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Fig. 1: From a low-resolution texture map obtained through monocular phone capture, our method
produces a high-resolution texture map with precise facial details, studio-like illumination, and
inpainted missing regions. This generated texture map can subsequently be utilized to create
a high-quality, photorealistic avatar using the pretrained Universal Prior Model (UPM) from
AVA [6].

Abstract. Creating photorealistic avatars for individuals traditionally involves
extensive capture sessions with complex and expensive studio devices like the
LightStage system. While recent strides in neural representations have enabled
the generation of photorealistic and animatable 3D avatars from quick phone
scans, they have the capture-time lighting baked-in, lack facial details and have
missing regions in areas such as the back of the ears. Thus, they lag in quality
compared to studio-captured avatars. In this paper, we propose a method that
bridges this gap by generating studio-like illuminated texture maps from short,
monocular phone captures. We do this by parameterizing the phone texture maps
using the W+ space of a StyleGAN2, enabling near-perfect reconstruction. Then,
we finetune a StyleGAN2 by sampling in the W+ parameterized space using
a very small set of studio-captured textures as an adversarial training signal.
To further enhance the realism and accuracy of facial details, we super-resolve
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the output of the StyleGAN2 using carefully designed diffusion model that is
guided by image gradients of the phone-captured texture map. Once trained, our
method excels at producing studio-like facial texture maps from casual monocular
smartphone videos. Demonstrating its capabilities, we showcase the generation of
photorealistic, uniformly lit, complete avatars from monocular phone captures.

1 Introduction

Photorealistic and animatable avatars are paramount for lifelike human-to-human interac-
tions in AR/VR applications. Creating high-fidelity avatars often requires sophisticated
devices like the LightStage capture system that capture human heads with a range of
facial expressions [27, 28]. Typically, these captures occur in a studio-like environ-
ment, with uniform illumination and densely sampled views to reconstruct complete
avatars with consistent lighting. While these methods excel in generating hyper-realistic
avatars, they cannot be scaled to millions of people as capturing so many people with a
LightStage-like capture system is impractical and non-trivial.

Recently, there has been extensive work in generating photorealistic avatars through
a monocular capture [3,6,14]. These methods involve scanning various facial expressions
and head poses of the user to reconstruct a 3D avatar that closely aligns with the captured
data. However, a notable limitation of these methods is that the captured lighting is
embedded in the avatars, causing their appearance to be heavily dependent on the capture
devices and surrounding environments. Furthermore, due to the constraints of the capture
setup, certain areas, such as the back of the head or ears, are never visible, leaving visible
holes and artifacts when viewed during animation.

An innovative strategy to tackle this challenge is to use image-to-image translation
to transform the phone data into studio-captured data. This transformation can be learnt
through supervised training using paired data [18], or through unsupervised training
using unpaired datasets [42]. Due to reasons mentioned earlier, creating a large-scale
paired dataset of studio and phone captures is impractical, which rules out the possibil-
ity of using supervised image-to-image translation methods. On the flip side, current
unsupervised image-to-image translation methods fail to preserve fine detail in the
transformation process [38, 42] which is paramount to creating a high-fidelity avatar.

In this paper, we introduce a method capable of generating studio-like, high-quality
avatars from monocular phone captures. We do this by parameterizing a large-scale
dataset of phone-captured face texture maps using the W+ space of a StyleGAN2.
Then, we finetune this StyleGAN2 by sampling from this parametrized W+ space using
a small set of unpaired studio-captured texture maps, to create a Studio-StyleGAN2
model. Our key insight is that sampling from the W+ space instead of Z space leads to
a more generalizable model as samples from the W+ are, by construction, as diverse
as the training set while samples from the Z space often suffer from mode-collapse.
During inference, the given phone-captured texture map, is first inverted to the W+

space of the StyleGAN2. This inverted W+ vector is then given as input to the Studio-
StyleGAN2 to generate a low-resolution studio-like texture map. Finally, a novel facial
detail conditioned diffusion model is used to enhance facial details of the low-resolution
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studio-like texture map obtained in the previous step. Once trained, our method excels at
producing high-quality studio-like face texture maps from monocular phone captures,
which are then used as inputs to the universal face prior model (UPM) from Authentic
Volumetric Avatars (AVA) [6] to generate photorealistic avatars. In summary, our key
contributions are as follows:

– Introducing a groundbreaking method for creating studio-like, photorealistic avatars
from monocular phone captures.

– Innovative finetuning of a pre-trained generative model using a minimal dataset
from another domain by sampling in the inverted W+ space, which facilitates the
development of a generative model for a new domain while preserving the integrity
of the W+ latent space.

– A novel diffusion model conditioned on the phone texture gradient, that is designed
to upsample studio textures, effectively enhancing facial details and contributing to
the overall realism of the generated avatars.

2 Related Work

Our paper aims to bridge the gap between a studio capture and a phone capture by creating
a studio-like, photorealistic avatar through a monocular phone capture. In delineating
the related work, we offer a comprehensive overview of key research domains, including
studio-captured avatars, phone-captured avatars, and image-to-image translation.

Studio-captured avatars. The reconstruction of high-fidelity static and dynamic mod-
els of the human head based on photometric measurements has a long-standing history
in computer graphics and vision. Achieving a photorealistic human avatar often requires
specialized hardware in high-end production, such as the LightStage system. To model
the complex skin appearance, various physically-based models have been explored.
Notably, subsurface scattering [5], linear polarization patterns [12] and fine-scale skin
details [1, 2] have been investigated. For dynamic expression details, Jimenez et al. [20]
compute dynamic skin appearances by blending hemoglobin distributions captured with
different expressions. In their subsequent work [19], expression-dependent normal maps
are interpolated to add realistic wrinkles to an animated face. Nagano et al. [32] synthe-
size skin microstructures based on local geometric features derived from high-precision
microgeometry, acquired with an LED sphere and a skin deformer. While these methods
have been instrumental for offline movie production, their substantial compute require-
ments make them less suitable for real-time applications. Despite recent efforts to enable
real-time rendering of physically-based avatars [36], heavy compute remains challenge.
In response to the challenges posed by complex physical computations, researchers
have proposed a deep appearance model [27]. This model utilizes a coarse 3D triangle
mesh in conjunction with view-dependent texture mapping. The texture is regressed by a
neural network conditioned on viewpoint and expression latent codes. This conditioning
accounts for view- and expression-dependent variations while compensating for the
imperfect proxy geometry. Subsequent work extends the mesh-texture representation to a
volumetric representation using a Mixture of Volumetric Primitives (MVP) [28], further
enhancing the model’s quality. Pixel Codec Avatars (PiCA), as demonstrated by [30],
showcase the efficiency of rendering such models, even on mobile hardware platforms,
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by leveraging efficient per-pixel processing. Moreover, Bi et al. [4], based on relighting
captured data, can also relight avatars with any novel point light or environment maps.
While these methods can achieve hyper-realistic avatars, their studio requirements make
them challenging to generalize to ordinary users.

Phone-captured avatars. There are several methods aimed at creating avatars in
lightweight ways, even from a phone or a single image. Some of these approaches
focus on generating stylized avatars based on different input requirements, ranging
from capturing multi-view images using a phone [17] to utilizing a single monocular
image [26, 29, 35, 37]. While these methods excel in producing animatable avatars, it is
important to note that their appearance tends to be cartoonish and lacks realism.

Another category of methods is dedicated to creating realistic human avatars based
on graphics pipelines [7, 8, 11, 15, 24, 25, 41]. While relying on traditional graphics
methods, these approaches often result in avatars that appear uncanny. Building upon
deep learning-based representations, researchers have proposed methods to generate
avatars with increased realism, including notable works by Gafni et al. [10] and Grassal
et al. [14]. Among these, the work of Cao et al. [6], Authentic Volumetric Avatars (AVA),
stands out for its focus on creating photorealistic avatars from phone scans. The process
involves training a Universal Prior Model (UPM) using studio-captured data, followed
by personalizing this UPM using data from a phone scan of an unseen subject. While
the method successfully produces avatars with realistic appearance and animation, it is
worth noting that the lighting is baked into the personalized avatar, and certain details,
such as the back of the ears, may be missing.

Image-to-image translation We use image-to-image translation to map images from
the source domain (phone data) to the target domain (studio data). Isola et al. introduced
Pix2Pix [18], a method that utilizes adversarial training strategies [13] to achieve this
mapping. Additionally, Wang et al. [40] focused on increasing the resolution of gener-
ated results from semantic label maps. While these methods successfully map images
between domains, it is essential to note that they require paired training data for effective
implementation. In many real-world scenarios, obtaining paired training data can be
challenging and expensive.

To address this issue, unsupervised image-to-image translation has been introduced.
Zhu et al. [42] proposed a novel cycle-consistency loss to ensure that translating an image
from one domain to another and back again should result in the original image. This helps
the model maintain consistency and produce more realistic translations. Subsequent
methods have further improved unsupervised image-to-image translation from different
perspectives, including a multimodal model [16], few-shot input for video-to-video
translation [39], translation of images with human control [34], and translation of real
images into different styles [38]. However, none of these methods are designed with
preservation of facial identity and the generation of realistic facial details in mind,
especially with such little training data. Later in the paper we show how this prior
work compares to ours for transforming low-resolution phone-captured texture maps to
high-resolution studio-captured texture maps.
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Fig. 2: Method Overview. Our method employs a two-step process to train GStudio. Initially, we
train a StyleGAN2 on 12k neutral texture maps captured by phones, yielding Gphone. Subsequently,
we initialize GStudio with the weights of Gphone and fine-tune it by sampling from SW+ =
{W+

Iphone
0

, . . . ,W+

Iphone
N−1

};, where N = 12k, and W+

Iphone
i

represents the vector obtained by

inverting the i’th phone-captured texture map, Iphone
0 , in the W+ space of Gphone. During

inference, the given phone-captured texture map is inverted to W+, then passed to GStudio to
generate a low-resolution studio-lit texture map, I∗. Accurate facial details are subsequently added
using diffusion model fϕ, conditioned on the gradient of the phone texture. This process results in
the final high-resolution, studio-lit, and completed texture map, I∗.

3 Method

In this section, we present our method for generating studio-like avatars from the phone
captures. Our approach consists of two key components: a StyleGAN2 for texture
translation and a diffusion model for facial detail generation. In Sect 3.1, we describe the
generation of a low-resolution texture map with studio-like lighting and missing regions
inpainted. First, we pretrain a StyleGAN2 on 12k phone textures and then finetune it
using a small set of studio-captured texture maps. In order to improve the generalization
of the finetuned StyleGAN2, we optimize it by sampling in the W+ space, instead of
the W-space or Z-space, using a set of 12k W+ vectors obtained by inverting the phone
captured texture maps. In Sect 3.2, we introduce a diffusion model that generates facial
details. The diffusion model takes the output from the aforementioned StyleGAN2 and
generates a high-resolution neutral texture with realistic facial details. After obtaining a
high-resolution studio-like neutral texture from our method, we use it to learn a color
transform to transfer phone-captured expression textures to studio-lit expression textures.
These expressions are subsequently utilized for animating a high-quality avatar (Sect 3.3).
Notably, we intentionally avoid applying inpainting or super-resolution techniques to the
expression textures. Fig. 2 provides an overview of our method.

3.1 Illumination manipulation and inpainting

In our initial step, we track the geometry from a monocular phone capture of the user’s
neutral face and extract the neutral texture Iphone from the captured image, employing
the method outlined in [6]. Subsequently, we translate this phone-captured texture with
in-the-wild lighting and missing regions into a texture map with studio lighting and
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missing regions in-painted. This translation is accomplished by parametrizing Iphone
using the W+ space of a StyleGAN2, as follows:

W+
Iphone = argmin

W+

||Gphone(W+)− Iphone||22 + LPIPS(Gphone(W+), Iphone), (1)

where Gphone is a StyleGAN2 trained on phone-captured textures, and W+
Iphone is the

optimized vector in the W+ space of Gphone. Now, we generate the low-resolution
studio-like texture as follows:

I∗ = GStudio(W
+
Iphone), (2)

where GStudio is a StyleGAN2 responsible for generating low-resolution studio-like
textures, while I∗ refers to the studio-lit version of Iphone with the inpainted missing
regions. Ideally, I∗ should retain the identity and semantics of Iphone, with the only
distinctions being the illumination and the inpainting of missing regions. Below we
describe the training procedure for GStudio.

We initialize the synthesis network of GStudio using weights from Gphone, which
we then finetune to generate texture maps with studio lighting and inpaint the missing
regions. We choose to finetune Gphone for the following reasons: 1) Due to the immense
costs of a studio capture, studio quality training data is typically very limited. In our case,
we only have 383 studio-captured texture maps, making training from scratch hard [22];
2) Since we want I∗ and Iphone to have the same facial identity and semantics meaning,
it is beneficial to learn a latent space that is shared between GStudio and Gphone. For
finetuning, we first invert the entire dataset of N phone-captured texture maps using Eq.
(1), giving us a set of N vectors in the W+ space: SW+ = {W+

Iphone
0

, . . . ,W+

Iphone
N−1

}.
Next, we randomly sample vectors from the inverted set, SW+ , and finetune the synthesis
network of Gphone to give GStudio. We choose to finetune the generator with samples
from inverted W+ instead of the traditional W space, since they are, by construction,
from the real data distribution and are consequently more diverse, leading to better
generalization of GStudio. The losses we use during finetuning are described as below.

Studio-Discriminator loss. This loss uses a discriminator to ensure the texture maps
generated by GStudio are from the distribution of studio-captured texture maps:

LAdv = EIStudio∼P (IStudio) [min(0,−1 +DStudio)]

+ EW+

Iphone
i

∼SW+

[
min(0,−1−DStudio(GStudio(W

+

Iphone
i

))
]
,

(3)

where DStudio is a discriminator that initialized from the pretrained phone-captured
texture StyleGAN2 Discriminator and finetuned using ground-truth studio-captured
textures and textures generated by GStudio.

Face-Identity Loss This loss compares the face identity embeddings of the renders
of texture maps generated from GStudio and Gphone in order to ensure the identity is
preserved:

LFaceID =
∥∥∥|F (GStudio(W

+

Iphone
i

)
)
−F

(
Gphone(W+

Iphone
i

)
)∥∥∥ |22, (4)

where F is a pretrained face recognition network1.
1We use the network from here

https://github.com/timesler/facenet-pytorch
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Perceptual Loss This loss encourages the preservation of semantic features between
the texture maps generated GStudio and Gphone by minimizing their distance in the VGG
feature space

LPercp = LPIPS
(
GStudio(W

+

Iphone
i

),Gphone(W+

Iphone
i

)

)
. (5)

Perceptual Reconstruction Loss This loss ensures that skintones are preserved using
a small amount of paired data (i.e subjects for whom we have both phone and studio
textures maps i.e both Iphone and IStudio)

LPercp−Recons =
1
k

∑K
i=1 LPIPS

(
GStudio(W

+

Iphone
i

), IStudio
i

)
, (6)

where IStudio
i and Iphonei are the ground-truth studio and ground-truth phone texture

maps of the same person. We only have a very small amount of this data for training
(K=83). R1-Regularization: We regularize DStudio using the R1 regularization [31] as
follows:

LR1 = −γ
2EIStudio∼P (IStudio)

[
||∇DStudio(IStudio)||22

]
, (7)

where γ = 10.
In order to further encourage identity preservation, we leverage the multi-resolution

architecture of StyleGAN2 [23] and only optimize the generator parameters after the
8× 8 resolution during the finetuning process. The intuition being that identity-specific
information is mostly stored in the low-resolution maps, we ablate this choice in the
Supplementary section of the paper. The final optimization for the joint finetuning of
GStudio and DStudio is the following:

min
Gθ(8+)
Studio

max
DStudio

LAdv + LR1 + LPercp−Recons + λ1LPercp + λ2LFaceID, (8)

where λ1 = 0.5 and λ2 = 10. We ablate LPercp−Recons,LPercp,LFaceID in the
supplementary.

3.2 Synthesis of accurate facial details

Generating high-quality facial details. GStudio can produce an inpainted texture map,
I∗, with illumination consistent with that of a studio capture. However, due to the limited
amount of finetuning data, GStudio often struggles to reproduce facial details that are
visibly present in Iphone itself. This limitation results in oversmoothed and inaccurate
avatars. Achieving realistic facial details necessitates an accurate modeling of the facial
texture distribution, a task that the StyleGAN2 fails to do.

Motivated by the recent success of latent diffusion models in accurately modeling
data distributions, we propose the task of generating facial details as the reverse process
of a Markov chain that transforms a low-resolution face texture map to a high-resolution
one. We adopt the formulation from [43], where the residual between the low-res and
high-res studio-captured texture maps, denoted as e0 = IStudio

LR − IStudio, is used to
define the Markov process. More specifically, the forward process is defined as follows:

q(IStudio
t |IStudio

t−1 , IStudio
LR ) = N

(
IStudio
t ; IStudio

t−1 + αte0, κ
2αtI

)
,

t = 1, 2, . . . , T,

(9)
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where αt controls the schedule with which the residual is added, κ is a hyperparameter
controlling the noise schedule and I is the identity matrix. The reverse process is defined
as

q(IStudio
t−1 |IStudio

{t,LR}, I
Studio) = N

(
IStudio
t−1

∣∣∣∣ηt−1

ηt
IStudio
t +

αt

ηt
IStudio, κ2 ηt−1

ηt
αtI

)
, (10)

where ηt = αt + ηt−1. We refer the reader to [43] for details regarding the formulation
of both the forward and reverse process. Finally, the diffusion model, fϕ, is trained to
minimize the following objective

min
ϕ

∑
t ||fϕ(IStudio

t , IStudio
LR , t)− IStudio||22 (11)

During inference, we use fϕ to add realistic facial details to the low-resolution output of
GStudio as follows:

Î∗ = ReverseProcess (fϕ, I∗) . (12)

Recovering accurate facial details. While fϕ enhances I∗ by adding realistic facial
details, it struggles to recover details already present in the phone-captured texture map
Iphone due to the inherent lack of such details in I∗. The loss of details occurs during
the illumination manipulation and inpainting process, as described in Eq. (1) and Eq. (2).
To address this issue, we incorporate the image gradient from the phone-captured texture
map into the low-resolution texture map during the training of the diffusion model, as
follows:

IStudio∗
LR = IStudio

LR +G(Iphone) (13)

where Iphone represents the phone-captured texture map, and IStudio is the studio-
captured texture map of the same person. G denotes the operator used to calculate the
image gradient. During training, IStudio∗

LR replaces IStudio
LR in Eq. (9), Eq. (10), and Eq.

(11). In the inference stage, we augment I∗ by adding the gradient of the phone-captured
texture map as follows:

Î∗ = ReverseProcess
(
fϕ, I∗ +G(Iphone)

)
(14)

Implementation details We utilize 83 paired texture maps, representing subjects for
whom we have both IStudio and Iphone, to train the diffusion model. Following the
approach in [43], we employ a latent diffusion model. To prevent overfitting, training
is conducted on random 512 × 512 crops of the 1024 × 1024 resolution texture map.
During the inference stage, we employ the full-resolution texture map.

3.3 Driving a high-quality avatar

With the studio-lit version I∗ now available for a given neutral phone-captured texture
map Iphone, we proceed to estimate a color transform mapping from the phone-captured
texture map to the studio-lit texture map as follows:

{G,B} ← argmin
{G,B}

||I∗ −
(
Rsz(G)× Iphone + Rsz(B)

)
||. (15)

Here, G and B represent gain and bias maps of resolution k × k and Rsz is the resizing
operator with bilinear interpolation. Utilizing G and B, we perform a transformation
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on phone-captured expression texture maps to achieve studio-like lighting, as outlined
below:

I∗exp = Rsz(G)× Iphoneexp + Rsz(B). (16)

In our experiment, we select the value of k = 32 to efficiently transform the lighting
while preserving the details.

Now, the studio-like high-resolution neutral texture Î∗ serves as conditioning data
for the universal avatar prior from [6]. By combining the expression code generated
by inputting I∗exp into the expression encoder from [6], we can render a high-quality
avatar from any desired view v as follows:

I = AVA(Î∗, I∗exp − I∗, v,F), (17)

where I represents the render of the avatar, and F is the geometry generated during 3D
face tracking for a monocular phone capture. AVA corresponds to the inference process
of the universal prior model. For more details about the universal prior model, please
refer to [6].

4 Results

Table 1: Quantitative results on paired
phone-cum-studio captured texture
maps. Our method outperforms prior
work across all metrics. Best and
Second Best scores are highlighted.

Models PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓

Ours 22.76 0.726 0.364 0.163

AgileGAN [38] 18.05 0.657 0.406 0.180
CUT [33] 21.440 0.642 0.402 0.169

CycleGAN [42] 21.087 0.643 0.400 0.175

In this section, we introduce the dataset used in
this paper, along with the baselines of our method.
Subsequently, we present both quantitative and
qualitative results of our method, comparing it to
prior work. All phone-captured texture maps are
generated using the mesh fitting procedure out-
lined in Authentic Volumetric Avatars (AVA) [6].
Furthermore, we utilize AVA to render avatars
based on the texture maps generated by all the
methods, facilitating the calculation of image
space metrics, including face identity similarity.

Table 2: FaceID results on unpaired
phone captured texture maps. Our
method better preserves identity than
prior work without sacrificing the qual-
ity of the generated texture maps. Best
and Second Best scores are high-
lighted.

Models Ours AgileGAN CUT CycleGAN

FaceID 4.31e− 4 1.36e− 3 6.89e− 4 5.19e− 4

Training and Evaluation Data. We utilize a
dataset comprising 12,543 neutral phone-captured
texture maps to train Gphone, and 383 studio-
captured texture maps for fine-tuning Gphone to
obtain GStudio. Among the 383 maps, 83 are
paired neutral texture maps {Iphone, IStudio}
used for calculating the perceptual reconstruction
loss, as described in Eq. (6). This paired dataset
also serves for training the detail-preserving diffu-
sion model. For quantitative and qualitative eval-
uation, we employ 10 paired phone-cum-studio
captured texture maps and 31 phone-captured tex-
ture maps.

Baselines. We compare our method to the following prior works on unpaired image-to-
image translation. 1) AgileGAN [38], which utilizes an aligned StyleGAN latent space
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to stylize images, even with very few examples; 2) Contrastive Unpaired Translation
(CUT) [33], which employs a patch-based contrastive loss in a learned feature space,
enabling domain adaptation, even for single images; 3) CycleGAN [42], which trains
two generators based on a cycle-consistency loss to translate images between two
domains. Since AgileGAN [38] has no code available, we implement it ourselves. We
use publically available code for CUT [33] and [42] for all experiments.

Phone Texture Ours CUT CycleGANAgileGAN
GT Studio  
Texture 

Fig. 3: Comparisons with baselines on paired phone-cum-studio texture data reveal that
our method produces results closest to the ground truth. It achieves uniform studio-like lighting,
well-reconstructed facial details visible in the phone capture, and effective inpainting of missing
regions. In contrast, AgileGAN [38] fails to preserve identity, while CUT [33] and CycleGAN [42]
introduce significant artifacts.

Quantitative Results. In Table 1, we present the results of a quantitative evaluation
comparing our method to the baselines using 10 paired texture maps captured with
both phones and in a studio setting. The evaluation metrics include mean PSNR, SSIM,
LPIPS [21], and DISTS [9]. DISTS and LPIPS are perceptual metrics aligned with
human judgment, while PSNR and SSIM are pixel-based metrics. As shown in Table 1,
our method consistently outperforms the baseline across all metrics. The improvement is
not limited to perceptual metrics but also extends to PSNR and SSIM, highlighting the
efficacy of our proposed approach. It is worth noting that the relatively low PSNR and
SSIM scores can be attributed to their sensitivity to small pixel shifts between the studio
and phone-captured textures.

In Table 2, we display the face embedding distances, measured using Eq. (4), between
avatars rendered from the phone-captured texture and the textures generated by various
methods on the 31 unpaired phone captures. Our method exhibits the best preservation
of facial identity.
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Phone  
Texture Ours CUT CycleGANAgileGAN

Fig. 4: Comparisons on Unpaired Phone-Captured Data: In comparison to prior work, our
method excels in generating texture maps with superior preservation of identity, enhanced photore-
alism in facial details, more uniform illumination, and improved inpainting of missing regions.

Qualitative Results. In Fig 3, we provide some qualitative results on the paired test
data. It is evident that our method generates a more plausible and photorealistic texture
map compared to prior work, showcasing improvements in illumination transfer, facial
details, and inpainting of missing regions.

In Fig 4, we present qualitative results comparing our method with prior work. While
AgileGAN [38] successfully changes the illumination to be studio-like and inpaints
missing regions, it introduces a significant identity shift (quantitatively measured in
Table 2) and lacks facial details. We attribute this to the use of the Z+ space [38],
which may not be flexible enough for high-fidelity inversion, and the absence of identity-
preserving constraints, both in architecture and optimization, during training. Due to its
contrastive training paradigm, CUT [33] preserves identity better than AgileGAN but
introduces significant artifacts. It is also unable to inpaint the missing regions around the
ears and corners of the head. Similarly, like CUT [33], CycleGAN [42] also preserves
identity better than AgileGAN [38] but struggles with inpainting missing regions. The
textures also contain numerous uncanny artifacts that are uncharacteristic of human skin.
In contrast, our method generates a high-quality studio-illuminated texture map with
accurate facial details and inpainted missing regions.
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Fig. 5: Avatar Reanimation. The top row showcases a multiview render of an avatar generated
using studio-like neutral and expression texture maps, created through our method as described in
Sect 3.3. In contrast, the bottom row utilizes phone-captured texture maps. Notably, the lip region,
highlighted with pink rectangles, appears more realistic and less blurry when using studio-like
texture maps generated by our method.
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Fig. 6: Comparison of Avatars Generated Using [6]: In this comparison, we evaluate the quality
of avatars generated by the Universal Prior Model (UPM) from AVA [6], using texture maps from
various methods as input. Evidently, the avatars generated using texture maps from our method far
exceed those generated by prior work.

Reanimation Results. As explained in Sect 3.3, we can transform the phone expression
texture maps Iphoneexp to studio-like illumination using Eq. (15) and Eq. (16). We observe
that utilizing studio-like illuminated expression texture maps I∗exp results in a modest
improvement in the quality of reanimated avatars using the universal prior model from
AVA [6]. In Fig 5, we present an example where the top row shows the render of an
avatar using studio-like neutral and expression textures, while the bottom row displays
a render using phone-captured neutral and expression textures. It is evident that the
lip region appears more realistic and less blurry when reanimated with the studio-like
neutral and expression textures compared to the phone-captured textures. We recommend
that readers refer to our supplementary video for a more comprehensive comparison.

4.1 Ablations
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Table 3: Detail conditioning ablation.
We calculate quantitative metrics on the
10 paired phone-cum-studio captured
texture maps. It is evident that utiliz-
ing detail conditioning during both train-
ing and inference yields the best perfor-
mance. Best and Second Best scores
are highlighted.

Models LPIPS ↓ DISTS ↓

Vanilla Diffusion 0.383 0.179

Inference-only Details conditioning 0.376 0.183
Training + Inference Details conditioning (Ours) 0.364 0.163

In this section, we conduct ablation studies to
evaluate the various components of our method.

Details Conditioned Diffusion.
We ablate the necessity of using facial details

extracted from the phone capture texture map,
in the form of an image gradient, to synthesize
accurate facial details using a diffusion model. We
explore three scenarios:

1) A Diffusion model that does not use any
conditioning on phone-captured texture gradient
(Vanilla Diffusion); 2) A Diffusion model that
uses the phone-captured texture gradient only dur-
ing inference but not during training; 3) Our model, which incorporates the phone-
captured texture gradient during both training and inference.

Table 4: W+ vs. Z Space ablation. We
utilize the 10 paired phone-cum-studio
captured texture maps to compare the
outcomes of training in the W+ and Z
spaces. The results clearly demonstrate
that training in the W+ space yields sig-
nificantly better outcomes.

Models PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓

Z Space 21.368 0.718 0.401 0.172
W+ Space (Ours) 22.76 0.726 0.364 0.163

In Fig 7, we present the results of each of the
three scenarios. While the Vanilla Diffusion gener-
ates a realistic-looking facial texture, it fails to pre-
serve facial details present in the phone-captured
texture map. Prominent moles, marked by the
blue boxes in the phone-captured texture map,
are not generated by the Vanilla Diffusion model.
When conditioning the reverse process using the
phone-texture gradient only during inference, we
observe that the model misses some details and
transfers shading from the phone-captured texture
map to the studio-lit texture map (marked by red
boxes in Fig 7), which is undesirable. Ideally, we
want facial details to be preserved while eliminat-
ing illumination-dependent effects, such as strong
shading and shadows, from the studio-lit texture map. Our method conditions the diffu-
sion model on the phone-texture gradient during both inference and training. As shown
in Fig 7, this allows the model to learn to retain facial details while ignoring illumination-
induced effects, such as strong shading, shadows, and specularities when synthesizing
facial details. In Table 3, we quantitatively validate each of the aforementioned diffu-
sion model designs on paired data using LPIPS [21] and DISTS [9]. As can be seen,
conditioning the diffusion model on phone-texture gradients both during training and
inference gives the best results.

W+ space vs. Z space for finetuning. We now evaluate the effectiveness of the W+

space over the standard Z space for fine-tuning GStudio. For a quantitative comparison,
we calculate the FaceID loss over the 31 unpaired evaluation texture maps and compute
PSNR, SSIM, LPIPS [21], and DISTS [9] over the 10 paired studio-cum-phone texture
maps. Qualitative results, along with the average FaceID distance over unpaired data,
are shown in Fig 8, and the metrics on paired data are presented in Table 4. As evident,
sampling in the W+ space generalizes much better to unseen identities, exhibiting
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Phone Texture
Detail-Conditioned 
Diffusion (Ours)

Inference-only 
Detail-Conditioned 

DiffusionVanilla Diffusion

Fig. 7: Ablation on Detail-conditioned Diffusion. When no detail conditioning is applied, facial
details visible in the phone capture are not reproduced. When detail conditioning is employed
only during inference, undesirable shading effects are transferred to the generated texture map.
Optimal results, with the most accurate and plausible reproduction of facial details, are achieved
when detail conditioning is applied during both training and inference. Please refer to the text for
further details.

Phone Texture
Z-space Finetuning 

( )Avg FaceID( ↓ ) : 1e − 3Render
W+ -space Finetuning 

( )Avg FaceID( ↓ ) : 4.31e − 4

Fig. 8: Qualitative W+ space ablation. We observe that when GStudio is finetuned using the Z
space, it fails to generalize to novel subjects and exhibits significant artifacts. In contrast, training
GStudio in the W+ lends it far better generalization.

significantly fewer artifacts and yielding superior results in terms of FaceID, PSNR,
SSIM, LPIPS, and DISTS. We posit that this is because samples in the W+ space (i.e.,
samples from SW+ space) are near-perfect inversions of the training data, making them
more diverse than those generated from the Gaussian-distributed Z space. Consequently,
as seen in Fig 8, this leads to better generalization to unseen subjects. The model trained
using the Z space exhibits uncanny artifacts in its results.

5 Conclusion and Limitations

In this paper, we present a method for generating studio-like, high-quality avatars from
monocular phone captures, using a StyleGAN2-based image-to-image translation and
diffusion-based image upsampling. Experiments show the effectiveness of our approach
in manipulating lighting, inpainting missing parts and generating facial details thus
enabling the creation of complete, studio-lit textures for rendering high-quality avatars.
However, our method does have limitations. It struggles with input textures exhibiting
extreme non-uniform lighting due to the constrained lighting conditions in our training
data (we include examples in the supplementary). We also do not fine-tune the universal
prior model to personalize the avatar based on phone capture data, as suggested in [6],
thus the avatars lack personalized details for different facial expressions. Finally, our
avatars are incomplete, featuring only the head. Future work involves extending the
model to include the neck, shoulders, hands, and the entire body.
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