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Abstract. We study zero-shot instance navigation, in which the agent
navigates to a specific object without using object annotations for train-
ing. Previous object navigation approaches apply the image-goal navi-
gation (ImageNav) task (go to the location of an image) for pretraining,
and transfer the agent to achieve object goals using a vision-language
model. However, these approaches lead to issues of semantic neglect,
where the model fails to learn meaningful semantic alignments. In this
paper, we propose a Prioritized Semantic Learning (PSL) method to
improve the semantic understanding ability of navigation agents. Specif-
ically, a semantic-enhanced PSL agent is proposed and a prioritized se-
mantic training strategy is introduced to select goal images that exhibit
clear semantic supervision and relax the reward function from strict ex-
act view matching. At inference time, a semantic expansion inference
scheme is designed to preserve the same granularity level of the goal-
semantic as training. Furthermore, for the popular HM3D environment,
we present an Instance Navigation (InstanceNav) task that requires go-
ing to a specific object instance with detailed descriptions, as opposed to
the Object Navigation (ObjectNav) task where the goal is defined merely
by the object category. Our PSL agent outperforms the previous state-
of-the-art by 66% on zero-shot ObjectNav in terms of success rate and
is also superior on the new InstanceNav task. Code will be released at
https://github.com/XinyuSun/PSL-InstanceNav.

Keywords: Zero-Shot Instance Navigation · Zero-Shot Object Naviga-
tion · Image Goal Navigation · Prioritized Semantic Learning

1 Introduction

Visual navigation is a fundamental skill for embodied agents to travel efficiently
in complex 3D environments [66]. Among different kinds of visual navigation
tasks, Zero-shot Object Navigation (ZSON) is a promising task and paves the

∗ Equal contribution.
† Corresponding author.

https://orcid.org/0000-0003-2219-5569
https://github.com/XinyuSun/PSL-InstanceNav


2 X. Sun et al.

CLIP!

Policy Network

𝐈&/𝐓&𝐈'

SD Agent ZSON Agent

Policy Network

𝐈&/𝐓&

PSL Agent (Ours)

Semantic Perception✅

❌Navigation Capacity

Semantic Perception ✅

✅Navigation Capacity

𝐈'

RN50 CLIP!RN50 RN50

Policy Network

Canny(𝐈&)Canny(𝐈')

SN Agent 

Semantic Perception❌

✅Navigation Capacity

RN50

Policy Network

𝐈&/𝐓&𝐈'

Semantic Perception❌

✅Navigation Capacity

Sofa Sofa Sofa

CLIP CLIP CLIP

0 10 20 30
Training Steps (M)

0

2

4

6

8

10

Su
cc

es
s R

at
e 

(%
)

(a) Training Success Rate on ImageNav

SN Agent
SD Agent
ZSON Agent
PSL Agent (Ours)

ObjectNav InstanceNav
Datasets

0

10

20

30

40
Su

cc
es

s R
at

e 
(%

)

(b) Evaluation on Downstream Tasks
SD Agent
ZSON Agent
PSL Agent (Ours)

0.70 0.75 0.80 0.85 0.90
Similarity btw. Last Obs. and Goal

0

1

2

3

4

5

Fr
eq

ue
nc

y 
(%

)

(c) Semantic Analysis on InstanceNav
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Fig. 1: Pilot studies on four navigation agents: Semantic-Non-dominant (SN) agent,
Semantic-Dominant (SD) agent, ZSON [38] agent, and our PSL agent. (a) The agent
trained on ImageNav task does not necessarily need to learn the semantic information
to obtain a high success rate. (b)-(c) Our PSL agent achieves both strong semantic
perception and navigation capacity.4

way for developing a general embodied agent [2,12,13,25,28,48,50,55,61], since
it requires zero scene object annotations for training. However, the criteria of the
current ZSON task is to evaluate whether the agent can go to the object that
matches solely the given category, which remains a considerable gap from real-
life applications that require the identification of a specific object. Therefore, we
propose to extend ZSON to Zero-shot Instance Navigation (ZSIN) task in the
HM3D environment [43, 59], which requires the agent to go to a unique object
instance given detailed text descriptions. Both the ZSON and ZSIN tasks are very
challenging due to the zero-shot constraint, in which the category information
of goal objects is not feasible during training.

To achieve zero-shot visual navigation, pioneering works [1, 38] turn to pre-
trained vision-language models such as CLIP [42] for its zero-shot capability and
propose to train the agent on Image-goal Navigation (ImageNav) pretext task
that requires the agent to go to a randomly sampled goal image [66]. To be
specific, using the CLIP vision encoder to obtain a semantic goal from the goal
image for training, the ZSON agent [38] can be transferred to ObjectNav by
switching the semantic goal into the CLIP text embedding. Although the ZSON
agent demonstrates solid navigation capabilities, we argue that it lacks strong
semantic perception abilities.

4 The SN agent does not support InstanceNav task as it lacks a semantic goal encoder.
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To investigate how the agent architecture affects its semantic perception abil-
ity and navigation capacity, we conduct pilot studies on four different agent archi-
tectures and the results are presented in Fig. 1. We intriguingly find a Semantic-
Non-dominant (SN) agent, with Canny operator5 and learnable ResNet50 [16]
encoders to obtain observation and goal embeddings, is able to achieve a com-
petitive success rate on the ImageNav task as the ZSON agent (see Fig. 1 (a)).
In contrast, the Semantic-Dominant (SD) agent with two fixed CLIP vision
encoders gets the worst results. Therefore, we conclude that the ImageNav pre-
training task does not necessarily require the agent to perceive semantic informa-
tion. In this sense, the ZSON agent with only a learnable observation encoder
may possess inferior semantic perception ability, limiting the performance on
navigation tasks that heavily rely on finding semantic clues. Therefore, how to
effectively improve the semantic perception ability of the navigation agent in the
zero-shot setting remains an important but unresolved issue.

In this paper, we propose a Prioritized Semantic Learning (PSL) method
to improve the semantic perception and understanding ability of the naviga-
tion agent. Our PSL approach is comprised of three parts: a PSL agent ar-
chitecture, a prioritized semantic training strategy, and a semantic expansion
inference scheme. First, we equip the agent with an additional CLIP vision
encoder to encodes the semantics in the observation. Subsequently, a Semantic
Perception Module (SPM) is proposed to comprehend the semantic differences
between the observation and goal images. Second, we take advantage of the
entropy-minimization technique to select goal images with clear semantic su-
pervision. Moreover, we relax the reward function to focus more on semantic
correspondence rather than strict geometric matching Third, considering that
the proposed SPM learns to comprehend the semantic differences of image em-
beddings during training, we develop a semantic expansion inference scheme that
retrieves image embeddings using text queries. The retrieved image embeddings
expand the text embeddings with rich visual priors, facilitating more precise in-
dications. Without bells and whistles, the proposed PSL method achieves state-
of-the-art performance on both widely-evaluated ObjectNav and our extended
InstanceNav benchmarks. For example, in the ObjectNav task, PSL outper-
forms the ZSON baseline [38] and the ESC method [64] that uses large-language
models by 16.9% and 3.2% success rate, respectively. Furthermore, we verify
the proposed PSL agent has a stronger semantic perception ability by visualiz-
ing the semantic similarities between the agent’s last observation and the goal
images in Fig. 1 (c). Our main contributions are summarized as follows:

– We investigate the semantic perception ability of different navigation agent
architectures and reveal that the commonly-used ImageNav pre-training task
does not necessarily require the agent to learn semantic information.

– We propose a prioritized semantic learning method that includes a strong
agent architecture, a novel training strategy and an effective inference scheme
to improve the agents’ semantic perception ability in zero-shot object/instance
navigation tasks.

5 We consider that the Canny operator has undermined the semantics in the image.
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– Extensive experiments and sufficient ablation studies on both ObjectNav
and InstanceNav benchmarks demonstrate the superior performance of the
proposed PSL method over the state-of-the-art.

2 Related Work

2.1 Visual Navigation

Visual navigation is a fundamental and crucial task for robots to perform various
embodied tasks [4, 26, 27, 47, 53]. In visual navigation tasks, the agent receives
a geometry [45, 54] or semantic [5, 66] goal and an RGB observation from the
camera attached to the agent, and then makes efforts to navigate to this goal
according to the observation in each time step. These tasks can be divided into
different categories, including point-goal navigation [45, 54], object-goal naviga-
tion [6,38,44,57,58,64], image-goal navigation [1,10,15,18,24,40,56–58,66], and
vision-language navigation [3,8,20,22,23], etc. Taking image-goal navigation [56]
as an example, the agent needs to explore the environment, locate the target ob-
ject specified by the image, and navigate to its proximity. A common trail for
these visual navigation tasks is to train the agent in the simulator [45, 49] with
photo-realistic environments [7,43,59] and physical engine, and provide the agent
with the goal indication as well as its corresponding trajectory annotation. Since
labeling objects in the 3D scenes is labor expensive, recent works [1,6,38,64] have
explored how to design an object-goal navigation agent without human annota-
tions. These methods are easy to scale up [38] and show potential to solve the
open set challenge [37] in locating objects. In this work, we focus on a more
challenging task of visual navigation, zero-shot instance navigation, in which the
agent is required to navigate to an object specified by detailed descriptions, for
example, an instance image [21] or text.

2.2 Vision-Language Model

Vision-language models (VLM) provide mutual understanding for both vision
and language modalities [51] and thereby naturally serve as a fundamental
bedrock for vision navigation. To build a visual navigation agent, two lines
of work are widely employed, namely, representation-based and module-based
methods. Representation-based methods [17, 30, 42] aim to co-embed the im-
age and text into a common semantic space. CLIP [42] and ALIGN [17] apply
contrastive loss to train the image and text encoders on large-scale pair-wise
image text datasets. ALBEF [30] further proposes to leverage a momentum dis-
tillation mechanism that alleviates the weak correlation between noisy image
text pairs to improve multimodal semantic learning. As for the module-based
methods [14, 29, 31, 34, 35, 63], they aim to learn a strong multimodal reasoner
to simultaneously comprehend vision-language modalities and produce text re-
sponses, which are commonly used as the navigation controller [6, 64]. Early
works such as VisualBERT [31] apply mask language loss on both image patches



Prioritized Semantic Learning for Zero-shot Instance Navigation 5

and word embeddings to pre-train a multimodal reasoning model. To incorporate
the strong reasoning ability of large language models, recent works like BLIP-
2 [29], LLaMA-Adapter [14, 63] and LLaVA [34, 35] perform visual instruction
tuning on pretrained large language models. However, using these module-based
vision language models is compute-intensive, making them unsuitable for real-
life robotic scenarios that require nearly real-time response. In this paper, we
construct the navigation agent using the representation-based VLM and aim to
improve the semantic perception ability of the agent.

3 Motivation of Prioritized Semantic Learning

ImageNav is an important pre-training task to achieve Zero-Shot Instance Navi-
gation (ZSIN) as it provides supervision signals to navigate in 3D environments
with visual observation and a semantic indication [38]. However, we argue that
the ImageNav task can be solved without semantic clues, resulting in a sub-
optimal pre-training objective. To verify this, we conduct a preliminary exper-
iment on the HM3D ImageNav dataset that is used to train a zero-shot object
navigation agent in previous literature [38]. We set up four different agents,
namely the Layout-Only (LO) agent, Semantic-Only (SO) agent, ZSON agent,
and our PSL agent. Among them, the Semantic-Only agent is equipped with
two frozen CLIP ResNet-50 encoders to obtain semantic-level observations and
goals. The Layout-Only agent is adopted with two trainable ResNet-50 encoders
and we remove the semantic information in both observation and goal images
by using a Sobel operator to calculate gradient images, which leave only layout
information like contours and edges (see Fig. 1 for more details). Results in Fig. 1
(a) show that the agent does not necessarily need to learn semantic information
to arrive at an image goal, merely relying on the layout information to perform
view matching can obtain a high success rate.

4 Prioritized Semantic Learning

4.1 Preliminaries

We follow ZSON [38] to adopt image-goal navigation pre-training and perform
the zero-shot evaluation on downstream tasks. During pre-training, the image-
goal navigation (ImageNav) objective provides supervision signals to update the
agent. Specifically, for each episode with a randomly sampled start point and
goal point, the agent is asked to navigate to the goal destination according to
a goal image. Empowered by the cross-modal alignment ability of Vision-and-
Language models (i.e., CLIP [42]), we can evaluate the trained agent on the
object-goal navigation (ObjectNav) dataset by replacing the image embeddings
with text embeddings.
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Fig. 2: Overview of our PSL. 1) During ImageNav pre-training, we provide clear
semantic supervision signals with the Prioritized Semantic Training strategy. 2) Our
PSL agent exploits the Semantic Perception Module (SPM) to achieve both strong
semantic understanding and navigation capacity. 3) During inference, a Semantic Ex-
pansion Inference scheme is incorporated to ensure the same semantic granularity of
the goal-embedding between training and testing.

4.2 Prioritized Semantic Learning Agent Architecture

We propose a Prioritized Semantic Learning (PSL) agent that emphasizes the
reasoning of the semantics differences in the goal and observation. The key com-
ponents of PSL agent include observation and goal encoders, a semantic percep-
tion module module and a recurrent policy network.

Observation and Goal Encoders. Following the ZSON baseline, given the
observation image IO and the goal image IG, we apply a learnable ResNet50
encoder and a fixed CLIP encoder to obtain the observation embedding zO and
the goal embedding zG, respectively. Since with only a trainable ResNet50 as the
observation encoder may not effectively learn the semantic information, we addi-
tionally leverage a frozen CLIP encoder to extract semantic-level observation zS.
Note that the ResNet50 are initialized from the one pre-trained by OVRL [58].

Semantic Perception Module. We then introduce the semantic perception
module, an MLP layer that encodes the semantic correspondence between zG and
zS into a low-dimension feature. Specifically, it takes both zG ∈ RC1 and zS ∈
RC1 as input and produce semantic perception embedding zSP ∈ RC2 , where
C2 < 2 × C1. The semantic perception module reduces the feature dimension,
serving as a bottleneck to condense the critical semantic correspondence in both
the goal image and observation image.
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our training strategy. The goal view image set is expanded with additional yaw and tilt
views using perspective relaxation. Top-10 views with minimum entropy are circled in
red with their ranking.

Policy Network. Based on the semantic perception embedding zSP and the
observation embedding zO, we train a navigation policy πθ using reinforcement
learning (RL):

st,ht = πθ(zSP ⊕ zO ⊕ at−1|ht−1) (1)

where st is the embedding of the agent’s current state, which is then used to pre-
dict an action distribution among six action categories, including MOVE_FORWARD,
TURN_LEFT, TURN_RIGHT, STOP, LOOK_UP and LOOK_DOWN. ht−1 denotes hidden
state of the recurrent layers in policy πθ from the previous step. Following pre-
vious methods [1,38], we adopt an actor-critic network to predict state value ct
and action at using st and train it end-to-end using PPO [46]. More details can
be found in the Appendix.

4.3 Prioritized Semantic Training Strategy

Previous literature [19,21] has pointed out that a large portion of image goals in
the ImageNav task lead to ambiguity (e.g. looking at walls). We provide statistical
analysis on the distribution of ImageNav goal images to support this speculation
(see Fig. II in Appendix). In particular, We select 6 object categories that widely
exist in HM3D scenes, as well as two additional categories “wall” and “room” to
represent images with ambiguous semantic content. Then we use CLIP to per-
form zero-shot classification on all goal images by selecting the category with
maximum image-text similarity. As presented in previous literature, in the orig-
inal HM3D ImageNav dataset, most of the goal images cannot be categorized as
common object categories; instead, they are classified as meaningless indications
(i.e., “wall” and “room”). We believe that the unreasonable distribution of goal
images aggravates the semantic neglect issue.

Entropy-minimized Goal View Selection. To alleviate the semantic neglect
issue, we propose an entropy-based goal view selection method to ensure a dom-
inant object exists in the goal images. Specifically, we randomly select a base
orientation at the goal point and rotate the agent for Ω times uniformly to render
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images in different view angles. Then we obtain image embeddings {vω | ω ∈ Ω}
using CLIP [42] vision encoder and calculate the similarity between image em-
beddings with all text embeddings of the candidate object categories. We follow
the standard setting of Object-Goal navigation approaches [57, 58, 64] to use 6
common objects C in the 3D simulator and compute query vectors {qc | c ∈ C}
using CLIP text embedding. The objective is to select a goal view ω∗ that min-
imizes the entropy of probability distribution among all object categories:

ω∗ = argmin
ω∈Ω

− 1

log(|C|)
∑
c∈C

pclogpc, (2)

where pc = softmax (g(vw,qc)) is the class probability w.r.t. cth object category,
g(a,b) = τ · aTb

∥a∥2∥b∥2
is the scaled cosine similarity function and τ is the tem-

perature. As shown in Fig. II in the Appendix, the goal images with ambiguous
semantics are significantly reduced. Additionally, image distribution among all
object categories becomes more balanced.

Perspective Reward Relaxation. Choosing goal views with rich semantic
content enables the agent to focus on meaningful regions in the goal images.
However, the ImageNav reward [1, 38] still motivates the agent to strive for an
exact match between the goal image and the observation image. We tackle this
challenge by introducing a perspective reward relaxation technique that cancels
exact matching. Specifically, we augment the goal view selection process by ren-
dering additional circles of images around the agent at different pitch angles.
As illustrated in Fig. 3, we then perform goal view selection among all rendered
views that vary in pitch and yaw angles. Furthermore, we rewrite the reward
function of PPO training by relaxing the perspective matching requirement:

RPSL
t = γsuc ∗ 1{dt < ϵd}︸ ︷︷ ︸

reach the goal location or not

+ γsuc ∗ 1{dt < ϵd} ∗ 1{(extractY(at) < ϵa}︸ ︷︷ ︸
match the goal view or not

+ rd(dt, dt−1) + 1{dt < ϵd} ∗ extractY(ra(at,at−1))︸ ︷︷ ︸
closer to the goal or not

−γdelay,

(3)

which is comprised of four parts. First, a success reward γsuc = 5 is given when
distance to goal metric dt is smaller then threshold ϵd. Second, an angle success
reward is given when the agent reaches the goal location and faces the goal
orientation, where extractY(at) means the component of quaternion at rotating
around the Y axis. We only encourage the agent to head to the target in the
x-z plane while ignoring its pitch heading. Third, a dense reward compose of
reduced distance rd and angle ra to the target at time step t. Last, a delay
penalty γdelay is to encourage efficiency.
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4.4 Semantic Expansion Inference Scheme

In the inference stage, the agent receives a series of text descriptions of the tar-
get object. Existing methods directly replace the image-goal embedding with
the text-goal embedding of the input text description to perform zero-shot eval-
uation. However, the granularity gap [33] between image and text embeddings
could considerably impair the evaluation performance [32]. Since it is non-trivial
to obtain text annotations for all goal images (28.8M) during training, we opt
to enrich the text goal with fine-grained visual features to reduce the gap be-
tween image-goal pre-training and text-goal evaluation. We name this method
semantic expansion inference.

During training, we maintain a support set V = {v ∈ Rd | vi ̸= vj , g(vi,vj) <
λ} without using any category information. As we expect the selected embed-
dings to be as dissimilar as possible from the ones already in the set, we set a
threshold λ = 0.8 to filter representative image embeddings, resulting in around
0.1M vectors. These embeddings approximate the distribution of goal images,
and they encode rich information from a variety of object instances, regarding
their detailed attributes (e.g., color, shape, texture, and material). During in-
ference, given a language description of the target object, we leverage the CLIP
text encoder to produce a feature zT. Then we query a goal embedding using
the retrieval operation:

zR =
∑
vi∈V

exp(g(zT,vi))∑
vj∈V exp(g(zT,vj))

∗ vi. (4)

We perform a weighted sum based on the similarity score to avoid inferior per-
formance produced by the nearest neighbor querying [32].

5 Experiments

In this section, we first compare the proposed PSL agent with previous zero-shot
methods in the ObjectNav task that target finding arbitrary object instances of
the same category, and then investigate how it performs when instructed to
navigate to a specific object in the InstanceNav task. We also conduct exten-
sive ablation experiments to study the effectiveness of different modules in our
method empirically.

5.1 Experimental Setup

Datasets. During pre-training, we utilize the 7,200,000 episodes generated by
ZSON [38] from HM3D [59]. We randomly select 4 goal images for each episode
from 10 candidates with minimal entropy in Eqn. 2. For ObjectNav evaluation,
we adopt the habitat2022 challenge dataset with 2000 episodes and 6 object
categories. For InstanceNav, we first evaluate the agent on IIN dataset [21],
an image-goal track with 795 unique instances in 1000 test episodes, and then
extend it to the text-goal setting. The agent is tested on 20 scenes excluded from
the 800 training scenes.
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Agent Configuration. We follow the configuration in [38] with an agent height
of 0.88m, radius of 0.18m, and a single 640 × 480 RGB sensor with a 79◦ hor-
izontal field-of-view (HFOV) placed 0.88m from the ground. For InstanceNav,
in the image-goal setting, the agent receives a goal image captured in a random
camera configuration that does not match the agent’s own. In the text-goal set-
ting, the agent receives text description of both intrinsic and extrinsic attributes
(e.g., “Find a double bed and its material is a beige bamboo frame. There are
only two objects around the bed: a table and a window."). For ObjectNav, the
agent receives the category text as instruction like “Find a bed ”.

Evaluation Metrics. We evaluate the agent’s performance by two metrics:
Success Rate (SR) and Success Rate Weighted by Path Length (SPL). An episode
is marked as a success if the agent navigates to the goal object and executes the
STOP action within 0.1m to any viewpoints of the goal object. The SR metric is
the average number of success indicators among all episodes. The SPL metric is
defined as 1

N

∑N
i=1 SRi

l∗i
max(li,l∗i )

, where li denotes to the agent’s path length and
l∗i denotes to the ground-truth path length. We report the average number over
three runs with different random seeds.

5.2 Experiments on the ObjectNav Task

In Table 1, we report the zero-shot evaluation results on the HM3D ObjectNav
task. Our PSL agent outperforms the ZSON baseline [38] by 16.9% in SR (42.4%
vs. 25.5%), thanks to our training strategy and inference scheme design. More
importantly, our method exceeds the LLM-based methods in the first time. Com-
pared to the PixelNav method [6] that learns to navigate to a point deduced by
a powerful multi-modal LLM [41], our PSL agent achieves +4.5% improvement
in SR. Furthermore, taking into account mapping-based methods that perform
LLM-guided frontier-based exploration [60], we see +6.0% improvements against
L3MVN [62] and +3.2% against ESC [64]. Our method shows great potential to
be applied in the real environment as it does not require accurate GPS coordi-
nates to build a map. Besides, our LLM-free architecture is more efficient.

Table 1: Comparison with state-of-the-art methods on the ObjectNav task. Our PSL
surpasses both LLM-based and Mapping-based methods in terms of Success Rate (SR).

Method with Mapping with LLM LLM Extra Sensors SR SPL

L3MVN [62] ✔ ✔ GPT-2 Depth, GPS 35.2 16.5
PixelNav [6] ✘ ✔ GPT-4 - 37.9 20.5
ESC [64] ✔ ✔ GPT-3.5 Depth, GPS 39.2 22.3

CoW [11] ✔ ✘ - Depth, GPS 6.1 3.9
ProcTHOR [9] ✔ ✘ - Depth, GPS 13.2 7.7
ZSON [38] ✘ ✘ - - 25.5 12.6
PSL (Ours) ✘ ✘ - - 42.4 19.2
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Fig. 4: Comparison of the InstanceNav task with the ObjectNav task. The ObjectNav
task allows the agent to navigate to any chair in the scene, while the InstanceNav task
has only one target object specified by detailed attribute descriptions.

5.3 Experiments on the InstanceNav Task

The ObjectNav task assigns multiple available destinations for each episode. It
is not sure whether the agent can distinguish object instances. In comparison, we
extend the zero-shot object navigation task to the zero-shot instance navigation
in the widely-used HM3D environment, as illustrated in Fig. 4. In this task, the
agent receives a textual description of the targeted instance or an instance image
as the goal. It needs to understand the detailed attributes of an object instance
and navigate to an exact location.

Dataset Preparation. Previous works on the instance-level object navigation
task focus on discrete graph-based environments [65] and are limited by compli-
cated human annotation process [11]. In this work, instead, we utilize the recent
success of the Generative Vision-and-Language Models (GVLMs) [36, 41, 52] to
automatically build the open-vocabulary text-goal setting for the InstanceNav
task on the popular HM3D environment. Specifically, we randomly select a goal
view for each validation episode to render an image of the goal object in the
Instance Image Navigation (IIN) dataset [21]. Each episode in the IIN dataset
corresponds to a unique goal object instance. To specify each object instance,
we follow a previous attempt [39] to separate text descriptions into two as-
pects: Intrinsic Attributes and Extrinsic Attributes. Intrinsic attributes cover
inherent characteristics of the object, such as shape, color, and material. Extrin-
sic attributes describe the environment surrounding the object, which is used
to determine instances with similar intrinsic attributes. We instruct a GVLM
model (i.e., CogVLM [52]) to generate both types of attributes according to the
instance image with a hand-crafted prompt (See Sec. A in the Appendix for
details). The original ground truth trajectories are preserved to construct the
additional InstanceNav test set. In total, the test set of the text-goal setting
comprises 1,000 episodes featuring 795 unique objects across 36 scenes.
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Results under the Text-goal Setting. To demonstrate our PSL agent’s abil-
ity to understand complicated text descriptions and navigate to specified in-
stances, we compare it with state-of-the-art zero-shot object-goal navigation
methods under the text-goal setting of the InstanceNav task. In Table 2, we find
that most of the existing zero-shot object navigation methods struggle in this
task, including both map-based methods CoW [11] (1.8% in SR) and LLM-based
method ESC [64] (6.5%). All these methods perform inferior to the methods
that receive semantic goals (i.e., ours and ZSON), indicating the effectiveness of
end-to-end approaches that are pre-trained on large-scale unlabeled data in this
task. Similar to our approach, we also transfer a well-trained ImageNav method
(OVRL [58]) to perform the text-goal evaluation using our semantic expansion
inference scheme. We find that though good at the ImageNav task, the OVRL
model performs poorly when given retrieved image goals, indicating that the
learnable goal encoder and observation encoder failed to encode semantic-level
information for the InstanceNav task. In comparison, our PSL further brings a
significant improvement over the ZSON baseline (+5.9% in SR).

Table 2: Comparison with state-of-the-art methods in the text-goal track of the
InstanceNav task. We report the baseline results based on the released code and mod-
els. †We perform evaluation with our proposed semantic expansion inference scheme.

Method Backbone with LLM with Mapping Extra Sensors SR SPL

CoW [11] ViT-Base ✘ ✔ Depth, GPS 1.8 1.1
GoW [64] ViT-Base ✘ ✔ Depth, GPS 7.2 4.2
ESC [64] ViT-Base ✔ ✔ Depth, GPS 6.5 3.7
OVRL† [58] ResNet-50 ✘ ✘ - 3.7 1.8
ZSON [38] ResNet-50 ✘ ✘ - 10.6 4.9
PSL (Ours) ResNet-50 ✘ ✘ - 16.5 7.5

Results under the Image-goal Setting. We then compare our PSL agent
with other methods under the original Image-goal setting [21]. The agent is
tasked to navigate to an object instance specified by an image. This task is
different from the ImageNav task since the goal images are shot from perspectives
with different camera configurations, including different pitch angles and HFOV.
Existing state-of-the-art methods for this task heavily rely on supervision signals
from scene object annotations and labeled viewpoints. For a fair comparison, we
mainly focus on the performance of zero-shot approaches. Results in Table 3 show
that our method brings significant improvements on state-of-the-art image-goal
navigation methods (+13.1% compared to FGPrompt [56] and +8.4% compared
to ZSON [38]). Meanwhile, we significantly reduce the gap with the supervised
methods like OVRL-V2 in terms of SPL (11.4% vs. 11.8%), even though we use
a much smaller vision backbone (ResNet-50 vs. ViT-Base).
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Table 3: Comparison with state-of-the-art methods in the image-goal track of the
InstanceNav task. In this track, the “Supervised” mark means human labels on the
objects are used. †We re-implement OVRL based on released pre-trained weight.

Method Backbone Supervised Pre-training Data SR SPL

RL Agent [21] ResNet-18 ✔ - 8.3 3.5
OVRL-V2 [57] ViT-Base ✔ Gibson 24.8 11.8

OVRL-V2 [57] ViT-Base ✘ Gibson 0.6 0.2
OVRL† [58] ResNet-50 ✘ HM3D 8.0 4.2
FGPrompt [56] ResNet-9 ✘ HM3D 9.9 2.8
ZSON [38] ResNet-50 ✘ HM3D 14.6 7.3
PSL (Ours) ResNet-50 ✘ HM3D 23.0 11.4

5.4 Ablation Study

Effectiveness of Prioritized Semantic Learning. We first conduct abla-
tion studies under the image-goal setting of the InstanceNav task. We start
from the ZSON [38] baseline, with a fixed CLIP goal encoder and a learnable
ResNet-50 observation encoder. Then we apply the entropy-minimized goal view
selection algorithm to select meaningful goal images during pre-training data pre-
processing. In Table 4, this modification brings +2.1% improvement in success
rate. We then add the perspective reward relaxation technique, which enhances
goal orientation with an alternative pitch angle. This approach aims to prevent
the agent from being immersed in exactly matching the goal view and observa-
tions, neglecting the semantic correlation between them. However, we discovered
that with the vanilla model design, the augmented image goal confuses the agent
and decreases the navigation success rate (from 12.7% to 10.8%). We argue that
this phenomenon is due to the inferior agent design that neglects to reason se-
mantic differences in the goal images and observation images. Incorporating with
the PSL agent alleviates this issue. We found that it boosts the navigation suc-
cess rate by +3.8% with the goal view selection approach, but more impressively,
it cooperates well with the perspective relaxation mechanism and contributes a
lot to the improvement (+9.3% in SR and +4.2% in SPL).

Ablation on Semantic Expansion Inference. To alleviate the granularity
inconsistency issue of text and image embeddings during testing, we propose a
semantic expansion inference scheme for our PSL agent. We perform elaborate
ablation studies under the text-goal setting to investigate its effectiveness. We
compare two different implementations of support set in the semantic expansion
inference scheme, including collecting goal images from the image-goal navigation
dataset, which refers to the ImageNav support set; and from the instance image
navigation dataset, namely the IIN support set. In Table 5, we start with ablating
the detailed configurations of the retrieval module and have two main findings:
1) using the support set images from the limited categories of objects as the
dataset defined yields inferior results (11.1% in SR). Instead, the diversity of
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Table 4: Ablation studies of different components in our Prioritized Semantic Learning
(PSL) agent and Prioritized Semantic Training (PST) strategy under the Image-Goal
setting of the InstanceNav task. The default entry is marked in gray . “SPM”: Semantic
Perception Module; “GVS”: Goal View Selection; “PRR”: Perspective Reward Selection.

PSL PST ZSIN-image ZSIN-text ZSON

SPM GVS PRR SR SPL SR SPL SR SPL

ZSON ✘ ✘ ✘ 12.7 6.5 10.6 6.5 25.5 12.6

PSL
(Ours)

✔ ✘ ✘ 19.5 7.9 13.0 5.6 33.7 15.8
✘ ✔ ✘ 14.8 7.7 11.8 6.1 30.4 14.7
✔ ✔ ✘ 16.5 6.5 12.3 5.7 35.0 18.1
✔ ✔ ✔ 22.0 10.7 16.5 7.5 42.4 19.2

the ImageNav support set brings +1.3% improvements. 2) directly replacing
the image features with text queries performs poorly (6.6% in SR) due to the
modality gap [33]. Retrieving image features to augment the text queries yields
better goal embeddings that share the same level of semantic granularity as
training, thus significantly improving the navigation success rate by +9.9%.

Table 5: Ablation studies of the Semantic Expansion Inference (SEI) scheme under
the Text-Goal setting of the InstanceNav task.

PSL Agent SEI Scheme Support Set #Supp. Vec. SR SPL

✘ ✔ IIN 3.5K 11.1 5.4
✘ ✔ ImageNav 0.1M 12.4 6.6
✔ ✘ ImageNav 0.1M 6.6 2.7
✔ ✔ ImageNav 0.1M 16.5 7.5

6 Conclusion

We present PSL, a zero-shot approach for instance navigation. PSL is built upon
the open-vocabulary and cross-modal ability of CLIP, and targets addressing the
limited semantic perceiving ability of existing methods. Our method is composed
of three different parts, including a PSL agent with a semantic perception mod-
ule module to reason the semantic differences between the observation and goal,
a prioritized semantic training strategy with clear semantic supervision to train
the PSL agent, and a semantic expansion inference scheme to maintain the gran-
ularity of the goal-semantic. We investigate how this agent acts when instructed
to navigate to a specific object by extending the zero-shot object navigation
task to a zero-shot instance navigation task. We find that most existing meth-
ods struggle in this task, while our PSL agent outperforms other approaches.
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