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Abstract. We present ControlLLM, a novel framework that enables
large language models (LLMs) to utilize multi-modal tools for solving
complex real-world tasks. Despite the remarkable performance of LLMs,
they still struggle with tool invocation due to ambiguous user prompts,
inaccurate tool selection and mismatched input arguments. To overcome
these challenges, our framework comprises three key components: (1) a
task decomposer that breaks down a complex task into clear subtasks
with well-defined inputs and outputs; (2) a Thoughts-on-Graph (ToG)
paradigm that searches the optimal solution path on a pre-built tool
graph, which specifies the parameter and dependency relations among
different tools; and (3) an execution engine with a rich toolbox that
interprets the solution path and runs the tools efficiently on different
computational devices. We evaluate our framework on diverse tasks in-
volving image, audio, and video processing, demonstrating its superior
accuracy, efficiency, and versatility compared to existing methods. The
code is available at https://github.com/OpenGVLab/ControlLLM.

Keywords: Large language models · Tool-augmented LLMs · Control-
LLM · Multi-modal Interaction

1 Introduction

Large-scale language models, such as ChatGPT [28] and LLaMA series [40, 41],
have demonstrated impressive capability in understanding and generating nat-
ural language. Beyond their prowess in linguistic tasks, these models have been
rapidly extended to interaction, planning, and reasoning, propelling the advance-
ment of studies in multi-modal interaction [1, 19,20,25,42,43,55].

One of the emerging examples of multi-modal interaction is tool-augmented
language models [24, 35, 36, 47, 49], which strive to enhance the capabilities of
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Fig. 1: Comparisons of different paradigms for task planning. (a) Chain of
Thought (CoT) [45], CoT with self-consistency [44] and (b) Tree of Thoughts [50]
(ToT) essentially rely on the LLMs to perform task planning, where the edge is actually
formed by LLMs at run time. (c) The Thoughts-on-Graph (ToG) paradigm in our
method searches for solutions on a pre-built graph that captures the dependencies of
tools, which avoids the hallucination problem in tool invocation.

language models to include diverse modalities beyond text such as image, video,
audio, etc. These models employ LLMs as primary controllers and incorporate
tools with diverse functionalities as plugins, which solves a wide range of multi-
modal tasks. However, challenges in this field still persist, covering task decom-
position, task planning, and efficient tool scheduling.

With these challenges in mind, prior methods [24, 33, 36, 39, 47, 49, 51] made
their endeavors in developing tool-augmented LLMs. They utilize LLMs with
input-output prompting, CoT [45] or ToT [50] to perform task planning. These
methods can solve problems by breaking them into a chain or tree of sub-tasks.
Theoretically, as long as LLMs have strong generalization ability, these methods
can also solve complex tasks. However, in practice, we found that these methods
often suffer from inaccurate tool invocation problems when dealing with complex
cases. This is due to the fact that solutions for complex tasks often contain
tool invocations with intricate topological structures. It is insufficient for these
methods to form a complex thought network and thus fail to solve complicated
tasks. Therefore, it requires us to figure out a new paradigm beyond chain-
shaped or tree-shaped ones, which can generate solutions with intricate topology
structures to solve more complicated problems (see Fig. 1 and Fig. 2).

To this end, we introduce ControlLLM, a new framework that assists large
language models in accurately and efficiently controlling multi-modal tools and
identifying comprehensive solutions for complex real-world tasks involving multi-
modal inputs. Alongside a variety of improvements over previous works, our
framework places particular emphasis on three aspects as follows:

Task Decomposition. A task decomposer is introduced to analyze the user
prompt and breaks it down into a number of subtasks, each with well-defined
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attributes such as task description, task domain, arguments, and returned out-
put. By decomposing complex tasks into manageable subtasks, the task decom-
poser significantly enhances the system’s ability to handle intricate user prompts,
which paves the way for follow-up task planning and solution execution.

Task Planning. This part handles tool selection and tool argument assign-
ment. We propose a thoughts-on-graph (ToG) paradigm that traverses a topo-
logical tool graph to search for solutions. The nodes of the graph are tools that
are connected based on their dependencies and relationships. ToG orchestrates
the selected tools and controls the flow of resources among them to form possi-
ble solutions. ToG can find the optimal solution for each sub-task by applying
diverse search strategies on the graph. Due to the concrete definition in subtask
and explicit tool dependencies in a tool graph, ToG can effectively search all
feasible solution paths in cases where the selected optimal solution fails to meet
users’ preferences.

Solution Execution. We design an execution engine that can execute the
solution generated by ToG and craft informative and well-formatted responses.
The engine has access to a versatile toolbox consisting of various tools from
different sources, e.g ., locally deployed APIs or cloud services. The engine can
also parallelize the tool executions according to the topology of the solution path
to reduce the latency and provide feedback during the execution.

Our ControlLLM offers several advantages. (1) It can accurately handle com-
plex real-world tasks that involve multi-modal inputs and outputs, while previous
methods [4,22,24,36,47,49] usually fail to handle due to their capabilities of task
planning; (2) It can overcome the token limitation of LLMs during task plan-
ning. Because our method searches the optimal solution path on the tool graph,
instead of asking LLMs to generate a solution for the task; (3) It can easily
scale up toolbox. Since all solutions lie in the tool graph, when tools change, we
only need to rebuild the graph without re-training LLMs or updating in-context
prompts.

To evaluate the effectiveness of ControlLLM in tasks of different complexi-
ties, we construct a benchmark with a series of tailored metrics. Specifically, we
use irrelevant tool inclusion rate and necessary tool inclusion rate to measure
tool selection. We employ the resource hallucination rate and resource type con-
sistency rate to assess argument assignments. We also split the test set into three
difficulty levels based on the number of APIs involved: easy (< 2 APIs), medium
(2 or 3 APIs), and hard (> 3 APIs). We conducted various experiments, both
quantitatively and qualitatively, to compare our method with existing ones. The
results show that ControlLLM achieves a higher success rate in tool invocation,
especially for complicated instructions.

In summary, the main contributions are as follows:
(1) We design three tailored components in this paper: Task decomposition,

which breaks down the user prompt into subtasks with well-defined inputs and
outputs; ToG paradigm for task planning, searching the optimal solution path on
a graph that depicts tool dependencies; And an execution engine with a powerful
toolbox, which efficiently schedules and executes the solution.
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Fig. 2: System design of ControlLLM. The framework consists of three stages.
The first stage is task decomposition, which parses the user input into several subtasks.
Then, in Stage 2, ToG utilizes a depth-first search algorithm to find the optimal solution
for each subtask. The execution engine in the last stage executes the solution and
returns the output to users. We here use the example of generating a web page for the
video to illustrate our method.

(2) We propose a framework, termed ControlLLM, that lets LLMs use various
tools across different modalities to solve complex tasks in the real world. Our
system has greatly improved the current state of the art in this field, and the
system’s capability has gone from unusable to basically usable. And we also
extend the test data from toy cases to more complex problems in reality.

(3) We construct a benchmark to assess the efficacy of ControlLLM on tasks
with different complexity levels. The experimental results demonstrate signifi-
cant improvements in tool usage. Notably, ControlLLM achieves a success rate
of 93% in the metric of overall solution evaluation, while the best baseline only
reaches 59%. It lays a solid foundation for future LLMs-based system call.

2 Related Work

Planning, Reasoning, and Decision Making. It is a longstanding vision
to empower autonomous agents with the abilities of planning, reasoning, and
decision-making [18, 37, 46]. Despite progressive development, it was recent ad-
vancements in large language models (LLM) [3, 5, 29, 40, 54] that have taken
a breakthrough step in addressing these problems on the broad user requests.
Nevertheless, it is shown that LLMs still suffer from difficulties in dealing with
knowledge-heavy and complex tasks [34]. To overcome these issues, Chain of
Thoughts (CoT) [45] is introduced as a simple Tool Documentation Enables
Zero-Shot Tool-Usage with Large Language Modelsprompting technique to elite
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the complex reasoning capabilities of LLMs. Following this line of work, CoT with
self consistency [44], Tree of Thoughts (ToT) [45], and other techniques [6,14,59],
have been proposed to improve the reasoning abilities further. There are also
several works [2, 52] that introduce techniques called Graph-of-Thought (GoT).
They all share a common insight that relies on LLMs to generate thoughts for
solving complicated NLP problems. In contrast, our ToG aims to endow the
language model with the ability to use tools for a multi-modal dialogue system.
Furthermore, ToG builds a tool graph in advance without requiring LLMs and
uses a search algorithm to form a complicated thought network for task planning.

Tool-Augmented LLM. Drawing inspiration from the evolving planning
and decision-making capabilities observed in Large Language Model (LLM) sys-
tems, a new wave of research starts to enhance LLMs with external tools for ac-
cessing up-to-date information, reducing hallucination, multi-modal interactions,
etc. Prominent examples include ReAct [51], VisProg [11], ViperGPT [38], Visual
ChatGPT [47], HuggingGPT [36], InternGPT [24], AutoGPT1, and Transform-
ers Agent2. A distinctive trait of this line of research is its reliance on the zero-
shot or few-shot in-context learning [8] capabilities inherent in LLMs [3]. These
capabilities enable task decomposition, tool selection, and parameter completion
without requiring explicit finetuning. However, due to the inherent limitations
of LLMs, issues such as hallucination and challenges in effective decomposi-
tion and deduction can arise with substantial frequency. Furthermore, there are
also instruction-tuning methods [10,12,30,31,33,35,49]. Whereas alleviating the
above issues after being tuned on the text corpus involved tools, these methods
are still limited at expanding the toolset, i.e., additional training is required to
add tools. Among these methods, ToolLLM [33] proposes the depth-first search-
based decision tree to boost the planning ability of LLMs.

Multi-Modal LLMs. Developing LLMs with multi-modal capabilities is
another approach to deal with more complex real-world scenarios [7, 13, 15, 16,
21–23,26,27,32,48]. For instance, BLIP-2 [19], LLava [23], and Mini-GPT4 [57]
bind frozen image encoders and LLMs to enable the vision-language understand-
ing and generation. Similarly, VisionLLM [43] and LISA [17] empower the LLMs
with the visual perception capabilities such as object detection and segmenta-
tion. These works [9, 16, 58] extend LLM for interleaved image and text gener-
ation by jointly optimizing the LLM with off-the-shelf Stable Diffusion model.
Kosmos2 [32], Ferret [53], GPT4RoI [56], and etc., design various region-aware
image encoders to augment LLMs with the abilities of grounding and referring.
Nevertheless, these methods could only cover a limited range of modalities or
tasks and often require huge effects on model finetuning.

3 ControlLLM

The prevalence of LLMs has unprecedentedly boosted the development of human-
computer interaction. It is feasible to empower the LLMs with abilities to in-
1 https://github.com/Significant-Gravitas/Auto-GPT
2 https://huggingface.co/docs/transformers/transformers_agents

https://github.com/Significant-Gravitas/Auto-GPT
https://huggingface.co/docs/transformers/transformers_agents
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Table 1: The output protocol of task decomposition. We elaborate on each field
in the output of task decomposition.

Field Description
description a brief summary of subtask. It gives some guidance on how to approach

the problem for ToG.
domains the domain scope that tools required by this task fall into. It helps ToG

narrow down the search space and find the most relevant and suitable tools
for the subtask. We showcase the domains in the appendix.

args the inputs that the user provides for this subtask. It is usually in the form
of key-value pairs, where the key is the type of the argument, and the
value is the resource path or text you want to use. For example, [{“type":
“image", “value": “image_1.png"}, {“type": “text", “value": “remove the
dog in the picture"}].

return the expected output of the subtask. For example, the return is {“image":
“⟨GEN⟩-0”}, which means the expected output is an image. “⟨GEN⟩-0" is
a temporary placeholder, which can be used to capture the dependency
between different subtasks."

teract with various modalities via tools. In response, we present an innovative
framework, namely ControlLLM, characterized by its flexibility and high per-
formance. As depicted in Fig. 2, our framework consists of three sequential stages,
i.e., task decomposition, task planning and solution execution.

3.1 Task Decomposition

ControlLLM starts with task decomposition – a stage for decomposing the user
request r into a list of subtasks. We here can utilize a language model M, e.g .,
ChatGPT or instruction-tuned LLaMA, to automatically decompose the user
request as follows:

{s0, ..., si, ..., sn} = M(r), (1)

where si is the i-th subtask, n is the number of all subtasks. We will elabo-
rate on the different choices of language model M in Sec. 3.4. The result of
task decomposition is in JSON format, and the output protocol is presented in
Table 1.

Task decomposition is different from task planning. It only breaks down the
user’s request into several subtasks and summarizes the input resources for each
subtask from the user request. It does not need to know what tools to use or how
to use them. The objective of this stage is to achieve three aims. Firstly, it splits
user requests into smaller and more manageable units, i.e., subtasks, thereby
accelerating task planning. Secondly, it seeks to determine the task domain that
is most relevant and appropriate for the given problem, thus further narrowing
down the scope of task planning. Thirdly, it endeavors to infer the input and
output resource types from the context, which identifies the start and end nodes
for ToG to search in the next stage.
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3.2 Task Planning with Thoughts-on-Graph

This stage is the key to the entire system. Given the results of task decomposi-
tion, we design a Thoughts-on-Graph (ToG) paradigm to find solutions on the
graph heuristically.

Building the Tool Graph In this stage, we first construct a Tool Graph G
using an adjacency matrix, which serves as a fundamental guideline for analyz-
ing and optimizing the interactions between tools. Our motivation is driven by
observing a discernible topological structure that inherently exists between the
input and output of diverse tools, as demonstrated in Fig. 2. This compelling
insight propels us to craft a comprehensive tool graph that holds the inherent
relationship between tools.

There are two types of nodes i.e., Resource node and Tool node, in the graph.
Resource node can be formally defined as one-tuple: ⟨type⟩, where type shows
the specific type of resource, like image, mask, video, etc. Tool node can be
expressed as a three-tuple: ⟨desc, args, ret⟩. The desc field encapsulates the
description of the tool, including its purpose and intended applications. The args
field denotes a list of resource nodes that the tool accepts, thereby giving the
prerequisites for utilizing this tool. Finally, the ret field designates the resource
node that the tool returns.

Edge Definitions. Edges in the tool graph intricately connect the nodes,
highlighting the relationships between different tools. We define two types of
edges in the graph: (1) Tool-resource edge is established from the tool to its
returned resource type. This signifies that the tool is capable of generating re-
sources of the corresponding type. (2) Resource-tool edge denotes the resource
node that can be accepted as input arguments for its adjacent tool. This con-
nection indicates how the resources flow to the tool. Through the establishment
of this graph, we can use diverse search strategies to make informed decisions
regarding tool selection and input resource assignments.

Searching on the Graph As described in Algorithm 1, our ToG is built
upon a depth-first search (DFS ) algorithm where the tool selection function F
is used to sample the tool nodes on the tool graph. ToG relies on the outputs
of task decomposition in stage 1. The algorithm starts from the input resource
nodes and explores all possible paths to the output node while keeping track of
the intermediate resources and tools. The algorithm stops when it reaches the
expected output node or when it exceeds a maximum length limit m (m=10 by
default). Finally, ToG returns all searched solutions. Each step from resource
node to tool node represents a thought process, as it involves a decision that
determines whether to use this tool and how to assign its input arguments.

To find a trade-off between time and space complexities, we develop a tool
assessment module in which we prompt the language model to score the tools
in each search step and then filter out some irrelevant tools. As such, we design
four search strategies for the function F to determine which tool nodes within
the task domains to visit among all adjacent nodes when searching on the graph:
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Algorithm 1 The pseudocode of depth-first search in Thoughts-on-Graph
Input:

t: subtask obtained by Eq. 1 in Stage 1
g: tool graph G constructed in Sec. 3.2
r: available resources, initialized with subtask[“args”]
s: recorded tools during searching

Output:
solutions: all possible solutions for the subtask t

1: function DFS_Search(t, g, r, s)
2: if len(s) > m:
3: return []

# F finds all tool candidates, explained in Sec. 3.2
4: available_tools = F(t, g, r)
5: solutions = []
6: for tool in available_tools:
7: s.append(tool)
8: r.append(tool[“returns”])
9: if tool[“returns"] == t[“returns"]:

10: solutions.append(s.copy())
11: results = DFS_Search(t, g, r, s)
12: solutions.extend(results)
13: r.remove(tool[“returns"])
14: s.remove(tool)
15: return solutions ▷ Return
16: end function

Greedy Strategy. This strategy selects the tool node with the highest score
at each step, where the score indicates the relevance of the tool to the task.
Greedy search is fast and simple, but it may not find the optimal solution or
even any solution at all.

Beam Strategy. It only keeps the k best tools according to their assessment
scores. Beam search can expand the search space but reduce the search efficiency
slightly.

Adaptive Strategy. This is a variant of beam search where it dynamically
adjusts the beam size by choosing the tools with scores higher than a fixed
threshold, which is a trade-off between exploration and exploitation.

Exhaustive Strategy. This strategy explores all possible paths from the
start node to the terminal node. The exhaustive search is guaranteed to find an
optimal solution if one exists, but it may be very slow during the search.

The impacts of different search strategies are studied in Sec. 4.4. The search
process, akin to a brainstorm or mind map, hunts for potential solutions.

Solutions Post-processing After ToG searches the solutions, we design so-
lution expert and resource expert to post-process solutions, which both employ
prompt engineering to instruct the language model M to complete the tasks.
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Specifically, solution expert to select the optimal one among all solution candi-
dates and resource expert to infer the remaining arguments for tools, respectively.

3.3 Solution Execution

Once the task solutions are completed, they are passed to the execution engine
to obtain results, as shown in Fig. 2. In this stage, the execution engine initially
parses the solutions into a sequence of Actions. Each action is associated with
particular tool services, which could be implemented via either handcrafted map-
ping tables or an automatic scheduler based on some strategies. Our execution
engine empowers the system with the flexibility to schedule diverse tools based
on users’ preferences.

The parsed actions are automatically executed by scheduling the action to
the local, remote, or hybrid endpoints. Multiple independent subtasks would be
executed in parallel to improve efficiency. Besides, we maintain a state memory
storing all the intermediate results, including their values and types. This enables
the running-time automatic correction for the action parameters.

Response Generation. The unprocessed results may lack comprehensive-
ness and clarity, potentially making it difficult for users to understand. There-
fore, we introduce a module to aggregate all the execution results and generate
user-friendly responses. This is achieved by prompting the LLMs, such as Chat-
GPT, with the user request, action list, and execution results and asking them
to summarize the answers intelligently.

3.4 The Choices of Language Model

To systematically verify the performance of the overall framework, we here dis-
cuss different options for the language model. One feasible yet direct choice is to
use off-the-shelf large language models (LLMs) such as ChatGPT or Llama
2 [41], which are pre-trained on large-scale text corpora and can handle various
NLP tasks. These LLMs are readily available. We design a series of elaborate
prompts for task decomposition, tool assessment and solutions post-processing.
We call this variant as ControlLLM-ChatGPT. In this way, we avoid training
a language model from scratch. However, they may lead to low performance as
they are not trained for our requirements. The alternative choice of M, termed
as ControlLLM-LLaMA, is to finetune a language model (e.g ., LLaMA) by us-
ing self-instruct method [44]. The advantage of this variant is that it can achieve
high performance by adapting to the data and the task. Nevertheless, it requires
lots of GPUs to train the model and may suffer from overfitting issues.

All prompts used to instruct LLMs are shown in the Appendix for clarity.

4 Experiments

4.1 Benchmark

We build a benchmark that is used to evaluate our proposed framework com-
pared with other state-of-the-art methods. This benchmark consists of a set of
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tasks that require various tools to solve complex problems collaboratively. It is
designed to cover different task domains, such as question answering, image gen-
eration, image editing, image perception, visual question answering, etc. Despite
the fact that our method supports more tools than other systems, in order to
make fair comparisons, we only evaluate and test on the intersection of toolsets
from different methods [24,36,47,49], all of which share comparable toolsets.

This benchmark includes about 100 instructions, which are classified into
three levels of difficulty: easy (< 2 APIs), medium (2 or 3 APIs), and hard(> 3
APIs). We use test instructions with various levels to meticulously validate the
ability of different methods. However, this manner may cause a critical prob-
lem: whether the scale of this benchmark is enough for evaluation. Since some
methods [24, 47] do not support formatted outputs for their task planning, it is
difficult to automatically evaluate their capabilities with a large batch of instruc-
tions. In addition, we observe the output format and toolset between different
methods [11, 36, 38, 49] is also extremely inconsistent with each other. It may
lead to biased and unfair comparisons if using LLMs or rule-based methods to
evaluate them. So, in this work, we choose to evaluate their performance via
a multi-person voting approach. As a result, we have to limit the scale of our
benchmark. For this concern, we add extra experiments on a large-scale test set
to verify the efficacy of our method. Generally, we believe that our experiments
are able to provide a comprehensive comparison of the tool control capabilities
of different methods. In the appendix, we present some instruction samples from
our benchmark. It is noticeable that there is no absolute relationship between
difficulty and length of instruction.

4.2 Evaluation Protocol

Effectively evaluating the performance of tool-augmented LLMs remains a chal-
lenging task. The challenges stems from several factors, including the inherent
ambiguities in natural language, the absence of shared benchmarks, and format-
ted solutions for systematically assessing different methods.

In addition, we find the APIs of tools in different methods are slightly in-
consistent. It is hard to annotate all feasible solutions for each method. As such,
we adopt an evaluation protocol via a multi-person voting approach with three
experts. The protocol breaks down the evaluation into three main aspects: tool
selection, argument assignment, and overall solution evaluation. Please note that
the evaluation protocol is independent of the tools’ capabilities. When the tools
and their input arguments are correct, we do not account for the case where the
output fails to satisfy the user’s expectations due to the limitations of tools.

Metrics for Tool Selection: A) Irrelevant Tool Inclusion Rate (abbr. IR):
This metric gauges the performance of the method in excluding irrelevant tools.
It measures the proportion of the predicted solutions that contain the irrelevant
tools. A higher IR indicates that the method tends to include more unnecessary
tools, potentially hindering effective task planning; B) Necessary Tool Inclusion
Rate (abbr. NR): This metric assesses the inclusion of necessary tools in the
predicted solution but without considering whether the arguments of tools are
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Table 2: Comparisons with the state-of-the-art methods. ↓ means the smaller
the better, ↑ means the larger the better. The results of these methods [24, 36, 47, 49]
are reproduced on our own benchmark. ∗ denotes the default setting of ControlLLM if
not stated.

Methods
Tool Argument Solution Evaluation ↑

IR ↓ NR ↑ HR ↓ CR ↑ All Easy Medium Hard

HuggingGPT [36] 0.45 0.64 0.16 0.69 0.59 0.73 0.50 0.33

Visual ChatGPT [47] 0.26 0.58 0.09 0.76 0.57 0.73 0.63 0.10

InternGPT [24] 0.12 0.51 0.49 0.43 0.44 0.60 0.46 0.00

VISPROG [11] 0.50 0.77 0.06 0.84 0.59 0.71 0.58 0.29

ViperGPT [38] 0.13 0.86 0.07 0.93 0.75 0.76 0.92 0.52

GPT4Tools [49] 0.19 0.44 0.28 0.72 0.43 0.64 0.33 0.00

ControlLLM-ChatGPT 0.16 0.63 0.83 0.83 0.64 0.71 0.67 0.43

ControlLLM-LLaMA 0.06 0.95 0.02 0.98 0.91 0.98 0.88 0.76

ControlLLM-Mix∗ 0.03 0.93 0.02 0.98 0.93 0.98 0.96 0.81

correct. If NR is high, it indicates the method has strong capabilities in tool
selection.

Metrics for Argument Assignment: A) Resource Hallucination Rate
(abbr. HR): This indicator reveals the extent of hallucination in the method’s
responses when inferring the arguments for tools. It measures whether all ar-
guments of the tools used in the predicted solution exist. A lower HR suggests
that the method is less prone to generating hallucinated content. B) Resource
Type Consistency Rate (abbr. CR): This metric examines whether the types of
input resources in the predicted solution match those of the corresponding tools.
It evaluates the method’s ability to ensure consistency of input types of tools.

Solution Evaluation (SE) measures the success rate of all generated solu-
tions on our benchmark. It only considers whether the output solution can effec-
tively address the user’s problem, irrespective of whether it contains irrelevant
tools. A higher score in the solution evaluation indicates a stronger capability
for task planning.

4.3 Quantitative Comparisons

In this section, we give a comprehensive analysis of ControlLLM to compare with
state-of-the-art methods, as summarized in Table 2. We provide three implemen-
tations in supplementary materials for our method: a) ControlLLM-ChatGPT
leverages the ChatGPT-3.5 as language model M; b) ControlLLM-LLaMA that
finetunes a LLaMA-7B as a language model M; c) ControlLLM-Mix is regarded
as our default setting, which finetunes LLaMA-7B as a task decomposer in the
first stage while the remaining modules employ the ChatGPT to finish the tasks.
We find that instruction-tuned LLaMA is good at task decomposition, while
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Table 3: The evaluation for different search strategies. We count the average
number of visited tools to denote the time complexities.

Search
Strategies

Tool Argument Solution Evaluation ↑ Time
ComplexitiesIR ↓ NR ↑ HR ↓ CR ↑ All Easy Meduim Hard

Greedy 0.19 0.49 0.24 0.76 0.49 0.56 0.58 0.19 4.07

Beam (k = 3) 0.14 0.88 0.01 0.99 0.88 0.96 0.79 0.76 121.29

Adaptive 0.03 0.93 0.02 0.98 0.93 0.98 0.96 0.81 236.49

Exhaustive 0.06 0.97 0.01 0.99 0.97 1.00 0.96 0.91 3444.23

Table 4: The effects of task decomposition with regard to different LLMs.
PK denotes “prior knowledge". We find, if adding prior knowledge, such as which tools
might be used, into the subtask description, the performance of task planning can be
evidently improved.

Task
Decomp. LLMs

Tool Argument Solution Evaluation ↑
IR ↓ NR ↑ HR ↓ CR ↑ All Easy Meduim Hard

w/o PK
Llama2-13B 0.28 0.71 0.01 0.99 0.68 0.87 0.50 0.38

ChatGPT-3.5 0.13 0.84 0.01 0.99 0.83 0.99 0.67 0.57

GPT-4 0.06 0.91 0.03 0.97 0.91 0.98 0.83 0.81

w/ PK
Llama2-13B 0.12 0.83 0.04 0.95 0.82 0.95 0.71 0.62

ChatGPT-3.5 0.03 0.93 0.02 0.98 0.93 0.98 0.96 0.81

GPT-4 0.01 0.98 0.02 0.98 0.98 1.00 1.00 0.91

ChatGPT has a strong ability to select tools. ControlLLM-Mix (abbr. Con-
trolLLM) combines the advantages of the other two variants. It thus achieves
the most promising performance on our benchmark. In addition, some meth-
ods [24,47] built upon Chain of Thought are also selected to validate the efficacy
of proposed ToG.

Specifically, ControlLLM excels in several key aspects. Notably, it achieves
the lowest Irrelevant Tool Inclusion Rate (IR) as well as the highest Necessary
Tool Inclusion Rate, indicating its ability in effective yet efficient task planning.
Furthermore, ControlLLM demonstrates superior performance in argument as-
signment, with the lowest Argument Hallucination Rate (HR) of 0.02 and the
highest Argument Type Consistency Rate (CR) of 0.98. These results underscore
its ability to generate accurate and consistent arguments, addressing a challenge
in tool-augmented LLMs. In the solution evaluation, ControlLLM maintains its
lead with a score of 0.93, indicating its effectiveness in resolving user requests.
When compared with HuggingGPT [36] and Visual ChatGPT [47] that both rely
on ChatGPT to perform task planning, our ControlLLM-ChatGPT still outper-
form them in the solution evaluation. This proves the efficacy of our ToG. In
summary, ControlLLM exhibits remarkable performance in all proposed metrics
when compared with state-of-the-art methods in this field.
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4.4 Ablation Studies

Table 3 investigates the impact of different search strategies within our Thoughts-
on-Graph. We observe that the exhaustive search strategy outperforms others
in most metrics, but this strategy is not so practical due to its time-consuming
search. On the other hand, the greedy search strategy achieves the lowest perfor-
mance. It thus usually fails to find the solution, especially in complicated cases,
because the greedy search strategy can not search for a feasible path based on
the tool with a high score when the tool assessment is not so accurate. As the
greedy strategy selects the best-matched tool assessed by LLMs and Tree of
Thoughts [50] using DFS explores the most promising state first, they are equiv-
alent to some extent. In addition, the adaptive strategy strikes a balance between
performance metrics and time complexities, offering competitive results in most
aspects. To trade-off between time and accuracy, we thus choose the adaptive
strategy as our default setting.

In Table 4, we conduct ablation studies to evaluate the impact of language
models on ControlLLM-Mix. We find language models play a decisive role in
tool selection and solution ranking. The more powerful the language model, the
higher the score of solution evaluation. Furthermore, we investigate the effects of
incorporating prior knowledge into the subtask descriptions in the task decom-
position. The method without prior knowledge usually directly uses the user’s
request as a subtask description and does not offer any hints or suggestions on
tool selections in the subtask description. In contrast, in the variant with prior
knowledge, we add prior knowledge to the subtask description. The prior knowl-
edge indeed improves the necessary tool inclusion rate (NR) and reduces the
chance of selecting irrelevant tools (IR) when using the same language model.
It provides the inspiration to further improve the overall system.

More experiments, including user study, can be found in the appendix.

4.5 Qualitative Analyses

Fig. 3 shows two simple cases to illustrate the capabilities of our ControlLLM in
task planning. In contrast to HuggingGPT [36], our method is able to generate
more diverse solutions to meet users’ expectations, thanks to the Thoughts-on-
Graph paradigm. In the appendix, we also provide extensive case studies across
different modalities to validate the user experience for our method in practice.

5 Conclusion

In this paper, we propose ControlLLM, a multi-modal interaction framework
that can accurately control tool usage across various domains, including text,
image, audio, video, etc. The proposed framework consists of three key stages:
(1) task decomposition to concrete the objective of the task, (2) a Thoughts-on-
Graph (ToG) paradigm to search the optimal solution path on the constructed
tool graph, and (3) an execution engine with a versatile toolbox to execute
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Case 1: Generate a new image similar to img_1.png.

Case 2: Are there dogs in the img_2.png?

image- captioning

text-to- image edge-text-to-imageseg-text-to-image

segment-anything image-to-image

input: img_1.png

image-to-edge image-to-image

object-detection

select-categoryselect-bbox

object-detection image-classification VQA

output: <image>

VQA

highlight-object image-cropping

ControlLLM HuggingGPT

ControlLLM HuggingGPT

input: img_1.png

output: <image> output: <image> output: <image>

output: <image> output: <image>

output: <image>

input: img_2.png

output: <category>

output: <text> output: <text> output: <image>

input: img_2.png

Fig. 3: Qualitative comparisons of task planning. We here use two simple cases
to illustrate the differences between two different methods of task planning. Here, each
output node is generated by different solution paths. More demo visualizations can be
referred to in the appendix.

solution efficiently. We conduct extensive experiments and demonstrate that our
ControlLLM achieves superior performance regarding tool selection, argument
assignment, and overall solution effectiveness compared to existing methods.

Nevertheless, we acknowledge that this work still has some limita-
tions. Since the goal of this work is to improve the accuracy of tool usage, even if
the solution is theoretically feasible, we cannot guarantee that the output from
tools is always correct. On the other hand, due to the inherent ambiguity in
natural language, it is difficult to ensure that the optimal solution selected is
consistent with the user’s goal. In this case, we can only provide more alterna-
tive solutions searched by ToG for users to choose from if the optimal solution
fails. In addition, as ToG is based on the depth-first search algorithm to find
the solution, it is time-consuming when performing task planning, but this dis-
advantage can be optimized with some engineering tricks. We also expect to see
some works that can improve the runtime efficiency of ToG in the future.
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