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Fig. 1: Novel views from the MipNeRF360 dataset [3]. RoGUENeRF achieves no-
ticeable qualitative improvements over state-of-the-art baselines and NeRF enhancers,
especially in high-frequency regions such as trees, buildings and text.

Abstract. Recent advances in neural rendering have enabled highly
photorealistic 3D scene reconstruction and novel view synthesis. Despite
this progress, current state-of-the-art methods struggle to reconstruct
high frequency detail, due to factors such as a low-frequency bias of
radiance fields and inaccurate camera calibration. One approach to miti-
gate this issue is to enhance images post-rendering. 2D enhancers can be
pre-trained to recover some detail but are agnostic to scene geometry and
do not easily generalize to new distributions of image degradation. Con-
versely, existing 3D enhancers are able to transfer detail from nearby
training images in a generalizable manner, but suffer from inaccurate
camera calibration and can propagate errors from the geometry into ren-
dered images. We propose a neural rendering enhancer, RoGUENeRF,
which exploits the best of both paradigms. Our method is pre-trained to
learn a general enhancer while also leveraging information from nearby
training images via robust 3D alignment and geometry-aware fusion.
Our approach restores high-frequency textures while maintaining geo-
metric consistency and is also robust to inaccurate camera calibration.
We show that RoGUENeRF substantially enhances the rendering quality
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of a wide range of neural rendering baselines, e.g. improving the PSNR of
MipNeRF360 by 0.63dB and Nerfacto by 1.34dB on the real world 360v2
dataset. Project page: https://sib1.github.io/projects/roguenerf/

1 Introduction

The seminal work of Mildenhall et al . [23] introduced an effective methodology
to render highly photorealistic novel views of 3D scenes by means of Neural
Radiance Fields (NeRFs). Given a set of posed multi-view images, NeRFs learn
complex view-dependent effects via a learnable multilayer perceptron (MLP)
which models the 3D radiance field of the scene, thanks in part to the input
domain parameterization (3D coordinates + 2D viewing direction) and the di-
rect pixel-wise photometric loss. The NeRF paradigm has been very popular in
recent years [53], with active research in the field proposing new functionali-
ties [27, 30, 31, 48], applications [10, 21, 24] and also tackling some of the open
challenges present in [23]. A key aspect of subsequent literature is the successive
improvement of the rendering fidelity, i.e. as measured by the Peak Signal-to-
Noise Ratio (PSNR), producing higher quality rendered novel views [3, 4].

Nonetheless, an underlying challenge of these approaches is the shape-radiance
ambiguity [57], i.e. training images can be explained with high accuracy by in-
troducing inaccurate geometry, resulting in poor generalization outside of the
training views. This is particularly problematic when the geometry around high-
frequency details, such as textures, can not be resolved or disambiguated prop-
erly with the number of training views. The optimization process will generally
either introduce inaccurate geometry with view-dependent radiance values over-
fitting each training view, e.g . view-dependent floater artifacts, or else converge
to a mean radiance value, which then results in blurred renderings. Similarly, in-
accurate camera calibration or missing lens distortion models also lead to blurred
results and thus lack of fidelity in the high-frequency spectrum, mostly due to
pixel and subpixel shifts among camera views. Further, analysis by Tancik et
al . [43] describes a low-frequency bias of the standard MLP set-up.

In addition to these issues, the practical nature of data capture and cam-
era pose estimation can introduce further error. For pseudo-static 3D scenes,
small variations in the environment can occur during capture such as changes in
lighting and small movements within the scene (e.g. foliage), which violate the
3D-consistent static scene assumption of NeRFs. This can also negatively affect
the performance of camera pose estimation via COLMAP [37], which although
mostly reliable is not infallible [12,33], even when using carefully captured data.

In this work, we present RoGUENeRF, a NeRF enhancer which is designed to
improve the image quality of NeRF renderings while maintaining geometric con-
sistency and being robust to inaccurate camera calibration. Firstly, we propose a
novel combined 3D + 2D alignment and refinement mechanism which accurately
finds correspondences between images from different camera viewpoints, even
when one input is severely degraded, and can also compensate for inaccurate
estimates of scene geometry and camera poses. Secondly, we propose a novel
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geometry-aware spatial attention module which regulates misaligned regions
based on both camera distance and pixel-wise differences. Lastly, we propose a
pre-training and fine-tuning strategy which learns a general geometry-consistent
enhancement function that transfers well (i.e. fine-tunes in under 60 minutes
per scene) to different distributions of rendering degradations. We thoroughly
evaluate our proposed approach on six different NeRF baselines across real world
bounded and unbounded scenes from three datasets: LLFF [22], DTU [11] and
360v2 [3]. We show consistent improvements in PSNR, SSIM and LPIPS over
every baseline and qualitatively demonstrate substantial improvements in image
quality over baselines and state-of-the-art NeRF enhancers.

2 Related Work

2.1 High Fidelity NeRF

Since the seminal work of Mildenhall et al . [23], there have been several works
which aim to improve the fidelity of NeRF-based models. Some methods [12,34]
incorporate additional processing layers after the NeRF model, coupled with im-
age quality specific loss functions. Roessle et al . [34] proposed GANeRF, using a
2D conditional generator trained adversarially to refine the rendered output. To
maintain view-consistency, a discriminator is trained end-to-end together with
the underlying NeRF model, requiring computationally expensive patch-based
training. Combined with the time required to train the generator, this signifi-
cantly increases optimization time per scene from 15 minutes for the underlying
NeRF model to 58 hours. AlignNeRF [12] also incorporates additional processing
layers trained end-to-end with the NeRF model by introducing a shallow convolu-
tional network coupled with an alignment aware loss and relies on the shallowness
of the enhancement network to maintain view consistency. Some methods tackle
the problem of NeRF super-resolution [9, 49] by using relevant patches from a
HR reference frame. Other approaches attempt to improve the underlying dif-
ferentiable rendering algorithm directly [2,3,47,54] to better tackle anti-aliasing
effects, unbounded scenes or reflections and can better model the characteristics
of the scene. A further approach is to jointly optimize camera poses together
with the NeRF to reduce geometric errors from incorrect poses [5,17,20,28,45].

Another popular line of work has been to address the slow training and
inference time of NeRF by changing from an MLP to a faster representation,
e.g. voxels [36], SDFs [46], MPIs [41, 42], hash encodings [26, 44, 50], tensor de-
composition [7], octrees [56], reducing training time per scene to as fast as
a few seconds. ZipNeRF [4] marries the advantages of both high-fidelity and
fast-training by combining voxel-grid data structures with cone-based render-
ing. Dynamic scenes captured as volumetric videos also pose a significant chal-
lenge for many existing neural rendering models which otherwise perform well
on static fixed scenes. Many methods model the additional time dimension
[8, 10, 16, 18, 25, 31, 32, 39] and are able to render short free viewpoint videos
effectively but at the cost of lower image quality and temporal consistency. De-
spite huge progress in improving the fidelity of NeRFs, these models remain
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constrained by errors in training data and camera pose estimation leading to
rendering artifacts in real world scenes.

2.2 NeRF Enhancers

Another approach to improving NeRF fidelity is to apply a NeRF-specific en-
hancer as a post-rendering step, which assumes the NeRF has already been
trained and does not backpropagate gradients to the underlying NeRF model.
Boosting View Synthesis [35] aims to improve image quality by transferring
colour residuals from training views to novel views inspired by concepts from
classic image-based rendering methods. The use of residuals depends on a pixel
perfect alignment between the rendered and ground truth training views, how-
ever this is often not the case due to inaccurate camera pose estimation [12]
thus limiting the possibility of accurate residual transfer and requiring a hand-
crafted weighting strategy to alleviate ghosting artifacts. NeRFLiX [60] on the
other hand eschews classic 3D models entirely and instead proposes to learn a
general 2D viewpoint mixer which is trained via simulated image degradation.
This is reasonably effective provided the testing domain is well represented in
the simulated degradation and neighbouring images are close enough in camera
pose and image content. However if the distribution of the rendering artifacts
shifts from the simulated data, the performance degrades. NeRFLiX++ [60] sig-
nificantly improves the computational efficiency of NeRFLiX while also increas-
ing the realism of image degradations by introducing a GAN-based degradation
simulator, further boosting performance. Existing NeRF enhancers either use a
2D approach to learn a general function which is agnostic to scene geometry,
or they use a 3D approach which suffers from inaccurate camera calibration
and can propagate errors from the geometry into image renderings. In contrast,
our method is robust to errors in camera poses and maintains view-consistency
while also being pre-trained to learn a general enhancement function, effectively
combining the advantages of 2D and 3D approaches.

3 Method

Overview. We present RoGUENeRF, a geometry-consistent enhancer for NeRF
models which substantially improves the visual quality and fidelity of rendered
images. We show an overview of our method in Figure 2. Our proposed approach
consists of three core elements: 3D Alignment, Non-Rigid Refinement and Geo-
metric Attention. We leverage the fact the NeRF model has learned an estimate
of the scene geometry and can render depth maps as well as RGB images. For a
novel test view, we use depth maps and camera poses to 3D-align training image
features to the novel camera viewpoint. To compensate for any slight inaccu-
racies in estimated geometry, we improve the alignment further with non-rigid
refinement by means of a lightweight iterative optical flow network. We then
regulate the contribution of any remaining misaligned regions with a geometry-
aware attention module. Finally the image features are fused and processed with
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Fig. 2: RoGUENeRF Overview: Given a trained NeRF model and corresponding train-
ing data, our method substantially enhances the rendering quality of the NeRF while
maintaining view-consistency.

a Uformer [51], a 2D enhancer on which our method is based. We pre-train our
model on a small dataset of render-GT image pairs and show that we can quickly
fine-tune on a novel scene to achieve a substantial improvement in image quality.

3.1 Preliminaries

NeRFs are trained on a set of ground truth RGB training images {Hi}Mi=1 which
capture a real world scene from set of known camera poses {Ci}Mi=1, where M is
the size of the training set. After training, NeRFs are able to freely render RGB
images Ii and depths Di of the scene from any camera viewpoint, including novel
camera poses Ck not in {Ci}Mi=1. NeRFs can interpolate well between camera
poses, but the rendered images Ii are typically degraded in quality compared to
the ground truth Hi especially in parts of the scene that contain high-frequency
textures.

3.2 Nearest Neighbour Selection

The high-frequency textures lost during the NeRF optimization process are still
present in the set of training images used to train the NeRF. We take advantage
of this by finding the set of training images which have the largest overlap of
image content with the novel rendered image Ik. Given a novel camera pose
Ck and training poses {Ci}M1 , we compute the nearest camera poses to Ck. We
define a camera pose C to be the concatenation of a rotation matrix R and a
translation vector t which describe the orientation and position of the camera
respectively. To find the distance between rotations of different camera poses,
we compute the three dimensional Euler angles of the rotation matrices and
compute the mean of the L1 norm of the differences as follows:

distiang(Rk, Ri) =
1

3
|π(Rk)− π(Ri)|1, (1)
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where π(Ri) are the Euler angles of the rotation matrix of Ci and distiang is the
angular distance between Ck and Ci, and | |1 is the L1 norm. We also compute
the distance between the camera positions as follows:

distipos(tk, ti) =
1

3
|tk − ti|1, (2)

where distipos is the positional distance between Ck and Ci. Empirically and
qualitatively, we find distipos to be the strongest indicator for image content
overlap with a novel view, followed second by distiang. We first choose the 5

camera poses which have the smallest distipos values, {Cp}5p=1, as follows:

{Cp}5p=1 = {Cj} | j ∈ min5{distjpos(tk, {tj}Mj=1)}, (3)

where min5{} are the 5 camera poses corresponding to the smallest distance
values. Of these we choose the n with the smallest distiang values, {Ci}ni=1, as
follows:

{Ci}ni=1 = {Cp} | p ∈ minn{distpang(Rk, {Rp}5p=1)}, (4)

where minn{} are the n camera poses corresponding to the smallest distance
values. The n training images corresponding to these camera poses, {Hi}ni=1 are
considered to be the closest neighbouring training images with respect to our
novel camera view.

3.3 3D Alignment

Once nearest neighbours are selected, we extract full resolution 64-dimensional
image features using a small convolutional encoder block and reproject the fea-
tures into the novel camera view using the pinhole camera model. This allows
our enhancer to leverage relevant information from neighbours even if the cam-
eras poses have very different orientation and position. Given a rendered novel
view Ik and a set of neighbouring training images {Hi}ni=1, we extract image
features with two separate convolutional encoder blocks as follows:

Ifk = convI(Ik), (5)

{Hf
i }

n
i=1 = convH({Hi}ni=1), (6)

where Ifk and {Hf
i }ni=1 are image features extracted from Ik and {Hi}ni=1 respec-

tively and convI() and convH() are small convolutional blocks. We reproject the
neighbouring image features into the novel camera view Ck using the pinhole
camera model. Given a 3D coordinate xk = (xk, yk, zk) in the novel camera
view, where (xk, yk) are the pixel coordinates in the image, and zk is the depth
value at that pixel coordinate, we reproject the coordinate into a neighbouring
camera view as follows:

xk→i = KiCiC
−1
k K−1

k [xk, 1], (7)
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where xk→i = (xk→i, yk→i, zk→i, 1) is the 3D coordinate reprojected from cam-
era k to camera i, Ki is the camera intrinsic matrix, C−1

i is the inverse of the
camera pose and [ , ] denotes concatenation. To ensure geometric consistency,
we conduct visibility testing by comparing the reprojected depth value zk→i with
the depth value computed by NeRF, zi, as follows:

visi = H
(
1− zk→i

zi
+ l

)
(8)

where visi is the visibility score for the given pixel, H() denotes the Heaviside
function, and l is a leniency threshold to account for a degree of inaccuracy
in depth and camera pose estimates. The reprojected feature map is formed
by copying the values from the reprojected coordinates xk→i into the original
coordinates xk, weighted by the visibility score:

Hf
i→k⟨ϕ(xk)⟩ = visi ×Hf

i ⟨ϕ(xk→i)⟩, (9)

where Hf
i→k are the image features reprojected from camera i to camera k,

ϕ(xk) = (xk

zk
, yk

zk
) and ⟨ ⟩ denotes 2D coordinate indexing.

3.4 Non-Rigid Refinement

In real world data, there are often errors in camera pose estimation due to
the limitations of COLMAP [12, 38], and also in the geometry estimated by
NeRF, hence our 3D alignment is unlikely to find perfect correspondences. To
account for this, we introduce a lightweight iterative optical flow network which
further refines the alignment between the neighbouring images and the novel view
image. Typically optical flow methods expect two clean images to accurately find
correspondences but the domain gap between the blurry rendered image and the
neighbouring images violates this assumption. Our choice however is motivated
by the fact that optical flow methods can produce reasonable results based on
global structures and shapes alone [12]. We use the flow network presented in [6]
as it has been shown to work well even with domain gaps. We perform the
iterative refinement in feature space and learn a network trained end-to-end
which is optimized for our specific task instead of general purpose alignment
[6,13]. Given the 3D aligned neighbouring features Hf

i→k, we refine the alignment
further as follows:

fHf
i→k

= F(Hf
i→k, I

f
k ), (10)

Hf
′

i→k = warp2D(Hf
i→k, fHf

i→k
), (11)

where fHf
i→k

is the estimated flow field, Hf
′

i→k are the reprojected and warped
neighbouring image features, F() is our lightweight optical flow network and
warp()2D denotes the function for warping an image with a 2D flow field.
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3.5 Geometry-Aware Attention

Any regions which remain misaligned after our combined 3D and 2D alignment
can feed through to the final enhanced results as ghosting artifacts. Spatial
attention has been shown to be effective at reducing such artifacts [55]. We
propose a learnable combined spatial and geometric attention module to regulate
misaligned regions. Our geometry-aware attention is based on both 2D and 3D
spatial information. This allows our enhancer to regulate contributions from
neighbours based on similarities in pixel content and also geometric distance
based on camera orientation and depths. Given the neighbouring and novel view
image features, as well as the neighbour depth projected to the novel view Di→k

and the novel view depth Dk, we compute the pixel attention weights as follows:

ψi
pix = Apix(H

f
′

i→k, I
f
k , Di→k, Dk), (12)

where ψi
pix ∈ Rw×h are the pixel attention weights, w and h are the width and

height of the image and Apix() is the pixel attention module which is composed
of two convolutional layers and a sigmoid activation. In the second stage, the
camera attention weights are computed using the Euler angles and positions of
neighbour and novel view camera poses:

ψi
cam = Acam(π(Ri), π(Rk), ti, tk) (13)

where ψi
cam ∈ R1 are the camera attention weights and Acam() is the camera

attention module which is composed of two fully connected layers and a sigmoid
activation. Finally both sets of the weights are applied to the neighbour image
features. ψpix is applied at a per-pixel level while ψcam is applied at a per-image
level:

Hfa

i→k = ψi
cam × ψi

pix ×Hf
′

i→k, (14)

where Hfa

i→k are the attention regulated image features.

3.6 Feature Fusion

We use the maxpooling approach described in [1] to combine our set of attention
regulated neighbouring features, {Hfa

i→k}ni=1 into a single feature mapHf
pool. This

approach has the advantages of outperforming concatenation [6] and also defining
a flexible architecture which can accept any number of input neighbours. This
gives us the ability to use fewer or more neighbouring images depending on
factors such as availability of data, image resolution and GPU memory, ensuring
our enhancer is practical and can be applied in multiple settings. Finally we
process the pooled features and novel view features together with a convolutional
layer and enhance them further using a 2D enhancer, Uformer [51], which we
modify to accept image features instead of RGB inputs:

Ĥk = U(convmerge([I
f
k , H

f
pool])), (15)

where U is the Uformer, and convmerge() denotes a convolutional layer.
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3.7 Pre-training and Implementation Details

Our enhancer is first pre-trained using a single NeRF baseline and dataset, specif-
ically NeRF [23] and LLFF [22]. We then fine-tune for 1 hour on each new scene
or novel NeRF baseline method. To generate the training and fine-tuning data
for our enhancer, we first train a given baseline NeRF model on a scene and ren-
der all images from the training set, which generates a set of render-GT pairs.
We pre-train our model on all scenes from the LLFF dataset using the renders
generated by NeRF [23] for 3000 epochs (approximately 5 days) and fine-tune on
novel scenes and NeRF models for one hour per scene, which is comparable to
the per-scene training time of state-of-the-art NeRF methods [4]. We reduce L1
and perceptual losses between the enhanced image and ground truth as follows:

L = |Ĥi −Hi|1 + 10−3|ω(Ĥi)− ω(Hi)|1, (16)

where Ĥi is our predicted enhanced image, Hi is the GT, L is our loss function
and ω() is a pre-trained VGG-19 [40]. We use random crops of size 512×512 with
a batch size of 4 and a learning rate of 1×10−4 with the Adam optimizer [15]. We
use a leniency threshold of 0.25 for visibility testing and we use 5 neighbours for
the LLFF and 360v2 datasets, and 2 neighbours for the DTU dataset. We train
our model using PyTorch [19, 29] on 4× NVidia V100 GPUs. For all baselines
and enhancers, we use the official code and checkpoints provided by authors
when available. For reproducibility, we provide full implementation details of
each component of our method in the supplementary.

4 Results

4.1 Datasets and Metrics

We evaluate our method on three varied real world multi-view datasets, LLFF
(8 scenes) [22], 360v2 (9 scenes) [3] and DTU (124 scenes) [11]. Together, these
datasets contain a mixture of front-facing and 360◦ scenes, both indoor bounded
and outdoor unbounded, with complex geometries and a range of high-frequency
textures. The total number of images per scene varies from 20 to 311. Note,
we evaluate all scenes from LLFF and 360v2 at a consistent 4× downsampled
resolution, unlike previous works which evaluate the indoor and outdoor scenes
from 360v2 at different downsampling rates. We evaluate all DTU scenes at full
resolution and use the diffuse light setting. For each scene, every eighth image
is held out for testing and the remaining images are used to train the NeRF
baselines and fine-tune our enhancer. Following previous works, we use PSNR,
SSIM [52] and LPIPS (VGG) [58] to evaluate our method.

4.2 Baseline Methods

To demonstrate the general applicability of our proposed enhancer, we exten-
sively evaluate our method using six different baseline NeRF methods which
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Table 1: Quantitative evaluation of our enhancer applied to six different NeRF base-
lines. Results are averaged across all scenes for each dataset. Red and orange highlights
indicate 1st and 2nd best performing methods. Our model consistently outperforms all
baselines and other enhancers across all metrics. †Results as reported by authors.

Model Dataset PSNR (dB) ↑ SSIM↑ LPIPS↓

ZipNeRF 360v2 28.90 0.8367 0.1779
ZipNeRF + NeRFLiX 360v2 29.00 (↑ 0.10) 0.8317 (↓ 0.005) 0.2045 (↑ 15.0%)
ZipNeRF + Ours 360v2 29.23 (↑ 0.33) 0.8465 (↑ 0.098) 0.1662 (↓ 6.6%)

MipNeRF360 360v2 28.26 0.8050 0.2297
MipNeRF360 + NeRFLiX 360v2 28.44 (↑ 0.18) 0.8036 (↓ 0.001) 0.2441 (↑ 6.3%)
MipNeRF360 + Ours 360v2 28.89 (↑ 0.63) 0.8302 (↑ 0.025) 0.1987 (↓ 13.5%)

Nerfacto 360v2 26.11 0.7157 0.3266
Nerfacto + NeRFLiX 360v2 26.92(↑ 0.81) 0.7410 (↑ 0.025) 0.3044 (↓ 6.8%)
Nerfacto + Ours 360v2 27.45(↑ 1.34) 0.7700 (↑ 0.054) 0.2670 (↓ 18.2%)

NeuS2++ DTU 27.35 0.7587 0.4386
NeuS2++ + NeRFLiX DTU 27.40 (↑ 0.05) 0.7752 (↑ 0.017) 0.4167 (↓ 5.0%)
NeuS2++ + Ours DTU 28.46 (↑ 1.11) 0.8237 (↑ 0.065) 0.3939 (↓ 10.2%)

NeRF LLFF 26.57 0.8170 0.2389
NeRF + Boosting View Synthesis† LLFF 27.08 (↑ 0.51) 0.8371 (↑ 0.020) -
NeRF + NeRFLiX LLFF 27.17 (↑ 0.60) 0.8552 (↑ 0.038) 0.1695 (↓ 29.0%)
NeRF + NeRFLiX++† LLFF 27.25 (↑ 0.68) 0.8580 (↑ 0.041) -
NeRF + Ours LLFF 27.67 (↑ 1.10) 0.8713 (↑ 0.054) 0.1495 (↓ 37.4%)

TensoRF LLFF 26.88 0.8432 0.1829
TensoRF + NeRFLiX LLFF 27.38 (↑ 0.50) 0.8652 (↑ 0.022) 0.1514 (↓ 17.2%)
TensoRF + NeRFLiX++† LLFF 27.38 (↑ 0.50) 0.8660 (↑ 0.023) -
TensoRF + Ours LLFF 27.58 (↑ 0.70) 0.8670 (↑ 0.024) 0.1494 (↓ 18.3%)

together represent the evolution of neural rendering over the last few years.
These include the current state-of-the-art with respect to image fidelity (MipN-
eRF360 [3], ZipNeRF [4]), training speed (Nerfacto [44], NeuS2++ an unbounded
variant of NeuS2 [50]) and older seminal works (NeRF [23], TensoRF [7]). We
compare to state-of-the-art NeRF enhancers including Boosting View Synthe-
sis [35], NeRFLiX [60] and NeRFLiX++ [59], an extension of NeRFLiX using a
GAN-based degradation simulator. For each dataset, we report results averaged
across all scenes in Table 1. We provide per-scene results of each method and also
compare to AligNeRF [12] on outdoor scenes in the supplementary. As there is
no available code, we report results directly from the original works for [12], [35]
and [59].

4.3 Quantitative and Qualitative Evaluation

We present quantitative results in Table 1. We show that our model achieves
improvements in all metrics for all six NeRF baselines. On the 360v2 dataset,
RoGUENeRF improves the PSNR of Nerfacto by 1.34dB, MipNeRF360 by 0.63dB
and ZipNeRF by 0.33dB, and achieves corresponding reductions in LPIPS of
18.2%, 13.5% and 6.6% respectively. On the DTU and LLFF datasets, RoGUEN-
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Table 2: Evaluation of robustness to camera pose noise. We present MUSIQ [14]
scores when Gaussian noise is added to training camera poses on the Garden scene
from the 360v2 dataset. Small, medium and large noise settings correspond to standard
deviations of 6.25e-2/3.125e-4 | 12.5e-2/6.25e-4 | 25e-2/12.5e-4 with respect to camera
rotation/position.

Model No Noise | Small Noise | Medium Noise | Large Noise

Nerfacto 66.50 53.33 41.65 32.43
Nerfacto + Ours 72.32 (↑5.8) 62.59 (↑9.3) 58.94 (↑17.3) 51.60 (↑19.2)

ZipNeRF 71.38 63.29 58.67 49.50
ZipNeRF + Ours 72.06 (↑0.7) 69.76 (↑6.5) 65.03 (↑6.4) 52.39(↑2.9)

eRF improves the PSNR of Neus2++ by 1.11dB, NeRF by 1.10dB and Ten-
soRF by 0.70dB, with corresponding reductions in LPIPS of 10.2%, 37.4% and
18.3% respectively. We consistently improve SSIM scores for all baselines and
datasets. We also outperform state-of-the-art NeRF enhancers NeRFLiX and
NeRFLiX++ in every setting. These results are reflected in the qualitative eval-
uation shown in Figures 1 and 3. We note that ZipNeRF already achieves very
high fidelity in high-frequency regions, so the improvements from our enhancer
are largely from denoising without over-smoothing. We show noticeable improve-
ments over all other NeRF baseline models and NeRFLiX in restoring high-
frequency details. We also present video results in the supplementary which
demonstrate that RoGUENeRF has view-consistency in line with the baseline
NeRF models, as opposed to NeRFLiX which is geometry-agnostic and suffers
from flickering in high-frequency regions.

4.4 Robustness To Inaccurate Camera Calibration

We evaluate the robustness of our method to inaccurate camera calibration in
Table 2. To simulate the effects of inaccurate camera pose estimation, we apply
increasing levels of additive zero mean Gaussian noise to the camera poses es-
timated by COLMAP. The rotation standard deviation is expressed in degrees
while position standard deviation is expressed as a unit of physical distance, with
total scene size set to a bounding cube of length 2. For each noise level, we train
Nerfacto and ZipNeRF using the noisy camera poses and evaluate the ability
of our enhancer to improve the perceptual quality of the noisy NeRF baselines.
Training with incorrect camera poses introduces pixel shifts between rendered
images and ground truth, so we assess performance with MUSIQ [14], a SOTA
no-reference image quality assessment metric. We show that our improvements
over Nerfacto and ZipNeRF are larger when using noisy camera poses compared
to the no noise setting. This is reflected in Figure 4 where we qualitatively
evaluate the medium noise setting. The baselines suffer a large drop in image
quality while RoGUENeRF is robust to inaccurate poses and is able to achieve
noticeable improvements over the noisy baselines.
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ZipNeRF + NeRFLiX + Ours Ground Truth

MipNeRF360 + NeRFLiX + Ours Ground Truth

Nerfacto + NeRFLiX + Ours Ground Truth

NeuS2 ++ + NeRFLiX + Ours Ground Truth

TensoRF + NeRFLiX + Ours Ground Truth

NeRF + NeRFLiX + Ours Ground Truth

MipNeRF360 + NeRFLiX + Ours Ground Truth

Nerfacto + NeRFLiX + Ours Ground Truth

Nerfacto + NeRFLiX + Ours Ground Truth

Fig. 3: Qualitative comparisons with six different NeRF baseline models across three
datasets. Our method recovers more detail in high-frequency regions such as foliage,
tarmac floor, patterns on the glove, the edges of the building and text.
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Nerfacto + Ours

ZipNeRF + Ours

Ground Truth

Ground Truth

Fig. 4: Qualitative results when adding medium pose noise. The quality of the baseline
suffers greatly while our enhancer is robust and achieves noticeable improvements.

4.5 Ablation Study

We validate the importance of individual components of our method in Table 3.
We conduct the study across all scenes in the LLFF dataset and present average
results. Our combined contributions show an improvement of 1.1dB PSNR over
NeRF and 0.93dB over a strong 2D baseline enhancer, Uformer [51] on which our
proposed approach is based. We show a sharp improvement in LPIPS percep-
tual quality from our 3D alignment module (7.4%), and a further improvement
from our non-rigid refinement (13.4%), which greatly improves the ability of
our model to find accurate correspondences and correct errors in geometry. We
show qualitative results of our ablation in Figure 5. We evaluate the following
model components: UF: Baseline 2D enhancer Uformer which our approach is
based on. NN: Nearest Neighbour Selection. 3D-A: Our 3D Alignment module
comprising of feature reprojection using depths and camera poses. NRF: Our
Non-Rigid Refinement module comprising of an iterative lightweight optical flow
network which further aligns the reprojected features. GA: Our Geometric At-
tention module comprising a geometry-aware feature regulation mechanism. PT:
The effect of pre-training our model. We conduct a more detailed ablation study
on pre-training and fine-tuning in Table 4. Here we show two things; that our
method can achieve large improvements in as little as 1 minute of fine-tuning;
and that it is our complete combined contributions which allow our method to
learn novel image degradations so quickly. Uformer+NN also has access to near-
est neighbours from the training set, but as it is unaware of geometry, it is not
capable of quickly leveraging the information from nearby viewpoints.

+UF GT +UF+3D-A +UF+3D-A+NRF+GA+UF+3D-A+NRFNeRF

Fig. 5: Qualitative results of the ablation study. Settings correspond to Table 3.
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Table 3: Ablation on the performance of our individual contributions averaged across
all eight scenes from the LLFF dataset with NeRF as the baseline model.

Model UF NN 3D-A NRF GA PT PSNR SSIM LPIPS

NeRF □ □ □ □ □ □ 26.57 0.8170 0.2389
+ Uformer □✓ □ □ □ □ □ 26.74 0.8314 0.2245
+ 3D Alignment □✓ □✓ □✓ □ □ □ 26.84 0.8397 0.2078
+ Non-Rigid Refinement □✓ □✓ □✓ □✓ □ □ 26.93 0.8467 0.1799
+ Geometric Attention □✓ □✓ □✓ □✓ □✓ □ 27.00 0.8501 0.1755
+ Pre-training □✓ □✓ □✓ □✓ □✓ □✓ 27.67 0.8713 0.1495

Table 4: Ablation on fine-tuning time on the Garden scene from the 360v2 dataset
with Nerfacto as the baseline model. Column headers on the right indicate time spent
fine-tuning each model. Results presented are PSNR (dB).

Model UF NN 3D-A NRF GA PT 1 Min 10 Minutes 1 Hour

Nerfacto □ □ □ □ □ □ 25.28 25.28 25.28
+ Uformer □✓ □ □ □ □ □✓ 25.43 25.52 25.73
+ Uformer+NN □✓ □✓ □ □ □ □✓ 25.39 25.60 25.67
+ Ours □✓ □✓ □✓ □✓ □✓ □✓ 26.08 26.19 26.24

Limitations A limitation of our method is the requirement to store all relevant
training images. This could be prohibitive for very large scenes, especially at
higher image resolutions. Secondly, although we are several times faster than the
baseline NeRF methods, our approach does not yet achieve real time (i.e. 30fps)
inference. Societal Impact As NeRFs become more editable, our method could
be misused to improve the photorealism of generated videos of people, places
and objects. Currently our method requires ground truth images with a dense
3D coverage of the scene, so it is not trivial to use in the wild.

5 Conclusion

We have presented RoGUENeRF, a geometry-consistent NeRF enhancer which
combines concepts from 3D and 2D vision to substantially improve the im-
age quality of NeRF renderings in real world settings. Our model accurately
finds correspondences between different camera views by performing 3D align-
ment and non-rigid refinement, while also being robust to errors in camera pose
estimation and reducing reprojection artifacts with geometry-aware attention.
RoGUENeRF achieves consistent improvements in image quality over six varied
NeRF baselines and existing NeRF enhancers across three challenging real world
datasets. Our model demonstrates wide applicability and strong generalization,
fine-tuning on a novel scene in under 60 minutes to learn the distribution of
image degradations.
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