed StableVSR with a DM video baseline containing 3D
convolutions and temporal attention. Starting from the same pre-trained DM for
SISR we use in StableVSR, i.e. SD×4Upscaler, we implement the video baseline
by introducing a temporal layer (3D convolutions + temporal attention) after
each pre-trained spatial layer, as done in previous video generation methods [1,
8,19]. For training, we set the temporal window size to 5 consecutive frames and
use the same training settings as in StableVSR. The only difference is the batch
size, which is set to 8 instead of 32 due to memory constraints. We freeze the
spatial layers and only train the temporal layers. Table 3 reports the results,
where we can see the proposed StableVSR achieves better performance in both
frame quality and temporal consistency. We attribute the lower performance
of the DM video baseline to the limited temporal view, the inability to capture
fine-detail image information, and the lack of proper frame alignment. StableVSR
does not suffer from these problems, achieving better results.

2.4 Additional ablation study

Temporal Texture Guidance. In Figure 3, we provide additional results
related to the ablation study on the Temporal Texture Guidance. We can ob-
serve that only the proposed design for the Temporal Texture Guidance ensures
temporal consistency at the fine-detail level over time.

2.5 Impact of sampling steps

We study how the performance changes as the number of sampling steps varies.
Figure 4 shows the results obtained by increasing the number of sampling steps
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Fig. 3: Additional ablation experiments for the Temporal Texture Guidance. We show
the results obtained on three consecutive frames. Only the proposed solution ensures
temporal consistency at the fine-detail level over time. Results on sequence 015 of
REDS4.

from 10 to 100. Reconstruction quality metrics, i.e. PSNR and SSIM [18], de-
teriorate with more sampling steps. Conversely, perceptual quality metrics, i.e.
LPIPS [22], DISTS [6], MUSIQ [9], CLIP-IQA [16], NIQE [12], improve. We can
attribute this behavior to the iterative refinement process of DMs, which pro-
gressively refines realistic image details that may not be perfectly aligned with
the reference. We can observe the temporal consistency metric tLP [5] reaches
the best value using 30 steps, while tOF [5] values are better as the number of
sampling steps increases. According to these results, 50 sampling steps represent
a good balance between perceptual quality and temporal consistency.
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Fig. 4: Performance changes as the number of sampling steps varies. The x axis rep-
resents sampling steps, while the y axis metric values. Perceptual metrics are marked
with ⋆, reconstruction metrics with ⋄, and temporal consistency metrics with •. Increas-
ing the sampling steps improves perceptual quality while deteriorating reconstruction
quality. Results computed on center crops of 512× 512 resolution of REDS4.
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