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Abstract. Topology reasoning aims to provide a precise understanding
of road scenes, enabling autonomous systems to identify safe and efficient
routes. In this paper, we present RoadPainter, an innovative approach
for detecting and reasoning the topology of lane centerlines using multi-
view images. The core concept behind RoadPainter is to extract a set
of points from each centerline mask to improve the accuracy of center-
line prediction. We start by implementing a transformer decoder that
integrates a hybrid attention mechanism and a real-virtual separation
strategy to predict coarse lane centerlines and establish topological as-
sociations. Then, we generate centerline instance masks guided by the
centerline points from the transformer decoder. Moreover, we derive an
additional set of points from each mask and combine them with previ-
ously detected centerline points for further refinement. Additionally, we
introduce an optional module that incorporates a Standard Definition
(SD) map to further optimize centerline detection and enhance topolog-
ical reasoning performance. Experimental evaluations on the OpenLane-
V2 dataset demonstrate the state-of-the-art performance of RoadPainter.
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1 Introduction

In recent years, the field of topology reasoning in autonomous driving or ad-
vanced assisted driving has gained increasing attention. The primary objective of
this research area is to extract lane centerlines and their topological relationships
from onboard sensor data. This extraction process plays a crucial role in pro-
viding accurate and comprehensive online routing information, benefiting down-
stream tasks such as trajectory prediction [24,28,30,38] and planning [9,10,27].
Traditional approaches to constructing lane centerlines often frame the task as
a map elements detection task. Some approaches [18, 26, 33, 35] detect lanelines
in image space and then use image-to-ground projection to convert points into
3D space for downstream use. Despite exhibiting remarkable accuracy in simple
scenes, these lane detection algorithms face limitations in complex scenarios due
to the planar assumption and pitch error in image-to-ground projection.
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Fig. 1: The illustration of our method. (a) Our model takes multi-view images as input.
(b) From the constructed BEV features, two types of lane centerlines are derived: points
and mask. (c) The initially detected points provide a rough localization, while the mask
points enhance geometric details by utilizing the corresponding fine-grained heatmap.

Recent advancements in the field [16, 19, 25] have showcased progress in ex-
tracting lanelines from multi-view images and representing them in the uni-
fied Bird’s Eye View (BEV) space. Approaches like VectorMapNet [19] and
MapTR [16] have succeeded in constructing online vectorized maps on BEV
space without the need for post-processing laneline reprojection. However, these
methods mainly focus on extracting distinct lane boundaries, without capturing
the representations of lane instances and their topological connections. STSU [1]
introduces a method that detects lane instances and predicts lane topological
relationships in the BEV space by describing each lane instance with a center-
line. Subsequently, similar methods such as [2, 15] were proposed. TopoNet [13]
further enhances this task by not only predicting centerlines but also traffic el-
ements. However, these methods predict centerline points via direct regression,
which may be insufficient in challenging scenarios like areas with high curvature.

To this end, we introduce a novel framework, RoadPainter, that initially
regresses a set of centerline points for each lane and then refines these points
using centerline instance masks. The word “Painter” is an acronym derived from
the phrase “Points Are Ideal Navigators for Topology transformER”. Regression
provides stable initial localization but tends to favor straight-line data, causing
methods like TopoNet to primarily learn straight centerlines. Segmentation offers
accurate geometric details, improving the overall geometric accuracy of the cen-
terlines. Hence, our aim is to amalgamate the advantages of both techniques to
optimize performance. As illustrated in Fig. 1, our method utilizes surrounding
images to construct BEV features, regresses centerline points and reasons topol-
ogy relationships with a transformer decoder, and generates centerline instance
masks guided by the regressed points. A points-mask fusion module further re-
fines the regressed centerline points with the aid of centerline instance masks.
Experimental results on the OpenLane-V2 dataset [32] demonstrate the supe-
rior performance of RoadPainter, outperforming the state-of-the-art TopoNet by
7.7% on the DETl metric. Furthermore, by leveraging the SD map, our proposed
method exhibits superior performance compared to the results reported in [22].

In summary, our main contributions are as follows:
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– Introduction of RoadPainter, a novel framework for centerline instance pre-
diction and topological reasoning with refinement from centerline masks,
ensuring the accurate preservation of geometric shapes of centerlines.

– Proposal of a novel module for generating centerline masks by incorporating
initial regressed points, followed by the refinement of regressed points using
masks in an end-to-end way, eliminating the necessity for post-processing.

– Demonstration of the effectiveness of our method through comprehensive
tests and detailed ablations, showcasing state-of-the-art performance in lane
detection and topology reasoning on the OpenLane-V2 dataset [32].

2 Related Work

2.1 Topology Reasoning

The first approach to understanding road structure through lane topology, as
described in the study by STSU [1], focused primarily on centerline detection.
The method establishes a three-stage paradigm consisting of BEV feature con-
struction, centerline detection, and connection. This paradigm has been widely
adopted in most topology reasoning papers. Subsequently, TPLR [2] enhanced
the performance by incorporating the concept of the minimum circle formed by
the directed centerline segment. The path-wise representation of the centerline,
as proposed in LaneGAP [15], effectively maintains the continuity and shape ac-
curacy of the centerline. In order to ensure compliance with traffic regulations at
intersections, TopoNet [13] employs Graph Neural Networks (GNN) to establish
meaningful connections between driving lanes and traffic signs. By incorporating
spatial position encoding, TopoMLP [36] improves the performance of lane re-
lation topology. To further enhance the centerline detection accuracy, the study
conducted by SMERF [22] investigates the utilization of SD map. Insights from
3D object detection, such as leveraging the relationship between objects and the
driving lane, can enhance the quality of lane centerline extraction, as effectively
demonstrated by the OLC method [3].

2.2 Online Map Construction

The field of online map construction is highly relevant to lane topological rea-
soning. Recent works aim to construct local High Definition (HD) map within
a predefined range from onboard sensors, incorporating map elements like lane
lines, pedestrian crossings, and curbs. HDMapNet [12] employs semantic learn-
ing on BEV features to extract map elements, which are then vectorized through
post-processing. Recent advancements in end-to-end learning are being used to
eliminate post-processing steps. VectorMapNet [19] utilizes a methodology that
identifies coarse boxes of map elements and then generates fine-grained geomet-
ric details. InstaGram [29] employs a unique approach that involves initially
identifying the geometric vertices of map elements, and then leveraging GNN to
learn the associations between these vertices. MapTR [16] and its improved ver-
sion [17] decouple the dependency between point association and positioning by
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assigning a fixed number of points to each map element. An alternative approach
called BeMapNet [25] utilizes a unified piecewise Bezier curve method that dy-
namically adjusts the number of points within a certain range. Pivotnet [6] intro-
duces dynamic matching, retaining only points with relevant geometric features
of the map element. ScalableMap [37] enhances long-range perceptual capability
by leveraging BEV features guided by the linear structure of map elements.

2.3 Lane Detection

We also include the subject of lane detection due to its similarities with the afore-
mentioned topics. The early learning-based approaches, including LaneNet [35],
UFAST [26], CondLaneNet [18], and GANet [33], extract lane lines from 2D im-
ages. LaneNet [35] formulates lane detection as an instance segmentation prob-
lem and employs two embedding branches. UFAST [26] adopts feature aggrega-
tion and constructs segmentation on a smaller feature map to enhance detection
speed. CondLaneNet [18] utilizes shape prior and predicts the line location for
each row in the image space, aiming to resolve the instance-level discrimina-
tion problem. GANet [33] reformulates the lane detection problem by directly
regressing each keypoint to the starting point of the lane line. To achieve more
precise lane line detection, researchers have also explored lane detection in 3D
space. 3D-LaneNet [7] introduces an architecture that generates 3D lane lines
using two pathways: the image-view pathway encodes features in 2D images,
while the top-view pathway offers translation-invariant features for 3D lane de-
tection. PersFormer [4] adopts a unified 2D and 3D lane detection framework
to simultaneously detect 2D and 3D lane lines. BEV-LaneDet [34] proposes the
use of a virtual camera to unify the intrinsic and extrinsic camera parameters,
thereby enhancing the performance.

3 Method

Our method takes surrounding images, along with an optional SD map, as inputs.
These inputs are initially combined to create BEV features. Subsequently, our
method identifies lane centerlines as geometric points on the BEV features and
determines their associations. To enhance performance in intricate topological
scenarios, we generate a mask for each centerline instance by leveraging the
guidance of centerline points. This enables precise localization and refinement of
the centerline instances. The overall architecture is illustrated in Figure 2.

3.1 SD Map Interaction

Applying BEV features extracted from online sensors have demonstrated poten-
tial for topology reasoning in computer vision tasks. Nevertheless, the presence
of challenges such as occlusion and limited sensing range can result in inaccu-
racies. To address these issues, we present a novel SD map interaction module
that effectively augments BEV features by incorporating beyond-visual-range
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Fig. 2: The architecture of RoadPainter consists of three main parts. In the BEV
perception stage, we convert sensor inputs and an optional SD Map into enhanced
BEV features. Next, we detect the lane centerlines by regressing centerline points and
identifying lane-related topological associations. Furthermore, we generate a mask for
each centerline guided by the regressed centerline points. Lastly, we sample the mask
and optimize them by incorporating the centerline points to improve the accuracy of
centerlines and the reliability of topology.

data and road shape priors extracted from the SD map. A piece of an SD map
consists of multiple instances denoted as s1, s2, . . . , sNS

, where NS represents the
total number of SD map instances. Each instance si is composed of a polyline
represented by spi ∈ RMi×3, consisting of Mi points, and a corresponding se-
mantic type denoted as sti ∈ 1, 2, . . . , NM . Here, NM denotes the total number
of semantic types available in the SD map. We begin by converting the vector-
ized SD map instances into the BEV features. Each grid cell is filled with the
corresponding semantic type embedding if it is occupied. Otherwise, a default
semantic type embedding is used. This is represented as ES ∈ RHW×C , where
HW is the grid dimensions and C is the number of embedding dimensions. The
augmented BEV feature map, denoted as B̂ ∈ RHW×C , is obtained using the
following equation:

B̂ = TrDec(B,ES +EP ), (1)

where B represents the BEV features obtained from online sensors, EP ∈ RHW×C

is a positional encoding map for the SD grid, generated using sine and cosine
functions of different frequencies [31]. The function TrDec refers to a transformer
decoder that incorporates multi-layer deformable self- and cross-attentions among
vanilla BEV feature map B and SD BEV feature map ES +EP .
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3.2 Centerline Instance Prediction

Centerline Detection. We begin by a BEV feature map, encoded with po-
sition embeddings, denoted as B ∈ RHW×C . When using the SD map, B is
replaced with B̂. Here, HW represents the size of the BEV space. We utilize
a transformer decoder to extract centerline instances. Specifically, we incorpo-
rate a hybrid attention layer that combines masked cross-attention, deformable
cross-attention, and self-attention. The masked cross-attention focuses on ag-
gregating the features on the mask generated in Section 3.3. The deformable
cross-attention aggregates the features of the learnable sampled points. Lastly,
the self-attention facilitates interactions among centerline instance queries. We
denote a collection of learnable centerline instance queries as Q ∈ RNL×C , where
NL is the number of predicted centerline instances. The masked cross-attention
is defined by:

MaskedCrossAttn(Q,B) = softmax(M+QBT)B, (2)

where M ∈ {0,−∞}NL×HW represents the attention masks of instance queries
Q over B. For more detailed information, please refer to the reference [5].

Note that the driving scene encompasses two distinct types of centerlines: real
and virtual. Real centerlines are situated in the middle of real lanes and possess
clearly visible lane boundaries, while virtual centerlines mainly occur in intersec-
tions and serve as connections between distant lanes. To address this difference,
we propose a real-virtual separation (RVS) strategy to independently process
the real and virtual centerlines. Firstly, we present two separate instance queries
for real and virtual centerline learning. This allows us to focus on capturing
the unique characteristics of each type. Secondly, we observe that the positions
of virtual centerlines are dependent on real centerlines, while the positions of
real centerlines have less reliance on virtual ones. To leverage this observation,
we introduce a customized real-virtual separation-based self-attention module.
The real and virtual centerline queries are represented as Qr ∈ RNR×C and
Qv ∈ RNV ×C , respectively. Here, NR and NV denote the number of real and
virtual queries, respectively, with the constraint that NR+NV = NL. We imple-
ment the real-virtual separation-based self-attention by the following equation:

RVSelfAttn = softmax

([QrQrT −∞
QvQrT QvQvT

]
√
C

)[
Qr

Qv

]
. (3)

After applying the hybrid attention and real-virtual separation of centerline
decoder, we feed the centerline queries into a detection head. The detection
head consists of two multilayer perceptrons (MLP). One MLP is responsible for
generating two sets of centerline instances, LR = {l1, l2, . . . , lNR

} and LV =
{lNR+1, . . . , lNL

}. The other MLP is used to generate the probabilities of cen-
terlines, S ∈ [0, 1]NL . Each centerline instance li ∈ RK×3 represents a polyline
in the BEV space composed of K fixed-order points. During the training, the
predicted real and virtual instances are separately handled through bipartite
matching and loss construction, which are described in detail in Section 3.4.
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Topological Association. To achieve accurate topological association, we de-
sign a topology head based on centerline instance queries and positional em-
beddings. This head utilizes a classifier to predict a topological matrix All ∈
[0, 1]NL×NL . We first enhance the centerline instance queries with positional em-
beddings. The i-th centerline instance query Qi is enhanced using the following
equation:

Ei = ψ1(Qi) + ψ2(li), (4)

where li ∈ L represents the i-th predicted centerline instance, ψ2 : RK×3 → RC

is an MLP layer that encodes positional information, and ψ1 represents another
MLP. Next, the enhanced queries E ∈ RNL×C are repeated along a new axis,
resulting in Λll ∈ RNL×NL×2C , and then fed into a binary classifier to obtain
the final topological matrix All.

3.3 Points-Mask Optimization

The centerline instance points obtained from Section 3.2 often lack sufficient
accuracy, especially in cases with high curvature, as shown by those blue dots
in Fig. 1. To address this issue, we propose a points-mask optimization module
for the refinement of centerline instance points, consisting of two submodules:
points-guided mask generation and points-mask fusion. The former submodule
is responsible for generating centerline instance mask, guided by the centerline
points, while the latter submodule further refines the centerline instance points
(represented as green dots in Fig. 1), based on the predictions from the mask. It
is important to note that virtual centerlines lack significant visual information,
which makes the predicted mask for them less accurate for refining the centerline
points. Hence, for virtual centerlines, we solely generate a mask for supervision,
without refining their points based on the mask. However, for real centerlines,
we obtain refined points denoted as L′

R = {l′1, . . . , l′NR
}.

Points-Guided Mask Generation. Mask2Former [5] proposed a DETR-like
instance segmentation architecture that relies on instance mask queries. How-
ever, the mask queries used in Mask2Former are learnable embeddings without
positional priors. To address this limitation and enhance the quality of the gener-
ated mask, we propose a points-guided mask generation approach that leverages
the detected centerline points to guide the generation of mask queries. Specifi-
cally, we employ a positional encoding layer and a query encoding layer to encode
the centerline points li ∈ RK×3 and the query Qi, respectively. We then combine
them by summing the positional encodings and query encodings to obtain the
mask query Q′

i. In the positional encoding layer, each point in li is encoded using
a shared MLP, and the resulting encodings are concatenated and processed by
another MLP to obtain the positional embedding fi ∈ RC . The query encoding
layer is also implmented by an MLP. Finally, we input the mask query Q′

i and
the BEV features B into a dot product-based mask head to generate the mask
Mi ∈ RHW for the i-th centerline:

Mi = B ·Q′
i, (5)



8 Z. Ma, S. Liang, Y. Wen, W. Lu, G. Wan

Points-Mask Fusion. After obtaining the mask for each centerline instance in
the BEV space, we aim to refine real centerlines by incorporating information
from the corresponding mask. However, directly integrating the mask and cen-
terline points is not trivial due to their inherently distinct representations. To
address this challenge, we propose a two-stage process for blending the mask and
points. The first stage, referred to as mask points sampling, involves sampling
a set of mask points from the generated mask. In the second stage, known as
points fusion, we combine the detected centerline points obtained from Section
3.2 with the sampled mask points to obtain refined centerline points.

In the mask points sampling stage, we aim to select a fixed number of points
from each mask instance Mi. To achieve this, we regress one point for each
column, resulting in a set of W ordered points. The position of each sampling
mask point in the j-th column of the i-th centerline instance, denoted as Ci,j ,
can be calculated using the equation:

Ci,j = [0, 1, . . . ,H − 1]T · softmax(Mi(:, j)), (6)

where Mi(:, j) refers to the column j of the mask Mi. Additionally, since the
length of the centerline instance is finite and the direction of mask points is
unknown (whether it is left-to-right or right-to-left), we also predict the existence
probabilities of the mask points Pi (in the range of [0, 1]) and the left-to-right
direction probability Di (also in the range of [0, 1]). The existence probabilities
of the mask points and left-to-right direction probability can be calculated by:

Pi = sigmoid(ϕ1(Mi)),

Di = sigmoid(ϕ2(Q′
i)),

(7)

where ϕ1 : RHW → RW is an MLP that transforms the mask to the dimension
of W , and ϕ2 ∈ RC → R is another MLP. It is worth noting that the above mask
point sampling approach cannot handle centerlines that are completely vertical,
as they contain multiple points in a single column. To address this issue, we
regress one point per row to generate another set of points for vertical lines.
During training, bipartite graph matching and loss construction are performed
separately for the two sets of point sets. During the testing, we select the set
of points with a higher number of valid mask points for evaluation, where mask
points are considered valid if their existence probabilities are greater than 0.5.

In the points fusion stage, we begin by choosing valid mask points and fil-
tering out outliers among them. An outlier is defined as a mask point whose
minimum distance to its neighboring mask points exceeds 1.5m. Next, we per-
form resampling on the valid mask points, generating a new set containing K
points. We then take the average of these resampled points with the detected
centerline points li obtained from Section 3.2. This averaging process yields the
final refined points l′i in RK×3.

3.4 Loss Function

We categorize the ground truth centerlines into two categories: real and virtual.
To construct losses, we perform bipartite matching separately for the virtual
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centerlines predicted in Section 3.2 and the real centerlines obtained from Sec-
tion 3.3 with each category of ground truth. The final form of our loss function
is presented as follows:

L = Ltop(All) + Lcls(S) + Ldet(LV ,LR) + Lmask(M) + Lmp(C,P, D), (8)

where we only descirbe the predictions in the loss function without explic-
itly mentioning the ground truth for brevity. The first two losses, denoted as
Ltop(All) and Lcls(S), are implemented using focal loss. These losses are uti-
lized to supervise the topological associations and centerline probabilities, re-
spectively. The detection term, denoted as Ldet(LV ,LR), is computed using the
L1 loss, which is employed to supervise the geometric shape of centerlines. To
supervise the generation of the mask M for both real and virtual centerlines, we
use the loss function Lmask(M), which combines the binary cross-entropy loss
and the dice loss [23]. Furthermore, we employ the L1 loss, the binary cross-
entropy loss, and the focal loss to supervise the column-based sampling mask
points C, the existence probabilities P, and the points direction D in the func-
tion Lmp(·), respectively. In addition, we also add supervision for the row-based
sampling mask points, following the same approach as the column-based ones.
However, for brevity, this supervision is not explicitly stated in the equation.

4 Experiments

4.1 Dataset and Metrics

Dataset. We conducted all experiments on the OpenLane-V2 dataset [32]. The
dataset consists of 1000 scenes captured in various autonomous driving scenar-
ios, each including multiview images and several annotations, such as centerlines,
traffic elements, and topology relationships, sampled at 2Hz. Centerlines are de-
fined by 201 ordered points in 3D space, spanning the range of [−50m,+50m]
along the x-axis and [−25m,+25m] along the y-axis. The traffic elements, cat-
egorized into thirteen classes, are annotated using 2D bounding boxes in the
front-view images. Moreover, the dataset provides adjacency matrices to rep-
resent two types of topology relationships: centerline-centerline and centerline-
traffic element relationships.

Evaluation Metrics. The evaluation encompasses detection and topology met-
rics. The detection scores for centerlines (DETl) and traffic elements (DETt)
are computed as mean average precision (mAP), utilizing Fréchet distance and
Intersection over Union (IoU), respectively. The topological scores for centerline-
centerline relationships (TOPll) and centerline-traffic element relationships (TOPlt)
are conducted using mAP metrics grounded in graph theory principles.

4.2 Implementation Details

Model Details. Following the settings in TopoNet [13], we utilize the ResNet-
50 [8] as image backbone pretrained on ImageNet [11] to extract multi-scale
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image features. The multi-scale features {I3, I4, I5} from the last three stages of
ResNet-50 are employed for constructing BEV features. For PV-to-BEV trans-
formation, we follow the default settings of BEVFormer [14] with 3 encoder
layers to integrate the multi-scale features. The centerline detector consists of 4
decoder layers, each with 8 attention heads and C = 256 channels. The dimen-
sion of feedforward network is set to 512. We define the number of real centerline
queries and virtual centerline queries as NR = 150 and NV = 150, respectively.
We opt for an 11 fixed-order points representation for K in Section 3.2. For fair
comparison, we adopt the same network configuration as TopoNet for extracting
traffic elements and reasoning lane centerline and traffic element topology.

Training. We resize the input image to 1024× 800 and apply the same image
data augmentation as in [13]. The loss coefficients are configured as follows:
λtop = 5, λcls = 1.5, λdet = 0.025, λmask = 1, and λmp = 7. We utilize the
AdamW optimizer [21] with an initial learning rate of 2e−4. The learning rates
for the backbone are set to one-tenth of those for other modules. Our model
is trained for 24 epochs using cosine annealing with a weight decay of 0.01. To
prevent gradient explosion, we apply gradient clipping during backpropagation,
limiting the maximum norm to 35.

Table 1: Comparison with SOTA methods on the OpenLane-V2 subset_A dataset. ∗
indicates methods using SD map. The best results are bolded.

Method Backbone epoch DETl ↑ DETt ↑ TOPll ↑ TOPlt ↑ OLS ↑

STSU [1] ResNet-50 24 12.7 43.0 0.5 15.1 25.4
VectormapNet [19] ResNet-50 24 11.1 41.7 0.4 5.9 20.8

MapTR [16] ResNet-50 24 17.7 43.5 1.1 10.4 26.0
TopoNet [13] ResNet-50 24 28.5 48.1 4.1 20.8 35.6
TopoMLP [36] ResNet-50 24 28.3 50.0 7.2 22.8 38.2
RoadPainter ResNet-50 24 30.7 47.7 7.9 24.3 38.9

SMERF∗ [22] ResNet-50 24 33.4 48.6 7.5 23.4 39.4
RoadPainter∗ ResNet-50 24 36.9 47.1 12.7 25.8 42.6

Table 2: Comparison with SOTA methods on the OpenLane-V2 subset_B dataset.

Method Backbone epoch DETl ↑ DETt ↑ TOPll ↑ TOPlt ↑ OLS ↑

STSU [1] ResNet-50 24 8.2 43.9 0.0 9.4 21.2
VectormapNet [19] ResNet-50 24 3.5 49.1 0.0 1.4 16.3

MapTR [16] ResNet-50 24 15.2 54.0 0.5 6.1 25.2
TopoNet [13] ResNet-50 24 24.3 55.0 2.5 14.2 33.2
TopoMLP [36] ResNet-50 24 26.6 58.3 7.6 17.8 38.7

RoadPainter ResNet-50 24 28.7 54.8 8.5 17.2 38.5
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4.3 Comparison with State-of-the-Arts

We conduct a comparative evaluation of RoadPainter against current state-of-
the-art (SOTA) methods on the OpenLane-V2 dataset [32]. The results are re-
ported in Table 1 and Table 2, where we ensure a fair comparison by employ-
ing the same backbone for all methods. Our proposed method, RoadPainter,
achieves an OLS score of 38.9, surpassing the performance of other SOTA meth-
ods on subset_A dataset. In comparison to alternative approaches, RoadPainter
demonstrates superior results in terms of DETl (+2.2) and TOPll (+0.7) met-
rics, highlighting the effectiveness of our model design. We also conducted ex-
periments on the OpenLane-V2 subset_B dataset. Our approach outperforms
others in centerline detection DETl and topology TOPll. We employ a 3-layer
BEVFormer architecture, similar to TopoNet, while TopoMLP utilizes a 6-layer
PETR [20] architecture. The PETR architecture is particularly suitable for traf-
fic sign detection and achieves superior results on metrics such as DETt and
TOPlt. Moving forward, our main focus will be on enhancing traffic sign de-
tection and topology association. Furthermore, by incorporating the SD map,
our enhanced model, RoadPainter∗, exhibits notable improvements in DETl

(+6.2), TOPll (+4.8) and OLS (+3.7) metrics. RoadPainter∗ notably outper-
forms SMERF∗ in both centerline detection and topology reasoning performance
by a large margin. The OpenLane-V2 subset_B dataset does not include an SD
map, so there are no available results for RoadPainter∗. The FPS of our model
(FP32) on the RTX3090 is 6.5.

4.4 Ablation Studies

We conduct ablation studies on the point-guided mask generation (PGM), point-
mask fusion (PMF), and SD map interaction (SD) modules using the subset_A
dataset. Our analysis focuses on quantifying the impact of each module, with the
detailed improvements outlined in Table 3. In addition, we extend our assessment
to include the instance segmentation performance of centerline. This evaluation
is based on the AP (average precision) metric, represented as APl.

Baseline. We construct the baseline model by retaining the vanilla centerline
decoder without hybrid attention and real-virtual separation. In this setup, we
utilize self-attention and deformable cross-attention mechanisms while omitting
masked cross-attention. For supervision, we only incorporate the first three losses
as outlined in Equation 8. Our baseline model achieves an OLS score of 37.2.
Notably, the TOPll metric of the baseline model (7.7) surpasses that of TopoNet
(4.1), underscoring the efficacy of our topological association design.

Point-Guided Mask Generation. Building upon the baseline model, we
incorporate the PGM module to infer centerline masks guided by the regressed
points. When comparing the PGM model to the baseline, we observe a notable
improvement of 1.2 in DETl and 0.2 in TOPll. This significant enhancement can
be attributed to our innovative design of point-guided mask generation.

Point-Mask Fusion. We introduce a point-mask fusion module to enhance
the accuracy of real centerlines by refining the points based on the generated
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masks. We observe improvements in the DETl, OLS, and APl metrics, with
increases of 2.6, 1.3, and 0.6, respectively. These results highlight the efficacy
of the PMF module in refining real centerlines, thereby benefiting centerline
detection, topology prediction, and mask generation.

SD Map Interaction. We employ the SD map interaction module to en-
hance the BEV features, thereby improving the accuracy of centerline detection
and topological reasoning. By incorporating information from the SD map, our
final model exhibits significant performance gains compared to previous models
that do not utilize the SD map. Specifically, there is a substantial improvement
in DETl (+6.2) and TOPll (+4.8).

To better understand the attention mechanism in our method, we exclude
masked attention in the transformer decoder (w/o hybrid attention) and omit
real-virtual separation-based self-attention strategy (w/o real-virtual self-attn).
As depicted in Table 4, the elimination of hybrid attention results in a slight
performance decrease across all metrics. Furthermore, the absence of the real-
virtual self-attention strategy notably affects the TOPll metric (-0.4), indicating
the contribution of the real-virtual separation-based self-attention approach.

To further verify the segmentation mask design in our method, we conduct
three ablatin experiments: only detection, segmentation as auxiliary supervision,
and segmentation as centerline sampling, as shown in Table 4. The findings
indicate that segmentation, when used independently for auxiliary supervision
and mask point sampling, can enhance the performance of centerline detection.
Our method amalgamates these two benefits, thereby achieving superior results.

Table 3: The ablation studies investigate the effectiveness of the point-guided mask
generation (PGM), point-mask fusion (PMF), and SD map interaction (SD) modules.

PGM PMF SD DETl ↑ TOPll ↑ DETt ↑ TOPlt ↑ OLS ↑ APl ↑

26.9 7.7 46.8 22.4 37.2 -
✓ 28.1 7.9 46.6 22.6 37.6 13.5
✓ ✓ 30.7 7.9 47.7 24.3 38.9 14.1
✓ ✓ ✓ 36.9 12.7 47.1 25.8 42.6 15.4

Table 4: Ablations on attention mechanisms and segmentation masks.

Method DETl ↑ TOPll ↑

RoadPainter 30.7 7.9

w/o hybrid attention 29.6 7.2
w/o real-virtual self-attn 29.6 7.5

Only detection 26.9 7.7
Segmentation as auxiliary supervision 28.1 7.9
Segmentation as centerline sampling 29.4 7.7
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4.5 Qualitative Results Analysis

We present a comparison of centerline visualization results among TopoNet,
RoadPainter, RoadPainter∗ (with SD map), and ground truth (GT) in Fig. 3.
The findings illustrate that RoadPainter exhibits superior lane detection and
topological reasoning capabilities, particularly in complex scenarios such as lane
transitions and intersections. RoadPainter∗ demonstrates the ability to accu-
rately predict centerlines and topological relationships beyond the visual range,
facilitated by the SD map interaction module. In Fig. 4, we further present vi-
sualization results of centerlines from Section 3.2, along with instance masks
and refined centerlines from Section 3.3. These results clearly demonstrate that,
under the guidance of the instance mask, the refined centerlines exhibit superior
performance in terms of accuracy, particularly at the junctions where details are
crucial. In Fig. 5, our method exhibits superior performance compared to To-
poNet in accurately extracting high-curvature lanes, which can be attributed to
the utilization of segmentation masks. These findings indicate that our method
brings notable improvements in lane detection, particularly in the accurate ex-
traction of high-curvature lanes.

Surrounding-View Images TopoNet RoadPainter RoadPainter* GT

Fig. 3: Qualitative evaluation of RoadPainter and comparison methods. Given multi-
view images, RoadPainter achieves superior centerline detection performance compared
to TopoNet in terms of completeness and accuracy. With the design of SD map inter-
action module, RoadPainter∗ precisely estimates the lane count at intersections.
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Surrounding-View Images Before Refinement Instance Mask After Refinement GT

Fig. 4: Qualitative analysis of instance mask of RoadPainter. The directly regressed
centerlines from the transformer decoder, along with the instance masks and the refined
centerlines resulting from the points-mask optimization module, are presented.

TopoNet Ours GT

Fig. 5: Our method outperforms TopoNet in detecting high-curvature lanes due to the
utilization of segmentation masks, which provide more precise geometric details.

5 Conclusion

We introduced RoadPainter, a cutting-edge end-to-end network tailored for cen-
terline detection and topological reasoning, which enhances performance through
points-guided mask generation and mask-based centerline refinement. We de-
signed a transformer decoder that incorporates hybrid attention and real-virtual
separation strategies to regress lane centerline points and reason topological rela-
tionships. Furthermore, we developed a centerline points-guided mask generation
module that generates centerline masks guided by centerline points to refine the
centerline detection process. We further refined the centerline points by inte-
grating centerline masks through a points-mask fusion module, eliminating the
necessity of post-processing. The experimental evaluation on the OpenLane-V2
dataset demonstrated that RoadPainter achieves superior performance, validat-
ing the effectiveness of our module designs.
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