
Appendix:
ControlLLM: Augment Language Models with

Tools by Searching on Graphs

Zhaoyang Liu1,2, Zeqiang Lai2, Zhangwei Gao2,3, Erfei Cui2,3,
Ziheng Li4, Xizhou Zhu4,2, Lewei Lu5, Qifeng Chen1�,

Yu Qiao2, Jifeng Dai4,6, and Wenhai Wang7,2�

1HKUST 2OpenGVLab, Shanghai AI Laboratory
3Shanghai Jiao Tong University 4Tsinghua University 5SenseTime

6BNRist 7The Chinese University of Hong Kong

In the appendix, we present additional experiments, both objective and sub-
jective, to validate the efficacy of ControlLLM. We also include visualizations of
the distribution and word cloud for our constructed benchmark. Furthermore,
we elaborate on the implementation details to better understand our approach.

1 Feature Comparisons

Table A1 presents a comprehensive feature comparison among various meth-
ods [8,9,13,14], highlighting ControlLLM’s distinct advantages in the landscape
of multi-modal interaction. Notably, “Multi-Solution” signifies the method’s abil-
ity to provide multiple feasible solutions, granting users more options. “Pointing
Device” signifies support for pointing devices such as the mouse, to enhance user
experience. “Resource Type Awareness” indicates the method’s capability to dis-
cern the type of resource in the context, ensuring more context-aware responses.
In summary, ControlLLM emerges as the standout choice, excelling in various
features. It offers a comprehensive set of tools in the domains of image, video,
and audio. Moreover, its support for resource type awareness, multiple solutions,
and pointing inputs demonstrates its adaptability and scalability, making it the
highly versatile framework for diverse multi-modal interaction scenarios.

2 Additional Experiments

2.1 The efficacy of ToG.

As shown in Table 3, the greedy search is essentially a retrieval-based method
that selects the best-matched tool assessed by LLMs. We can observe that there
is a large performance gap between greedy search and adaptive search. This
result directly proves the efficacy of our proposed ToG.

2 Z. Liu et al.

Table A1: Comparisons of features between different methods. The table
shows that our framework supports more features that facilitate the user experience of
multi-modal interaction. It proves the high scalability of our framework.

Features ControlLLM
(our work)

HuggingGPT
[9]

Visual ChatGPT
[13]

InternGPT
[8]

GPT4Tools
[14]

Image Perception ✓ ✓ ✓ ✓ ✓

Image Editing ✓ ✓ ✓ ✓ ✓

Image Generation ✓ ✓ ✓ ✓ ✓

Video Perception ✓ ✓ ✗ ✓ ✗

Video Editing ✓ ✓ ✗ ✓ ✗

Video Generation ✓ ✓ ✗ ✓ ✗

Audio Perception ✓ ✓ ✗ ✗ ✗

Audio Generation ✓ ✓ ✗ ✗ ✗

Multi-Solution ✓ ✗ ✗ ✗ ✗

Pointing Device ✓ ✗ ✗ ✓ ✗

Resource Type Awareness ✓ ✗ ✗ ✗ ✗

2.2 The performance of downstream tasks.

We conduct experiments mainly on two downstream tasks, i.e., VQA in Ta-
ble A2 and text-to-image generation in Table A3, to study the impacts on tool’s
performance, despite the fact that they are not jointly optimized with our frame-
work. For VQA, we validate the performance on two widely used benchmarks:
MMbench [7] and LLaVAW : LLaVA-Bench (In-the-Wild) [6]. Since LLMs sum-
marize and polish the response from the tool before replying to the user, we
find ControlLLM can slightly improve the performance on LLaVAW . However,
we also notice there is a gap on MMBench. Given that this benchmark consists
entirely of single-choice questions, ControlLLM will add extra words to explain
the reason for its choice, which hinders the evaluation script from extracting
the selected option. When directly using the output of the tool (see results in
the middle of the table), the performance of ControlLLM is on par with the
results from the original paper. In the task of text-to-image generation, Con-
trolLLM can refine and enrich the text prompt for generation. Our method can
achieve comparable or even higher performance than PIXART-α. Generally, our
approach does not significantly impair the performance of the underlying tools.

2.3 The performance on a large scale benchmark.

To further validate the efficacy of ControlLLM, we extend the benchmark used
in main paper to a larger scale. The new large benchmark, i.e., Tool2K, con-
tains 2500 instructions across diverse domains. We here use Tool100 to denote
the benchmark used in the main paper for clarity. We showcase the distributions
of benchmarks in Fig A1b and A1a as well as the word cloud of instructions in
Fig A2. GPT-4 is employed to assess the solutions. Here is the evaluation proto-
col: (1) Tool Usage: Verify that the assistant uses the tools correctly to address
the user’s question. (2) Relevance: Ensure no irrelevant tools are included in the
assistant’s approach. (3) Arguments (tool inputs): Check that the arguments
for the tools are correct and compatible in types and values. (4) Efficiency and

Title Suppressed Due to Excessive Length 3

Table A2: The evaluation on visual question answering. * denotes the results
are reproduced by ourselves. We utilize LLaVA [5] as our VQA tool in ControlLLM.

Methods LLaVAW [5] ↑ MMBench [7] ↑
LLaVA-1.5 [4] 63.4 64.3
LLaVA-1.5* [4] 68.6 64.1
ControlLLM 73.5 61.2

Table A3: The evaluation for text-to-image generation on T2I-CompBench
[3]. As PIXART-α [5] is used as our text-to-image tool, we here only compare our
ControlLLM with it.

Methods
Attribute Binding Object Relationship

Complex ↑
Color ↑ Shape ↑ Texture ↑ Spatial ↑ Non-Spatial ↑

PIXART-α [1] 0.6886 0.5582 0.7044 0.2082 0.3179 0.4117
ControlLLM 0.7053 0.7796 0.7102 0.2121 0.3083 0.4220

(a) The of distribution of Tool100. (b) The of distribution of Tool2k.

Fig.A1: The distribution of our benchmarks. Composite task represents the task
that is composed of multiple task domains. The parallel task is using one instruction
to handle several images or videos in a batch manner.

Effectiveness: Evaluate whether the solution provided by the assistant is efficient
and effective. Based on this protocol, GPT-4 is required to give a score on the
scale of 1-10 (1: not working/no sense; 10: perfect) for each solution. We com-
pute the average score (termed GPT-Score) over the whole benchmark as our
metric. Since HuggingGPT [9] can return a formatted solution and as well share
a similar toolset in the names and usage of tools, we believe Table A4 can pro-
vide a fair comparison. As demonstrated, ControlLLM still achieves a superior
GPT-Score in a larger benchmark.

In addition, we explore the impact of different LLMs on task decomposition
and how it affects the task planning for ToG. We design a metric of decompo-
sition accuracy (DeAcc) to assess the capability of task decomposition in the
first stage of ControlLLM. As long as each field in sub-task is consistent with the

4 Z. Liu et al.

Table A4: Comparisons with HuggingGPT [9] on Tool2K.

Methods GPT-Scores ↑
HuggingGPT [9] 5.24
GPT4Tools [14] 5.62

VisProg [2] 6.27
ViperGPT [10] 8.19
ControlLLM 8.68

Table A5: Impacts of LLMs on task decomposition. We conduct an ablation
study of using different LLMs for task decomposition on Tool2K.

Methods LLMs in Stage 1 DeAcc ↑ GPT-Scores ↑

ControlLLM
OPT-350M [15] 90.24% 7.11
OPT-2.7B [15] 92.50% 8.51
LLaMA-7B [12] 93.99% 8.68

Fig.A2: Word cloud of instructions over two benchmarks.

groundtruth, this decomposition result can be seen as correct. We can observe
that the final GPT-Scores are strongly related to the capabilities of LLMs.

2.4 User study.

In order to subjectively evaluate the performance of our ControlLLM in com-
parison to other state-of-the-art methods, we conducted a user study collecting
approximately 200 dialogue samples from various domains. To ensure unbiased
results, we masked the names of the methods during the study. Participants

Title Suppressed Due to Excessive Length 5

are asked to select one or more acceptable results for each instruction, with the
option to choose “None of them” if all results are deemed unacceptable. The
satisfaction rate is defined as the number of times selected divided by the total
number of participants in the user study. The results are summarized in A3. We
received feedback from a total of 67 individuals, and the results demonstrate that
ControlLLM outperforms other approaches by a significant margin. We observe
some failure cases of ControlLLM can be blamed on task decomposition, which
wrongly parses the user input. In addition, ToG may generate sub-optimal or
invalid solutions for some challenging tasks.

2.5 Case Studies

We provide more cases across different modalities to validate the user experience
of ControlLLM in practice. In Fig. A5, we present some cases of image percep-
tion, which involves analyzing and understanding the content of an image, such
as detecting objects, counting objects, finding objects, segmenting objects, an-
swering questions about the image, etc. These tasks require the system to invoke
tools to process visual information and extract relevant features and labels from
the image. Fig. A6 gives examples of image processing and editing, which assist
users in processing or editing the image according to the instruction. Fig. A7
mainly focuses on image question answering and image generation, showing the
graphic dialogue capability. In Fig. A8, we provide some multi-modal interac-
tion cases on image, video, and audio domains. In addition, we also illustrate
the capabilities of complicated scenarios with solutions searched by ToG during
task planning in Fig. A9 and Fig. A10. These complex tasks involve combining
multiple tools to find an advanced and creative solution path that can solve more
challenging problems. It requires a system that can integrate different types of
information and outputs from tools and generate comprehensive and meaning-
ful responses based on execution results. These figures demonstrate the strong
capabilities of ControlLLM in task planning for both simple and complicated
scenarios. It thus leads to a better user experience.

3 ControlLLM-ChatGPT

In this variant, we implement language model M with ChatGPT. As such, we
elaborately design a series of prompts for each module.

3.1 Task Decomposition

The prompt in Table A6 is designed for task decomposition in ControlLLM-
ChatGPT. It guides the ChatGPT to decompose the user request into several
subtasks. Table 1 in the main paper shows the output protocol.

6 Z. Liu et al.

58.77%

25.86%

15.56% 14.85%
11.19% 10.41%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

Contro
lLL

M

Huggin
gGPT

Intern
GPT

GPT4Tools

Visu
al

ChatG
PT

None of th
em

Satisfaction Rate

Fig.A3: User study.

3.2 Tool Assessment

Table A7 outlines a prompt design for the task of tool assessment, where the AI
assistant evaluates tools’ suitability for a given task. The output is captured in
the JSON format, including reasons and a score. The scoring criteria range from
1 to 5, reflecting the tool’s relevance to the task. The prompt emphasizes the
connection between tool descriptions and task requirements. This prompt guides
AI in making informed decisions when assessing tools’ utility for a specific task.

3.3 Solution Expert

In this section, we delve into the core concept of the solution expert that stream-
lines the process of evaluating and selecting optimal solutions from all possible
candidates. By systematically converting each solution into a formatted string
description, the solution expert enables us to make informed decisions based on
evaluated scores.

Solution Description Formatting. To facilitate the solution expert to
comprehend the solution, we need to generate the description for each solution
candidate. This involves transforming raw solution data into structured, format-
ted string descriptions. These descriptions encapsulate the information including
functionality, inputs and output.

Solution Evaluation. The solution expert capitalizes on prompt engineer-
ing techniques to assess each solution based on subtask descriptions and for-
matted solution descriptions. The designed prompts guide language model M

Title Suppressed Due to Excessive Length 7

Table A6: The prompt for task decomposition. It is inspired by [9].

The following is a friendly conversation between a human and an AI. The AI is pro-
fessional and parses user input to several tasks with lots of specific details from its
context. If the AI does not know the answer to a question, it truthfully says it does
not know. The AI assistant can parse user input to several tasks with JSON for-
mat as follows: <Solution>[“description”: task_description, “task”: [task_domain_1,
task_domain_2], “id”: task_id, “dep”: dependency_task_id, “args”: [“type”: “text”,
“image” or audio, “value”: text, image_url or <GEN>-dep_id], “returns”:[“type”: “seg-
mentation”, “value”: “<GEN>-task_id”]]</Solution>. The “description” should de-
scribe the task in detail, and AI assistant can add some details to improve the user’s
request without changing the user’s original intention. The special tag “<GEN>-
dep_id” refers to the one generated text/image/audio/video/segmentation/mask in
the dependency task (Please consider whether the dependency task generates re-
sources of this type.) and “dep_id” must be in “dep” list. The special tag “<GEN>-
task_id” refers to the one generated text/image/audio/video/segmentation/mask in
this task and “task_id” should be in line with field “id” of this task. The “dep”
field denotes the ids of the previous prerequisite tasks, which generate a new re-
source that the current task relies on. The “args” field and the “returns” field denote
the input resources and output resources of this task, respectively. The type of re-
source must be in [“text”, “image”, “line”, “normal”, “hed”, “scribble”, “pose”, “edge”,
“bbox”, “category”, “segmentation”, “audio”, “video”, “segmentation”, “mask”], nothing
else. The “task” MUST be selected from the following options: “question-answering”,
“visual-question-answering”, “image-generation”, “image-editing”, “image-perception”,
“image-processing”, “audio-perception”, “audio-generation”, “audio-editing”, “video-
question-answering”, “video-perception”, “video-generation”, “video-editing”, nothing
else. Think step by step about all the tasks that can resolve the user’s request. Parse
out as few tasks as possible while ensuring that the user request can be resolved. Pay
attention to the dependencies and order among tasks. If some inputs of tools are not
found, you cannot assume that they already exist. You can think of a new task to
generate those args that do not exist or ask for the user’s help. If the user request
can’t be parsed, you need to reply empty JSON []. You should always respond in the
following format:
<Solution><YOUR_SOLUTION></Solution>
<YOUR_SOLUTION>should be strict with JSON format described above.

to evaluate the feasibility of each solution against the objective of the subtask.
Through this process, we can assign scores to solutions, gauging their effective-
ness and relevance to the task. It must ensure that the evaluation process is
focused, targeted, and aligned with the subtask. The prompt template is shown
in the Table A8.

Solution Ranking. The final aim of this module is to select the top-
performing solutions. The optimal solution is identified as the highest score
assessed in the solution evaluation. Given that sometimes the selected optimal
solution may not meet the user requirements, we also provide several alterna-
tive solutions by setting a threshold score of 3. These solutions, which exhibit a

8 Z. Liu et al.

Table A7: The prompt for tool assessment.

Given a task and a tool, the AI assistant helps the system decide whether this tool can
process the task. The assistant should focus more on the description of the model and
give a score to each tool. The AI assistant respond with JSON format as follows: <So-
lution>“Thought”: thought, “Score”: score </Solution>. The “Thought” field records
the model’s thinking process step by step within 80 words, which gives the reasons
why giving this score. The “Score” field denotes a score that assesses whether this
tool is useful for this task. Score is in [1, 2, 3, 4, 5]. Here are the scoring crite-
ria: “Score”=1: The tool is totally not related to the task and does not provide any
useful output for solving the task. “Score”=2: The tool is somewhat not related to
the task and may not provide any useful output for solving the task. “Score”=3:
The tool is probably related to the task and provides some intermediate output
that is partially helpful for solving the task, but it may not be the optimal one.
“Score”>3: The tool is closely or directly related to the task and provides an output
that is mostly helpful for solving the task or that matches the returns of the task
with regard to the type. In a nutshell, for the given task, the higher the score, the
more useful the tool is. You should always respond in the following format: <So-
lution>SOLUTION </Solution>. \n‘SOLUTION‘ should strictly comply with the
SON format described above. Task description: “{{task}}”.\n\n Here is the descrip-
tion of the tool “{{tool_name}}”: \n{{tool_name}}: {{tool_description}}\nArgs:
\n{{arguments}}\nReturns: \n{{returns}}\n\nThe above information may be use-
ful for AI to make decision. Please refer to the scoring criteria and score the tool
{{tool_name}} for this task. Notice that If the tool description contains keywords
from the task description, the score of this tool should be greater than or equal to 3.

higher degree of alignment with the subtask’s requirements, emerge as the most
promising candidates for user preference.

Through collaborative efforts, the optimal solution expert ensures that solu-
tions are appropriately tailored, optimized, and well-adapted to the task.

3.4 Resource Expert

In the algorithm of ToG, we encounter a challenge stemming from the poten-
tial presence of multiple instances of the same resource type within the available
resource list. This challenge introduces complexity, making it difficult to straight-
forwardly deduce certain arguments for tools using pre-defined rules. As a result,
we design a solution expert.

This module transforms the task of argument assignment into a fill-in-the-
blank exercise. To achieve this, we design a resource expert crafts with prompts
that not only incorporate the task description but also include the available re-
source list. In this manner, a language model M is employed to dynamically
complete the missing parameters within a solution by interacting with the con-
textual information presented. We put the prompt template in the Table A9.

Title Suppressed Due to Excessive Length 9

Table A8: The prompt for solution expert.

Given a task and a solution, The AI assistant needs to score the solution and re-
spond in JSON format. Please notice that the AI assistant should think. The AI
assistant should pay more attention to the relevance between the description of each
tool in the solution and task. The AI assistant respond with JSON format as fol-
lows: <Solution>{“Thought”: “thought”, “Score”: score}</Solution>. “Thought” field
records the model’s thinking process step by step within 80 words, which gives the
reasons why giving this score. “Score” field denotes a score that assesses whether this
tool is helpful for this task. “Score” is in [1, 2, 3, 4, 5]. Here are the scoring criteria:
“Score”=1: The solution is totally not related to the user’s request and can not solve
the task. “Score”=2: The solution is somewhat not related to the user’s request and
may not solve the task. “Score”=3: The solution is probably related to the user’s in-
tention and may solve the task, but it may not be the optimal one. “Score”>3: The
solution is closely or directly related to what the user wants and could satisfactorily
solve the task. In a nutshell, the higher the score, the greater the likelihood of the
solution solving the given task. You should always respond in the following format:
\n<Solution>‘SOLUTION‘ </Solution>\n‘SOLUTION‘ should strictly comply with
the JSON format described above. \nUser’s request: “{{request}}” Task description:
“{{task}}”. Here is the description of the solution: {{solution}} Please refer to the
scoring criteria and score this solution based on the task description. You should
think carefully before scoring the solution. Notice that If the keywords in the solution
are close in meaning to the keywords in the task description, then the score of this
solution is at least 3.

Table A9: The prompt for resource expert.

Some tools have missing input arguments, and the AI assistant needs to infer these
missing inputs from the context. Please notice that the AI assistant should never fake
the resources that do not exist. The returned input arguments should be JSON format
as follows: [{“image”: “xxx.png”}, {“bbox”: “<GEN>-detr-bbox-0”}, “text”: “<text>”].
AI assistant should always respond in the following format: \n“<Explanation>[briefly
explain your choice here]</Explanation><Solution>‘SOLUTION‘ </Solution>”.
\n‘SOLUTION‘ should be strictly in the JSON format described above. \nUser’s
request: \n“{{request}}”\nTask: \n“{{task_description}}”. \n<Resources>:
\n{{resources}}. \nWe use {{tool_name}} to solve this task: \n‘{{tool_name}}‘:
{{tool_description}} \nArgs: {{arguments}} \nReturns: {{returns}} \nFor the type
of “text”, the AI assistant should summarize the content from the context based on
the task and the tool’s description. For other types of input, the AI assistant needs to
select the inputs from <Resources>. Now we prepare the inputs for {{tool_name}}:
{{input}}. Please complete these inputs and return the completed inputs with the
format described above like: <Solution>‘SOLUTION‘ </Solution>.

4 ControlLLM-LLaMA

For ControlLLM-LLaMA, we use the LLaMA-7b [12] as language model M
to solve the problems in task decomposition, tool assessment, solution expert,
resource expert.

10 Z. Liu et al.

Table A10: The Prompt Design in Response Generation. We here refer to the
prompts from [9] to generate a user-friendly response.

Your name is ControlLLM, an AI-powered assistant. For the user’s request, the system
executes the solution and collects the results based on the following workflow. You
need to respond to user requests based on the following information. Here is the
information for your reference.
User Request
{{request}}
Workflow and Execution Results
{{solution}}
Summarized Results
{{results}}
You must first answer the user’s request in a straightforward manner. Some of the
results may not be accurate and need you to use your judgment in making decisions.
Then please explain your workflow, including the tools and returned results for the
request, in a friendly way. If the answers contain file paths, you have to repeat the
complete file path. Only if there is nothing in the Summarized Results, you need to
tell the user you can not finish the task.

4.1 Instruction Generation

The first step to train M is to construct the instruction corpus. We here opt for
ChatGPT-3.5 to generate the training corpus. The following steps will elaborate
on the details of instructions generation for task decomposition, tool assessment,
solution expert, and resource expert, respectively.

For task decomposition, we generate two different types of instructions as
follows: 1) Basic instructions, where they only contain one subtask after task
decomposition. We set some seed instructions with ground-truth results of task
decomposition, which serve as initial templates for generating more diverse in-
structions. Then, we use ChatGPT to generate more diverse instructions based
on the pre-defined seed instructions. During the generation process, we center
on the seed instructions and produce more instructions using more diverse ex-
pressions and styles. These instructions need to share the task decomposition
results with the seed instructions as ground truth. 2) Compound instructions,
which involve multiple subtasks and intermediate resources. We simply assemble
the basic instructions into the compound instructions in a coherent and logical
manner. It aims to enhance the improve the complex interaction capability of
the system by enabling the model to handle user requests that span multiple
domains and require multiple steps of processing. We here generate almost 100k
instructions for training. The instructions generated in this step will be used in
the following tasks as well.

For the tool assessment, solution expert, and resource expert, we use prompts
in Table A7, A8 and A9 to collect the output from ChatGPT by running Con-
trolLLM on the instructions generated above. Unlike directly generating the
solution, these tasks only involve making a decision, like scoring the tools or
solutions based on the input, so they are relatively simple, and ChatGPT, with

Title Suppressed Due to Excessive Length 11

strong zero-shot capabilities, can easily solve them. Therefore, we opt to directly
distill the knowledge of ChatGPT by using prompt techniques. Through the
experiments, we verify the feasibility of this strategy.

4.2 Training Recipes

We follow the training protocol in [11], where LLaMA [12] is used as an alter-
native choice for our language model M. It is finetuned for three epochs with
the initial learning rate 2e-5 and consine decay. We fix the training batch size as
128 by adaptively setting “gradient_accumulation_steps”. The whole training
procedure is on 8xA100 GPUs.

5 ControlLLM-Mix

In practice, we find ControlLLM-ChatGPT has difficulty in task decomposition,
especially for hard instructions. In addition, ControlLLM-LLaMA is good at
task decomposition due to an instruction-tuned language model M while other
modules are slightly inferior to ChatGPT. Because we finetune M by distill-
ing the knowledge from ChatGPT to assess tools, ranking solutions, and assign
arguments. As a result, we design ControlLLM-Mix to integrate the benefits
from the other variants. For task decomposition, we use the same method from
ControlLLM-LLaMA to finetune LLaMA-7B to decompose user requests. For the
remaining modules, we directly utilize the ChatGPT, sharing the same prompt
design from ControlLLM-ChatGPT. In experiments, ControlLLM-Mix achieves
the best performance.

6 Response Generation

We design a prompt template for the Response Generation in Table A10. In
this task, the AI assistant is tasked with explaining the process and outcomes
using input and inference results. The AI is instructed to respond directly to
the user’s request, followed by describing the task’s procedure, offering analysis,
and presenting model inference results using a first-person perspective. If the
results involve file paths, the complete path should be provided, or if there are
no results, the AI should communicate its inability. The prompt sets the context
for generating informative and user-understandable responses during response
generation.

7 Resource Types and Tools

We initially define a type set containing a series of resource type descriptors, such
as “text”, “tags”, “html”, “image”, “video”, “audio”, “segmentation”, “edge”, “line”,
“hed”, “canny”, “scribble”, “pose”, “depth”, “normal”, “mask”, “point”, “bbox” and

12 Z. Liu et al.

Table A11: A subset of domains and tools in our tool kit.

Domains Tools
question-answering question_answering, image_question_answering
NLP summarization, title_generation, text_to_tags,

text_to_text_generation, sentiment_analysis
image-perception object_detection, image_captioning, visual_grounding, im-

age_classification, segment_anything, instance_segmentation,
segment_by_points

image-generation text_to_image, image_to_image, line_text_to_image,
hed_text_to_image, scribble_text_to_image,
pose_text_to_image, segmentation_text_to_image,
edge_text_to_image, depth_text_to_image, nor-
mal_text_to_image

image-editing text_image_editing, image_inpainting, image_cropping,
mask_image, highlight_object_on_image

image-processing image_to_edge, image_to_line, image_to_hed, im-
age_to_scribble, image_to_pose, image_to_depth, im-
age_to_normal

video-perception video_classification, video_captioning
video-processing dub_video, video_to_webpage
video-generation image_audio_to_video, image_to_video, text_to_video
audio-perception audio_classification
audio-generation text_to_music, text_to_speech, audio_to_Audio

“category”. The type set is easy to extend depending on the toolkit. The types
of inputs of tools must fall into the pre-defined type set.

In Table A11, we exhibit lots of tools supported by our framework across dif-
ferent domains, including natural language, image, audio, video, etc. The whole
system will continue to evolve. As depicted in Fig. A4, we visualize the topolog-
ical structure of tool graph and showcase how it looks like.

8 Metrics for Tool Selection

A) Irrelevant Tool Inclusion Rate (abbr. IR):

F (sp) =

{
true, sp contains the irrelevant tools
false, otherwise

, (1)

IR =

∑|Sp|
i I(F (Sp

i))

|Sp|
, (2)

where I is indicator function, | · | represents the number of elements in a set,
and Sp denotes all predicted solutions on our benchmark. It measures the pro-
portion of the predicted solutions that contain the irrelevant tools. A higher

Title Suppressed Due to Excessive Length 13

Table A12: Test samples of instruction in the benchmark.

Easy
1. Please determine if the image_1.png contains a platyhelminth?
2. How can I design a sleep monitoring system in C# that can accurately detect
a baby’s specific sleep stages and predict when they will enter a light sleep stage
within the next hour? And once this prediction is made, how can I alert the parent
or caregiver that the baby will be waking up soon and suggest soothing methods to
ease the transition from sleep to wakefulness? Also, how can I modify the statement
“The baby is sleeping" to reflect this predictive system in C#?
3. Please extract the scribble result for the image in image_2.png"
4. With the HED result image_3.png, generate a new image that features a zoo
landscape with various animals, a couple with their children, and a fountain.
5. Given the image image_4.png, What is unique about the window in the room?

Medium
6. Can you generate a new image that has a similar layout to the file named ’im-
age_5.png’? I’m particularly interested in the positioning of the elements. The new
image should have the same arrangement of elements and their positioning.
7. Generate a new image conditioned on the segmentation from image_6.png and the
new image contains a majestic mountain range with a clear blue sky and a herd of
wild horses running free.
8. Take away the umbrella from the picture image_7.png.
9. Crop out the baseball glove in image_8.png
10. Provide me with a mask that separates the bear from the rest of the image_9.png?

Hard
11. provide the number of umbrellas presented in the image_10.png, image_11.png,
image_12.png, image_13.png, image_14.png
12. Can you elaborate on the elements of the image_15.png, image_16.png and im-
age_17.png provided?
13. Erase the laptop from the image_18.png,image_19.png and image_20.png
14. Create a new image using the segmentation from image_21.png that showcases
a cozy cabin in the woods with a dog and a cat, surrounded by snow-covered trees.
Can you crop out the dog from given image? I’m looking for the cat in the image file,
can you guide me to it?
15. Can you determine whether image_22.png contains a mouse? Please provide a
list of all the objects present in the image, with a special emphasis on the killer. Is
image_23.png displaying a banana? As for the image, what skills are important for
improving one’s performance in the depicted scenario?

IR indicates that the method tends to include more unnecessary tools, poten-
tially hindering effective task planning. This metric gauges the performance of
methods by excluding irrelevant tools.

14 Z. Liu et al.

B) Necessary Tool Inclusion Rate (abbr. NR):

H(sp) =

{
true, Solution sp contains necessary tools
false, otherwise

, (3)

NR =

∑|Sp|
i I(H(Sp

i))

|Sp|
. (4)

The necessary tools play a critical role in solving the user request. For example,
if users want to know the position of a specific object, the object detection tool
is necessary. This metric measures the proportion of solutions that contain the
necessary tools for solving the task but without considering whether the argu-
ments of tools are correct. It checks whether the solution has all the necessary
tools that can produce the expected output. A high NR value means that the
method has a strong ability in task planning and finding the right tools for the
user’s request.

8.1 Metrics for Argument Assignment

A) Resource Hallucination Rate (abbr. HR):

P (sp) =

{
true, spcontains false resources
false, otherwise

, (5)

HR =

∑|Sp|
i I(P (Sp

i))

|Sp|
. (6)

This indicator reveals the extent of hallucination when inferring the arguments
for tools. It checks whether all the arguments of the tools exist in the input
resources or not. A low HR value means that the method rarely leads to hallu-
cinations that are common in LLMs.

B) Resource Type Consistency Rate (abbr. CR):

Q(sp) =

{
true, No resource type conflict in sp

false, otherwise
, (7)

CR =

∑|Sp|
i I(Q(Sp

i))

|Sp|
. (8)

This metric examines whether the types of resources used as inputs for the pre-
dicted solution match those of the corresponding tools. It evaluates the method’s
ability to ensure consistency between argument types and tools. A high CR value
means that the method can correctly infer and assign arguments for each tool.

Title Suppressed Due to Excessive Length 15

8.2 Solution Evaluation

The Solution Evaluation (abbr. SE):

W (sp) =

{
true, sp can solve the task
false, otherwise

, (9)

SE =

∑|Sp|
i I(W (Sp

i))

|Sp|
. (10)

This metric measures the success rate of all generated solutions on our bench-
mark, regardless of whether it contains irrelevant tools, as long as the chain of
tool invoking outputs the information that is able to solve the task. A higher
score in the solution evaluation indicates that the method is able to provide an
effective solution to user requests.

In summary, these intuitive metrics together provide a comprehensive assess-
ment of tool-augmented LLMs in terms of tool selection, argument assignment,
and overall effectiveness in addressing user queries.

16 Z. Liu et al.

im
ag

e_
qu

es
tio

n_
an

sw
er

in
g

te
xt

im
ag

e

im
ag

e_
ca

pt
io

ni
ng

pa
rt

ia
l_

im
ag

e_
ed

iti
ng

te
xt

_i
m

ag
e_

ed
iti

ng im
ag

e_
in

pa
in

tin
g

hi
gh

lig
ht

_o
bj

ec
t_

on
_i

m
ag

e

im
ag

e_
cr

op
pi

ng

im
ag

e_
to

_i
m

ag
e

im
ag

e_
to

_e
dg

e
im

ag
e_

to
_l

in
e

im
ag

e_
to

_h
ed

im
ag

e_
to

_s
cr

ib
bl

e

im
ag

e_
to

_p
os

e

im
ag

e_
to

_d
ep

th

im
ag

e_
to

_n
or

m
al

ob
je

ct
_d

et
ec

tio
n

im
ag

e_
cl

as
si

fic
at

io
n

im
ag

e_
in

st
an

ce
_s

eg
m

en
ta

tio
n

im
ag

e_
se

gm
en

ta
tio

n_
by

_m
as

k
im

ag
e_

se
gm

en
ta

tio
n_

by
_p

oi
nt

s

se
gm

en
t_

an
yt

hi
ng

vi
su

al
_g

ro
un

di
ng

op
tic

al
_c

ha
ra

ct
er

_r
ec

og
ni

tio
n

im
ag

e_
au

di
o_

to
_v

id
eo

im
ag

e_
to

_v
id

eo

ge
t_

tim
e

te
xt

_t
o_

im
ag

e

lin
e_

te
xt

_t
o_

im
ag

e

he
d_

te
xt

_t
o_

im
ag

e

sc
ri

bb
le

_t
ex

t_
to

_i
m

ag
e

po
se

_t
ex

t_
to

_i
m

ag
e

se
gm

en
ta

tio
n_

te
xt

_t
o_

im
ag

e

ed
ge

_t
ex

t_
to

_i
m

ag
e

de
pt

h_
te

xt
_t

o_
im

ag
e

no
rm

al
_t

ex
t_

to
_i

m
ag

e

se
le

ct
_c

at
eg

or
y

se
le

ct
_b

bo
x

se
le

ct
_m

as
k

vi
de

o_
to

_w
eb

pa
ge

te
xt

_t
o_

vi
de

o
te

xt
_t

o_
m

us
ic

te
xt

_t
o_

sp
ee

ch

te
xt

_t
o_

te
xt

_g
en

er
at

io
n

tit
le

_g
en

er
at

io
n

op
en

ai
_c

ha
t_

m
od

el

su
m

m
ar

iz
at

io
n

te
xt

_t
o_

ta
gs

na
m

ed
_e

nt
ity

_r
ec

og
ni

tio
n

se
nt

im
en

t_
an

al
ys

is

ex
tr

ac
t_

lo
ca

tio
n

ge
t_

w
ea

th
er

w
ea

th
er

lo
ca

tio
n

su
m

m
ar

iz
e_

w
ea

th
er

_c
on

di
tio

n

tim
e

m
as

k
co

un
t_

m
as

ks

bb
ox

co
un

t_
ob

je
ct

s

lin
e

he
d

sc
ri

bb
le

po
se

se
gm

en
ta

tio
n

ed
ge

de
pt

h

no
rm

al

ca
te

go
ry

co
un

t_
ca

te
go

ri
es

vi
de

o_
cl

as
si

fic
at

io
n

vi
de

o

vi
de

o_
ca

pt
io

ni
ng

du
b_

vi
de

o
po

in
t

au
di

o

au
di

o_
cl

as
si

fic
at

io
n

ht
m

l

tit
le

ta
gs

To
ol

 G
ra

ph
To

ol
Re

so
ur

ce

Fig.A4: The visualization of tool graph.

Title Suppressed Due to Excessive Length 17

image-perception

User: Provide me with the count of bears in the input image

AI: The count of bears in the input image is 3.
Here is a summary of the workflow and results for your request:
1. The image was processed using an object detection tool, which detected the
presence of bears in the image.
2. The bounding boxes around the detected bears were selected by bounding boxes
selection tool.
3. The count of bears was then determined using a count objects tool.
4. The result of the count objects tool indicated that there are 3 bears in the image.

User: I'm trying to find the umbrella in the image, can you assist me?

AI: Yes, I can assist you in finding the umbrella in the image. After analyzing the
image, I have identified the location of the umbrella and cropped it for better
visibility.
To achieve this, I used the following tools in my workflow:

1. Object Detection: This tool was used to detect various objects in the image,
including the umbrella. The tool provided a list of detected objects with their
corresponding labels and bounding box coordinates.
2. Select Bounding Box: This tool was used to select the bounding box
corresponding to the umbrella from the list of detected objects.
3. Image Cropping: This tool was used to crop the image based on the selected
bounding box of the umbrella. The result is a new image that focuses specifically on
the umbrella.

I hope this explanation clarifies the steps I took to find and extract the umbrella from
the image. If you have any further questions, feel free to ask!

User: Give me the mask of elephant in the image.

AI: I have generated a mask of an elephant for you.
To generate this mask, I used an image instance segmentation tool on the image.
The tool identified different objects in the image and created masks for them. Then, I
used a mask selection tool to specifically select the mask for the elephant based on
the condition provided.
Please note that the result may not be completely accurate, as it relies on the
performance of the tools used.

User: Can you highlight the giraffe for me in the image?

AI: I have highlighted the giraffe for you.

To fulfill your request, I followed the following workflow:
1.First, I used an object detection tool to locate the elephant in the image.
2.Then, I used a selection tool to choose the bounding box that contains the elephant.
3.Finally, I used an image highlighting tool to highlight the selected bounding box
on the image.
The output of this workflow is the highlighted image, which shows the giraffe
highlighted.

Fig.A5: Case study on different task domains (a).

18 Z. Liu et al.

image-processing

User: Extract the edge information for this image.

AI: I have successfully extracted the edge information from the image you provided.
To achieve this, I used an image processing tool called “image_to_edge”. I passed
your input image as input to the tool. The tool processed the image and generated a
new image file containing only the edge information.

User: Please get me the pose information for the image.

AI: Sure! Based on your request, I have obtained the pose result for the input image.
To obtain this result, I used the “image_to_pose” tool. I provided the tool with the
image file as input. The tool processed the image and generated the pose result.

User: Please segment anything without label information for this image.

AI: I have segmented anything without label information for the image you
mentioned. Now, let me explain the workflow and the tools used for your request. I
used a tool called "segment_anything" to perform the segmentation. The input for
this tool was the image file named "47e56e_None_input_image.jpg". The tool
processed the image and generated a segmentation result.

image-editing

User: Erase the sheep from the photo

AI: I have successfully erased the sheep from the photo. Now, let me explain how I
accomplished this task. First, I used an image instance segmentation tool to identify
the sheep in the photo. This tool generated several mask images highlighting the
sheep in different parts of the photo. Then, I used a select mask tool to choose the
most accurate masks that represent the sheep. These selected masks were saved as
separate images. Finally, I used an image inpainting tool to remove the sheep from
the original photo, using the selected masks as a guide.
Please let me know if there's anything else I can help you !

User: Erase the sheep from the photo

AI: I have edited the picture and changed the color of the horse to blue.

To address your request, I used text_image_editing tool, which can edit the image
guided by a textual prompt.

Fig.A6: Case study on different task domains (b).

Title Suppressed Due to Excessive Length 19

image-question-answering

User: Why is this image so funny?

AI: The image is funny because it features two toy frogs, one of which is holding a
camera and taking a picture of the other. The scene is set in a grassy field, and the toy
frogs are posed in a way that mimics human behavior, specifically a photographer
capturing a subject. The humor comes from the unexpected and anthropomorphic
portrayal of the toy frogs, as it is not common to see inanimate objects, such as toys,
engaging in activities like photography. This playful and whimsical scene can evoke
amusement in the viewer.
I used an image question answering tool. The tool analyzed the image and
determined why this image is so funny.

User: Given the image, is there going to be a potentially dangerous situation in
the picture?

AI: There is a potentially dangerous situation as a man is riding on the back of
an elephant, while another elephant is walking through the water. The presence
of two elephants in close proximity to each other and the man could pose a risk of
accidents or injuries, especially if the elephants become agitated or frightened. It
is essential for the man to maintain control over the elephant he is riding and
ensure that the other elephant is calm and well-behaved to minimize any
potential dangers. To solve your question, I used an image question answering tool.

User: how many people can be seen riding the elephant in the image?

AI: In the image, there is one person riding on the back of the elephant. I used an
image question answering tool to answer your question.

image-generation

User: I want a new image that has mountains and sunset. Can you use the depth result
from input image to create it?

AI: The new image is generated. The workflow involved two tools:
"image_to_depth" and "depth_text_to_image".
The first tool, “image_to_depth”, used an input image to generate a depth result.
The second tool, "depth_text_to_image", took a text input of "The new image should
have mountains and sunset." and a depth map (generated by the previous tool)

User: please generate a new image based the edge from this image. The new image
shows a beautiful tower in the rain.

AI: The new image generated.
Workflow:
The image provided was processed using an image-to-edge tool, which generated an
edge representation of the image.
The edge representation was then used along with the text “The new image shows a
beautiful tower in the rain” in an edge-text-to-image tool. This tool combined the
edge representation and the text to generate a new image.

Fig.A7: Case study on different task domains (c).

20 Z. Liu et al.

image & video & audio tasks

User: What happened in this video?

AI: In this video, a basketball game is taking place, with a player attempting to shoot
the ball. The player is holding the ball and getting ready to make a shot, while other
players are on the court, possibly trying to defend or score.
To solve your question, I used two tools: “action_recognition” and
“video_captioning”, which both take the video as input.

User: Please generate music according to the following prompt: An 80s driving pop
song with heavy drums and synth pads in the background

AI: Sure! I have generated a piece of music based on your prompt.

To create this music, I used a text-to-music tool. I provided the tool with the
prompt you gave me, which was "An 80s driving pop song with heavy drums and
synth pads in the background". The tool then generated a music composition that
matches the description.

User: Can you help me dub this video with uploaded audio?

AI: Sure! Based on your request, I have dubbed the video with the audio for you to
dub a video. I used a “dub_video” tool that can add or replace the audio track of a
video. I gave it the input video file and the input audio file, and it returned a new video
file with the audio synchronized with the video.

User: Convert the following sentence into speech: “Hope is the thing with feathers
That perches in the soul, And sings the tune without the words, And never stops at all”

AI: I have converted the following sentence into speech for you: “Hope is the thing
with feathers That perches in the soul, And sings the tune without the words, And
never stops at all”. To do this, I used a text_to_speech tool that can generate speech
from text. I gave it the input sentence and it returned an audio file with a human-
like voice reading the sentence. The tool can also adjust the speed, pitch, and accent
of the voice to suit different preferences. I hope you like the results.

User: Generate an image where a woman is surfing. Then convert this image to a
dynamic video.

AI: I have generated an image where a woman is surfing and converted it to a
dynamic video for you.
To do this, I used two tools that can create and manipulate visual content. The first
tool called text_to_image can generate an image based on a text description. I gave
it the input ‘a woman is surfing’ and it returned an image of a woman surfing on a
blue ocean wave. The second tool is image_to_video that can convert an image to a
video by adding motion and sound effects. I gave it the image from the first tool,
and it returned a video of the woman surfing with realistic water and wind sounds. I
hope you like the results.

Fig.A8: Case study on different task domains (d).

Title Suppressed Due to Excessive Length 21

complex tasks

User: Please dub the video.mp4 with a suitable background music and then generate a HTML web page to introduce this
video.

AI: Sure! I can help you generate a video to introduce an image. Based on the
information provided, I have used a combination of tools to fulfill your request.
First, I used the "text_to_image" tool to convert your description into an image. The
tool created an image of a serene and beautiful landscape with a calm lake reflecting the
blue sky and white clouds. There are also green hills and trees on the shore, as well as a
small wooden boat floating on the water.
Next, I used the "image_captioning" tool to generate a textual description of the image.
The tool analyzed the image and produced a caption that best describes it.
Then, I used the "text_to_speech" tool to convert the generated textual description into
an audio file. This tool transformed the text into speech, allowing for a more engaging
experience.
Finally, I used the "image_audio_to_video" tool to combine the generated image and
audio into a video. The tool merged the image and audio together, creating a video that
introduces the image.
The result of this workflow is a video file. This video showcases the image described in
your initial request and includes the audio narration of its description.

[Action(tool_name='video_captioning‘, inputs={'video': 'video.mp4‘}, outputs=['<TOOL-GEN>-text-0‘]),
Action(tool_name='text_to_music‘, inputs={'text': '<TOOL-GEN>-text-0‘}, outputs=['<TOOL-GEN>-text_to_music-audio-
0‘]), Action(tool_name='dub_video', inputs={'video': "video.mp4 ", 'audio': "<TOOL-GEN>-text_to_music-audio-0",},
outputs=['<TOOL-GEN>-dub_video-video-0’])]
[Action(tool_name='title_generation', inputs={'text': '<TOOL-GEN>-text-0'}, outputs=['<TOOL-GEN>-text-1‘]),
Action(tool_name='text_to_tags', inputs={'text': '<TOOL-GEN>-text-0'}, outputs=['<TOOL-GEN>-tags-0‘]),
Action(tool_name='video_to_webpage', inputs={'video': '<TOOL-GEN>-dub_video-video-0', 'title': '<TOOL-GEN>-text-1',
'tags': '<TOOL-GEN>-tags-0', 'description': '<TOOL-GEN>-text-0'}, outputs=['<GEN>-0'])]

Task planning

The image features a
serene scene of a boat …

User: Generate a new image based on prompt. Prompt: “A serene and beautiful landscape with a calm lake reflecting the
blue sky and white clouds. There are some green hills and trees on the shore”. Then help me generate a promotional video
for this generated image.

[Action(tool_name='text_to_image', inputs={'text': 'A serene and beautiful landscape with a calm lake reflecting the
blue sky and white clouds. There are some green hills and trees on the shore, and a small wooden boat floating on the
water.'}, outputs=['<TOOL-GEN>-text_to_image-image-0‘]), Action(tool_name='image_captioning', inputs={'image':
'<TOOL-GEN>-text_to_image-image-0'}, outputs=['<TOOL-GEN>-text-0‘]), Action(tool_name='text_to_speech',
inputs={'text': '<TOOL-GEN>-text-0'}, outputs=['<TOOL-GEN>-text_to_speech-audio-0‘]),
Action(tool_name='image_audio_to_video', inputs={'image': "<TOOL-GEN>-text_to_image-image-0", 'audio': "<TOOL-
GEN>-text_to_speech-audio-0"}, outputs=['<GEN>-0'])]

Task planning

AI: Sure, I can generate a web page for your input video.
I have executed a workflow using several tools to generate the desired web page. The
video_captioning tool was used to generate a text description for the input video. The
dub_video tool combined the input video with the generated audio to create a dubbed
video.
The title_generation tool was used to generate a title for the video based on the generated
text.
The text_to_tags tool generated a set of tags related to the video content.
Finally, the video_to_webpage tool was used to generate a web page for the video,
including the video itself, the generated title, tags, and description.
The resulting web page includes the following elements:
1) A title prompt asking for a title to be generated within 10 words. 2) A video player to
play the input video. 3) Tags related to the video content. 4) A video description.

Fig.A9: Case study on different task domains (e).

22 Z. Liu et al.

complex tasks

User: Count horse in the image1.png, image2.png and image3.png

[
Action(tool_name='object_detection', inputs={'image': 'image1.png'}, outputs=['<TOOL-GEN>-object_detection-bbox-
0‘]), Action(tool_name='select_bbox', inputs={'bbox_list': '<TOOL-GEN>-object_detection-bbox-0', 'condition': 'bear'},
outputs=['<TOOL-GEN>-select_bbox-bbox-0‘]),
Action(tool_name='count_objects', inputs={'bbox_list': '<TOOL-GEN>-select_bbox-bbox-0'}, outputs=['<GEN>-0']),
],
[
Action(tool_name='image_question_answering', inputs={'text': 'Provide me with the count of bears in the input image',
'image': 'image1.png'}, outputs=['<GEN>-1'])
],
[
Action(tool_name='object_detection', inputs={'image': 'image2.png'}, outputs=['<TOOL-GEN>-object_detection-bbox-
1']),
Action(tool_name='select_bbox', inputs={'bbox_list': '<TOOL-GEN>-object_detection-bbox-0', 'condition': 'bear'},
outputs=['<TOOL-GEN>-select_bbox-bbox-1']),
Action(tool_name='count_objects', inputs={'bbox_list': '<TOOL-GEN>-select_bbox-bbox-0'}, outputs=['<GEN>-2']),
],
[
Action(tool_name='image_question_answering', inputs={'text': 'Provide me with the count of bears in the input image',
'image': 'image2.png'}, outputs=['<GEN>-3'])
]
[
Action(tool_name='object_detection', inputs={'image': 'image3.png'}, outputs=['<TOOL-GEN>-object_detection-bbox-
1']),
Action(tool_name='select_bbox', inputs={'bbox_list': '<TOOL-GEN>-object_detection-bbox-0', 'condition': 'bear'},
outputs=['<TOOL-GEN>-select_bbox-bbox-1']),
Action(tool_name='count_objects', inputs={'bbox_list': '<TOOL-GEN>-select_bbox-bbox-0'}, outputs=['<GEN>-4']),
],
[
Action(tool_name='image_question_answering', inputs={'text': 'Provide me with the count of bears in the input image',
'image': 'image3.png'}, outputs=['<GEN>-5'])
]

Task planning

AI: Based on the information provided, the count of horses in the two images is eight.
To provide you with this information, I followed a workflow using various tools. First, I used an object detection tool to
detect objects in the images. Then, I used a tool called “select_bbox” to select the bounding boxes that contain the desired
object, which in this case is a horse. Next, I used a tool called “count_objects” to count the number of horses based on the
selected bounding boxes. For both two images, I used the same solution to count the horses. The
“image_question_answering” tool is also used to double check the result. The results of this workflow indicate that there
are four horses in image1.png, three horses in image2.png and one horse in image3.png. So, there are eight horses in total.
However, please note that these results may not be completely accurate, as they are generated using automated tools and
may require human judgement for accuracy.

Fig.A10: Case study on different task domains (f).

Title Suppressed Due to Excessive Length 23

References

1. Chen, J., Yu, J., Ge, C., Yao, L., Xie, E., Wu, Y., Wang, Z., Kwok, J., Luo, P.,
Lu, H., et al.: Pixart-α: Fast training of diffusion transformer for photorealistic
text-to-image synthesis. arXiv preprint arXiv:2310.00426 (2023)

2. Gupta, T., Kembhavi, A.: Visual programming: Compositional visual reasoning
without training. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. pp. 14953–14962 (2023)

3. Huang, K., Sun, K., Xie, E., Li, Z., Liu, X.: T2i-compbench: A comprehensive
benchmark for open-world compositional text-to-image generation. Advances in
Neural Information Processing Systems 36 (2024)

4. Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual instruction tuning.
arXiv preprint arXiv:2310.03744 (2023)

5. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: NeurIPS (2023)
6. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. arXiv preprint

arXiv:2304.08485 (2023)
7. Liu, Y., Duan, H., Zhang, Y., Li, B., Zhang, S., Zhao, W., Yuan, Y., Wang, J.,

He, C., Liu, Z., et al.: Mmbench: Is your multi-modal model an all-around player?
arXiv preprint arXiv:2307.06281 (2023)

8. Liu, Z., He, Y., Wang, W., Wang, W., Wang, Y., Chen, S., Zhang, Q., Lai, Z., Yang,
Y., Li, Q., Yu, J., et al.: Interngpt: Solving vision-centric tasks by interacting with
chatbots beyond language. arXiv preprint arXiv:2305.05662 (2023)

9. Shen, Y., Song, K., Tan, X., Li, D., Lu, W., Zhuang, Y.: Hugginggpt: Solving ai
tasks with chatgpt and its friends in huggingface. arXiv preprint arXiv:2303.17580
(2023)

10. Surís, D., Menon, S., Vondrick, C.: Vipergpt: Visual inference via python execution
for reasoning. Proceedings of IEEE International Conference on Computer Vision
(ICCV) (2023)

11. Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P.,
Hashimoto, T.B.: Stanford alpaca: An instruction-following llama model. https:
//github.com/tatsu-lab/stanford_alpaca (2023)

12. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave,
E., Lample, G.: Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023)

13. Wu, C., Yin, S., Qi, W., Wang, X., Tang, Z., Duan, N.: Visual chatgpt:
Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671 (2023)

14. Yang, R., Song, L., Li, Y., Zhao, S., Ge, Y., Li, X., Shan, Y.: Gpt4tools: Teaching
large language model to use tools via self-instruction (2023)

15. Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C.,
Diab, M., Li, X., Lin, X.V., Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig,
D., Koura, P.S., Sridhar, A., Wang, T., Zettlemoyer, L.: Opt: Open pre-trained
transformer language models (2022)

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

	Appendix: ControlLLM: Augment Language Models with Tools by Searching on Graphs

