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We organize our supplementary materials as follows:

— In Section A, we demonstrate the detailed collection process and statistics
of the InstanceNav benchmark.

— In Section B, we provide more results on the pilot study.

— In Section C, we provide additional ablation studies on our proposed seman-
tic expansion inference scheme.

— In Section D, we ablate different selections of the Vision-and-Language Model.

— In Section E, we perform additional ablation on the semantic perception
module in our PSL agent.

— In Section G, we provide more implementation details of our PSL agent.

— In Section H, we provide more visualization results.

A Details and Statistics of HM3D InstanceNav
Benchmark

In this section, we visualize the statistics of our proposed InstanceNav bench-
mark. In order to construct the language instructions for the text-goal settings,
we randomly select a rendered goal image for each goal instance provided by
the TIN dataset [3], resulting in 795 images. Since the goal images are ensured
to capture perfect coverage of the instance, we are able to generate attribute
descriptions for each image using a multi-modal large language model [10]. For
instance, we instruct the LLM to caption each image using the prompt “Describe
the material and color of the {object} in this image. Describe the surrounding
objects of the {object} in this image.”. The {object} placeholder is replaced by
the specific object category of the instance. In Figure I, we visualize the word
frequency in our generated text descriptions.

For a fair comparison with our proposed method, we re-implement exist-
ing state-of-the-art ObjectNav methods and evaluate them on the InstanceNav
benchmark. We leverage the official code to implement the evaluation protocol
for the CoW [2] and ESC [13] baseline. We instruct the agent to find the object

* Equal contribution.
" Corresponding author.



2 X.Sun et al.

category as they can not process complex language input. For the OVRL [11]
baseline, as the authors haven’t released the trained ObjectNav model on the
HM3D dataset, we adopt to train an ImageNav agent based on the released self-
supervised ResNet-50 vision encoder, then transfer it to the InstanceNav by
retrieving image goals with our semantic expansion inference scheme.
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(a) Intrinsic Attributes. (b) Extrinsic Attributes.

Fig.I: Word cloud visualization of the attribute descriptions in the Text-Goal
settings of the InstanceNav task.

B More Results on the Pilot Studies

As mentioned in the main paper, we con-
duct statistical analysis on the distribution of
ImageNav goal images (see Fig. II). In particu- . | I e pogena
lar, We select 6 object categories that widely | ImageNav w/ GV Selection
exist in HM3D scenes, as well as two addi-
tional categories “wall” and “room” to repre-
sent images with ambiguous semantic content.
Then we use CLIP to perform zero-shot clas-
sification on all goal images by selecting the
category with maximum image-text similar-
ity. In Fig. I, in the original HM3D ImageNav
dataset, most of the goal images cannot be
categorized as common object categories; in-  Jistribution of goal images in
stead, they are classified as meaningless indi- (o ImageNav task. Our pro-
cations (i.e., “wall” and “room”). We believe posed Goal View (GV) Selection
that the unreasonable distribution aggravates |.leases this issue.
the semantic neglect issue.

We further provide more results on the pilot studies. To further inspect the
navigation capacity and semantic perception ability of the agent, We apply the
EigenCAM [6] for visualization of different observation encoders. The results are

Fig.II: Unreasonable category
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Fig. IIT: Architecture overview of four different navigation agents: Semantic-Non-
Dominant (SN) agent, Semantic-Dominant (SD) agent, ZSON [5] agent, and our
PSL agent.

shown in Fig. IV. We also put different agent architectures in Fig. I1I for quick
reference. We have the following observations: First, for the learnable observa-
tion encoders RN50 of all agents, we identify that they focus on the contours
and edges information, showing that the geometric cues are important for strong
navigation capacity. Second, for the fixed observation encoders CLIPy from the
semantic-only agent and our PSL agent, we find that they pay more attention
to the object semantics, mostly on the central part, verifying that it is reason-
able to incorporate the semantic observation encoder to improve the semantic
perception ability.
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Fig.IV: EigenCAM visualization for the observation encoder in four different
agents.
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C Ablation Studies on the Semantic Expansion Inference
Scheme

Comparison with Baseline Methods. We first compare our semantic ex-
pansion inference scheme with other techniques that also refine the text input
using external models, including:

— Parsed Attribute Bindings: this baseline approach leverages the NLTK model [4]
to parse the nouns and their corresponding attribute bindings in the descrip-
tions. After that, all bindings are organized in order to form the instruction.

— Synthesised Image: a state-of-the-art language-guided image generation method
is incorporated to generate an image I, based on the language description.
Specifically, we report the results using the Stable-Diffusion v1.5 model [9]
and a compositional generation model [8]. Then, we use the CLIP vision en-
coder to extract image features zg; and enhance the original text embeddings
z7 by performing a weighted sum A 1z§ + Aozr.

— Retrieved Feature: our proposed method. A goal embedding zg is retrieved
from the image embeddings in the support set S using the text embedding
as the query, as discussed in the previous section.

In Table I, we report the results of different baseline methods and our pro-
posed retrieval-based semantic expansion inference approach. We observe a marginal
decrease in performance for the synthesized image goals, despite the SynGen
model exhibiting greater sensitivity to detailed object attributes, as shown in
Figure V. We attribute this phenomenon to the inconsistent background intro-
duced by the image generation model. Moreover, the synthesized images can
not provide the agent with structural priors in the specific domain. In contrast,
our method alleviates this issue by introducing a support set collected during
unsupervised pre-training. The images in such a support set are more realistic,
facilitating rich visual priors for the navigation task.

Goal Ext. Model SR SPL
Category Text - 8.2 4.3
Parsed Attribute Bindings NLTK [1] 10.8 5.1
Synthesized Image SD-v1.5[9] 9.0 4.2
Synthesized Image SynGen [8] 10.0 4.5
Retrieved Feature (Ours) NLTK [1] 12.4 6.6

Table I: Comparison of different text goal refinement techniques for inference.

Effect of the Support Set Size. We provide an additional ablation study to
investigate the effect of the support set size in our semantic expansion inference
scheme. During the training phase, we store all goal image embeddings, resulting
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The chair in this image is brown, with a white The bed frame is made of brown wooden material,
backrest and silver metal parts. and the bed sheets are light blue in color.

Fig. V: Visualization of synthesized images using SD-v1.5 and SynGen.

in a large support set with 28,800,000 support embeddings. From these, we ran-
domly select four subsets of varying sizes: 1,000 (1K), 10,000 (0.01M), 100,000
(0.1M), and 1,000,000 (1M) support embeddings, respectively. We then perform
the semantic expansion inference scheme to retrieve expanded goal embeddings
with these variants of support set on the Text-Goal setting of InstanceNav
task and on the ObjectNav task. Results in Figure VI reveal that the size of the
support set plays a crucial role by enhancing the diversity of the support embed-
dings, thereby incorporating new perspectives and a broader array of object im-
ages. However, beyond a certain threshold, specifically at 0.1M embeddings, the
incremental number of embeddings ceases to improve navigation performance.
The extra embeddings tend to introduce redundancy and noise, adversely affect-
ing performance rather than enhancing it.
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(a) Effect of the support set size on the (b) Effect of the support set size on the
InstanceNav task. ObjectNav task.

Fig. VI: Ablation study on the support set size on two different tasks.
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D Ablation Study on the Vision-and-Language Model
Selection

In this section, we perform ablation on different Vision-and-Language Models
(VLM) that connect ImageNav with InstanceNav. We adopt to replace the VLM
with the SigLIP [12] model introduced by previous work [1]. We then compare
this substitution variant with the origin ZSON baseline on the InstanceNav
task. Results in Table IT show that changing the VLM model to an improved
version contributes a marginal improvement in SR, but leads to a —0.7% drop
in SPL. For a fair comparison with ZSON, we opt to keep CLIP in our pipeline.

VLM SR SPL
SigLIP [12] 11.1 4.2
CLIP [7] 106 4.9

Table II: Effect of the selection of VLM model.

E Ablation Studies on the Semantic Perception Module

We provide an additional ablation on the semantic perception module to inves-
tigate the effect of the output feature dimension. Travel back to the semantic
perception module, it takes in both goal embedding zg € R®! and semantic
embedding zg € R from observation to produce a semantic perception em-
bedding zgp € R®2, where Cy < 2 x (. In practice, we set C; = 1024 which
is consistent with CLIP embedding, and we compare the InstanceNav results
with different dimension numbers Cy € [256,1024,2048]. In Table III, we find
that keeping C; lower than Cs yields better navigation results. We believe this
module serves as a bottleneck to condense useful semantic perception results.

Feature Dim. SR SPL

256 15.8 7.1
1024 16.5 7.5
2048 144 6.9

Table III: Results on different output feature dimension in the semantic percep-
tion module.
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F More Evaluation Results

In this section, We provide additional evaluation results on object categories
unused in goal view selection. We test the agents using a subset of the MP3D
ObjectNav dataset that excludes 6 object categories used for selecting goal
views during training, resulting in episodes with 15 different object categories.
In Table IV, our method still significantly outperforms the ZSON baseline.

We also provide evaluation results on the vanilla ImageNav tasks. The vanilla
ImageNav task requires the agent to go to a location specified by a random image,
while the ImageGoal version of the ZSIN task requires the agent to navigate to
an object specified by its corresponding image. Substantial improvements in
Table V demonstrate the effectiveness of our PSL agent in the ImageNav task.

Method SR SPL Method SR SPL
ZSON 7.6 3.6 ZSON 26.9 21.7

PSL (Ours) 18.9 (y11.3) 6.4 (42.5) PSL (Ours) 32.5 (y156) 23.1 (1.4
Table IV: ObjectNav results. Table V: ImageNav results.

G More Implementation Details

Training and FEvaluation. We provide the implementation details of our PSL
agent in this section. The agent is trained for 1G steps following ZSON [5] on the
ImageNav task, and save checkpoint per 10M steps. We evaluate all checkpoints
in each downstream task and select the best model. The reported value is an
average number over 3 runs with different seeds. All experiments are conducted
on 16 Nvidia RTX-3090 GPUs with 16 environments per GPU for training and
on 1 GPU with 10 environments for evaluation.

The Semantic Expansion Inference Scheme. During the evaluation on
the ObjectNav task and the Text-Goal setting of the InstanceNav task, we in-
struct the PSL agent to go to a destination using a retrieved goal embedding
with our semantic expansion inference scheme. For the ObjectNav task, given
a navigation instruction “Find a {object}”, we extract the text feature zr of
the category text “{object}” using the CLIP text encoder. Then, we directly re-
trieve a goal embedding using the text embedding zr. For the Text-Goal setting
of the InstanceNav task, we leverage the NLTK [1] model to parse the intrinsic
attribute descriptions and extract bindings. The query text embedding is the av-
eraged combination of CLIP text features of intrinsic bindings z2* and extrinsic

attribute descriptions z&®, for instance, zr = (2% + z$%) /2.
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G.1 Qualitative Analysis

Qualitative examples for PSL agent. In

Fig. VIII we present qualitative examples of our PSL agent navigating to two
different object instances given detailed language instruction (e.g., , “Find the
plant made of the black pot and grayish-white branches, around with a trans-
parent glass dining table and four white chairs.”). The agent navigates across
rooms, determining relative object instances according to the instruction, and
finally stops near the object. We find that given detailed language instruction,
the agent is able to differentiate between objects of the same category. For in-
stance, in the first case, the agent bypasses a plant with “a white bottle and pink
flower” which differs from the intrinsic attribute description. After a left turn
near the first plant, the agent arrives at its destination and faces the correct
plant instance with “black pot and grayish-white branches”. In another case, the
agent hovers for a while in the intersection of bedroom and dining room to find
the “white chair” and last the episode at “several white chairs with a glass dining
table” that mentioned in the extrinsic attributes.
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Intrinsic Attributes: Intrinsic Attributes:
The plant which is made of black pot and grayish-white branches. A white chair.

Extrinsic Attributes: Extrinsic Attributes:
There is a gray wall in the picture, and on the left side of the In the picture, there is a transparent glass dining table
plant, there is a dark brown wooden cabinet. and four white chairs.

Fig. VIII: Qualitative examples for our PSL agent navigating to an object
instance according to intrinsic and extrinsic object attributes in the InstanceNav
dataset. For each trial, the agent is initialized at a random position in the room
and given language instruction “Find the ...”.
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H More Qualitative Results

In this section, we provide more qualitative results on the InstanceNav task.

. Start Position A Agent Position

Intrinsic Attributes: Intrinsic Attributes:
The toilet in this image is white, and its seat appears to be yellowing. The bed in this image is white.

Extrinsic Attributes: Extrinsic Attributes:
In this image, there is a white toilet with a peeling lid and There are many paintings hanging on the wall around
appears to be in a poor condition. the bed.

. Start Position A Agent Position

Intrinsic Attributes: Intrinsic Attributes:

The chair in this image is made of wood and has a brown color. The chair is made of black wood and white leather.
Extrinsic Attributes: Extrinsic Attributes:

There are several chairs in the image, and one of them has a The picture shows a rectangular black wooden dining,

broken arm. table with white leather chairs.

Fig.IX: Addition qualitative results on the InstanceNav task.
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