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Abstract. In this supplementary material, we provide the proof corre-
sponding to Theorems and Lemmas in the main manuscript. Besides, we
report the hyperparameter settings for various SD models and resolu-
tions. The definition of low-pass filters is also included. Furthermore, we
offer additional quantitative comparisons and qualitative results.
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1 Proof

1.1 Proof of Theorem 1

Let’s consider f(x) as a one-dimensional signal. Its down-sampled counterpart is
represented by f ′(x) = Downs(f). To understand the connection between f ′(x)
and f(x), we base our analysis on their generated continuous signal g(x), which
is produced using a particular sampling function. It’s important to note that
the sampling function sa∆T (x) is characterized by a series of infinitely spaced
impulse units, with each pair separated by intervals of ∆T :

sa(x,∆T ) =

∞∑
n=−∞

δ(x− n∆T ). (1)

Based on Eq. (1), f(x) and f ′(x) can be formulated as

f(x) = g(x)sa(x,∆T ),

f ′(x) = g(x)sa(x, s∆T ).
(2)

Based on the Fourier transform and the convolution theorem, the spatial
sampling described above can be represented in the Fourier domain as follows:
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F (u) = G(u)⊛ SA(u,∆T )

=

∫ ∞

−∞
G(τ)SA(u− τ,∆T )dτ

=
1

∆T

∑
n

∫ ∞

−∞
G(τ)δ

(
u− τ − n

∆T

)
dτ (3)

=
1

∆T

∑
n

G
(
u− n

∆T

)
,

where G(u) and SA(u,∆T ) are the Fourier transform of g(x) and sa(x,∆T ).
From the above Equation, it can be observed that the spatial sampling introduces
the periodicity to the spectrum and the period is 1

∆T .
Note that the sampling rates of f(x) and f ′(x) are Ωx and Ω′

x, the relation-
ship between them can be written as

Ωx =
1

∆T
, Ω′

x =
1

s∆T
=

1

s
Ωx. (4)

With the down-sampling process in consideration, we presume that f(x)
complies with the Nyquist sampling theorem, suggesting that umax < Ωx

2 .
Following down-sampling, as per the Nyquist sampling theorem, the entire

sub-frequency range is confined to (0, Ωx

s ). The resulting frequency band is a
composite of s initial bands, expressed as:

F ′(u) = S(F (u), F (ũ1), . . . , F (ũs−1)), (5)

where ũi represents the frequencies higher than the sampling rate, while u de-
notes the frequencies that are lower than the sampling rate. The symbol S stands
for the superposition operator. To simplify the discussion, ũ will be used to de-
note ũi in subsequent sections.

(1) In the sub-band, where u ∈ (0, Ωx

2s ), ũ should satisfy

ũ ∈
(
Ωx

2s
, umax

)
. (6)

According to the aliasing theorem, the high frequency ũ is folded back to the
low frequency:

û =

∣∣∣∣ũ− (k + 1)
Ω′

x

2

∣∣∣∣ , k
Ω′

x

2
≤ ũ ≤ (k + 2)

Ω′
x

2
(7)

where k = 1, 3, 5, . . . and û is folded results by ũ.
According to Eq. 6 and Eq. 7, we have

û =
aΩx

s
− ũ and û ∈

(
Ωx

s
− umax,

Ωx

2s

)
, (8)
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where a = (k+1)/2 = 1, 2, . . .. According to Eq. (5) and Eq. (8), we can attain

F ′(u) =

{
F (u) if u ∈ (0, Ωx

s − umax),

S(F (u), F (aΩx

s − u)) if u ∈ (Ωx

s − umax,
Ωx

2s ).
(9)

According to Eq. (3), F (u) is symmetric with respect to u = Ωx

2 :

F (
Ωx

2
− u) = F (u+

Ωx

2
). (10)

Therefore, we can rewrite F (aΩx

s − u) as:

F (
Ωx

2
− (

Ωx

2
+ u− aΩx

s
))

=F (
Ωx

2
+ (

Ωx

2
+ u− aΩx

s
))

=F (u+Ωx − aΩx

s
)

=F (u+
aΩx

s
)

(11)

since a = 1, 2, . . . , s−1. Additionally, for s = 2, the condition u ∈ (0, Ωx

s −umax)

results in F (u + Ωx

s ) = 0. When s > 2, the range u ∈ (0, Ωx

s − umax) typically
becomes non-existent. Thus, in light of Eq. (11) and the preceding analysis,
Eq. (9) can be reformulated as

F ′(u) = S(F (u), F (u+
aΩx

s
)) | u ∈ (0,

Ωx

2s
). (12)

(2) In the sub-band, where u ∈ (Ωx

2s ,
Ωx

s ), different from (1), ũ should satisfy

ũ ∈ (
Ωx

s
− umax,

Ωx

2s
). (13)

Similarly, we can obtain:

F ′(u) = S(F (ũ), F (u+
aΩx

s
)) | u ∈ (

Ωx

2s
,
Ωx

s
). (14)

Combining Eq. (12) and Eq. (14), we obtain

F ′(u) = S(F (u), F (u+
aΩx

s
)) | u ∈ (0,

Ωx

s
), (15)

where a = 1, 2, . . . , s− 1.

1.2 Proof of Lemma 1

Based on Eq. (3), it can be determined that the amplitude of F ′ is 1
s times that

of F . Hence, F ′(u) can be expressed as:

F ′(u) =
1

s
F (u) +

∑
a

1

s
F

(
u+

aΩx

s

)
| u ∈

(
0,

Ωx

s

)
. (16)
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Fig. 1: Visualization of the design of a low-pass filter. (a) 1D filter for the positive axis.
(2) 2D low-pass filter, which is constructed by mirroring the 1D filters and performing
an outer product between two 1D filters, in accordance with the settings of the 1D
filter.

Based on the dual principle, we can prove F ′(u, v) in the whole sub-band

F ′(u, v) =
1

s2

 s−1∑
a,b=0

F

(
u+

aΩs

s
, v +

bΩy

s

) , (17)

where u ∈
(
0, Ωx

s

)
, v ∈

(
0,

Ωy

s

)
.

2 Implementation Details

2.1 Low-pass Filter Definition

In Fig. 1, we show the design of a low-pass filter used in FouriScale. Inspired
by [7,8], we define the low-pass filter as the outer product between two 1D filters
(depicted in the left of Fig. 1), one along the height dimension and one along the
width dimension. We define the function of the 1D filter for the height dimension
as follows, filters for the width dimension can be obtained in the same way:

maskh
(sh,Rh,σ)

= min

(
max

(
1− σ

Rh

(
H

sh
+ 1− i

)
+ 1, σ

)
, 1

)
, i ∈ [0,

H

2
], (18)

where sh denotes the down-sampling factor between the target and original res-
olutions along the height dimension. Rh controls the smoothness of the filter and
σ is the modulation coefficient for high frequencies. Exploiting the characteristic
of conjugate symmetry of the spectrum, we only consider the positive axis, the
whole 1D filter can be obtained by mirroring the 1D filter. We build the 2D
low-pass filter as the outer product between the two 1D filters:

mask(sh, sw, Rh, Rw, σ) = maskh
(sh,Rh,σ)

⊗ maskw
(sw,Rw,σ), (19)
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Fig. 2: Reference block names of stable diffusion in the following experiment details.

where ⊗ denotes the outer product operation. Likewise, the whole 2D filter can
be obtained by mirroring along the height and width axes. A toy example of a
2D low-pass filter is shown in the right of Fig. 1.

2.2 Hyper-parameter Settings

In this section, we detail our choice of hyperparameters. The evaluative param-
eters are detailed in Tab. 1. Additionally, Fig. 2 provides a visual guide of the
precise positioning of various blocks within the U-Net architecture employed in
our model.

The dilation factor used in each FouriScale layer is determined by the max-
imum value of the height and width scale relative to the original resolution. As
stated in our main manuscript, we employ an annealing strategy. For the first
Sinit steps, we employ the ideal dilation convolution and low-pass filtering. Dur-
ing the span from Sinit to Sstop, we progressively decrease the dilation factor and
r (as detailed in Algorithm 1 of our main manuscript) down to 1. After Sstop

steps, the original UNet is utilized to refine image details further. The settings
for Sinit and Sstop are shown in Tab. 1.

Table 1: Experiment settings for SD 1.5, SD 2.1, and SDXL 1.0.

Params SD 1.5 & SD 2.1 SDXL 1.0

FouriScale blocks [DB2,DB3,MB,UB0,UB1,UB2] [DB2,MB,UB0,UB1]
inference timesteps 50 50

[Sinit, Sstop]
[10,30] (4×1:1 and 6.25×1:1) [20,35][20,35] (8×1:2 and 16×1:1)
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Table 2: Quantitative comparisons with SD + super-resolution method [9].

Method FIDr KIDr FIDb KIDb FIDp KIDp

SD + Super Resolution 25.94 0.91 20.10 0.56 84.93 3.31
Ours 39.49 1.27 28.14 0.73 70.15 2.20

Fig. 3: Visual comparison with SD+SR. Left: 2048×2048 image upscaled by SD+SR
from 512×512 SD 2.1 generated image. Right: 2048×2048 image generated by our
FouriScale with SD 2.1.

3 More Experiments

3.1 Comparison with Diffusion Super-Resolution Method

In this section, we compare the performance of our proposed method with a
cascaded pipeline, which uses SD 2.1 to generate images at the default resolution
of 512×512, and upscale them to 2048×2048 by a pre-trained diffusion super-
resolution model, specifically the Stable Diffusion Upscaler-4× [9]. We apply this
super-resolution model to a set of 10,000 images generated by SD 2.1. We then
evaluate the FIDr and KIDr scores of these upscaled images and compare them
with images generated at 2048×2048 resolution using SD 2.1 equipped with our
FouriScale. The results of this comparison are presented in Tab. 2. We also report
FID-patch [2] (FIDp) and KID-patch (KIDp) for a more reasonable measure at
high resolutions. As we can see, our method obtains somewhat worse results than
the cascaded method. However, on the metrics of FIDp and KIDp, our method
achieves better performance, indicating our method can generate much better
details than the cascaded pipeline, which is also proved by Fig. 3. Due to a lack
of prior knowledge in generation, the super-resolution method can only utilize
existing knowledge within a single image for upscaling the image, resulting in an
over-smooth appearance. However, our method can effectively upscale images



FouriScale 7

Table 3: Quantitative comparisons among training-free methods. We generate 20482

images using SDXL on a single NVIDIA A100 GPU.

Method FIDr KIDr FIDb KIDb FIDp KIDp Latency

ScaleCrafter (ICLR’24) 49.46 1.73 36.22 1.07 65.06 2.17 58s
ElasticDiff (CVPR’24) 52.02 3.03 40.46 2.22 76.77 3.45 212s
DemoFusion (CVPR’24) 30.51 1.06 18.34 0.42 51.12 1.42 107s
Ours 33.89 1.21 20.10 0.47 56.44 1.59 76s

and fill in details using generative priors with a pre-trained diffusion model.
Furthermore, our method is capable of generating high-resolution images in only
one stage, without the need for a multi-stage process. Besides, our method does
not need model re-training, while the SR model demands extensive data and
computational resources for training.

3.2 Comparison with More SOTAs

We observe that the recent approach, ElasticDiffusion [5], has established a
technique to equip pre-trained diffusion models with the capability to gener-
ate images of arbitrary sizes, both smaller and larger than the resolution used
during training. Besides, DemoFusion [4] demonstrates promising results in high-
resolution generation by employing a series of strategies, such as progressive up-
scaling, skip residual, and dilated sampling. Here, we provide a comparison with
those state-of-the-art methods on the SDXL 2048×2048 setting.

The results are shown in Tab 3. First, it’s important to note that the infer-
ence times for ElasticDiffusion are approximately 4 to 5 times longer than ours.
DemoFusion also takes nearly 1.5× inference time of ours due to its cascaded
architecture. Our method demonstrates performance on par with the leading
approach, DemoFusion, while significantly reducing inference costs. When com-
pared to ScaleCrafter and ElasticDiffusion, we outperform them across all eval-
uation metrics, achieving lower FID and KID scores. This indicates that our
method produces images of higher quality and greater diversity.

3.3 More Ablation Studies

We present additional ablation studies in Tab. 4, with experiments conducted
using SD 2.1 to generate 20482 images.

In Tab. 4(a), we examine the effect of modifying the dilation rate. To isolate
this factor, we omit low-pass filtering and FouriScale guidance. Given that SD 2.1
is trained on 512×512 images, our main manuscript’s conclusion on structural
consistency suggests an optimal dilation rate of 4. When the rate is changed to 2
or 6, we observe a significant performance decrease, highlighting the importance
of maintaining structural consistency.
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Table 4: Quantitative results of generating 20482 images using SD 2.1. FIDp and KIDp

are patched FID/KID. d-x denotes the dilation rate is x, m-x denotes the mask size
for low-pass filtering is (H/x, W/x).

Method FIDr KIDr FIDp KIDp

(a) Dilation
d-2 52.70 1.71 74.50 2.51

d-4 (ours) 47.66 1.59 71.52 2.34
d-6 58.44 2.09 75.83 2.28

(b) Low-pass filter
m-2 44.00 1.49 76.66 2.46

m-4 (ours) 41.16 1.36 71.94 2.33
m-6 56.27 2.00 85.50 2.87

2048×2048

1024×2048

1024×1024

1024×1024

2048×2048 2048×2048

2048×40964096×4096

Fig. 4: Visualization of the high-resolution images generated by SD 2.1 integrated with
customized LoRAs (images in red rectangle) and images generated by a personalized
diffusion model, AnimeArtXL [1], which is based on SDXL.

Tab. 4(b) evaluates the impact of the low-pass filtering mask size, without
employing FouriScale guidance. Consistent with our expectations, the optimal
mask size of (H/4, W/4) yields the best performance, further validating the
importance of scale consistency.

4 More Visualizations

4.1 LoRAs

In Fig. 4, we present the high-resolution images produced by SD 2.1, which has
been integrated with customized LoRAs [6] from Civitai [3]. We can see that our
method can be effectively applied to diffusion models equipped with LoRAs.

4.2 Diffusion-based Applications

Our approach is applicable to any method that employs a diffusion model as a
generator, which incorporates a specific number of convolutional layers. In Fig.
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“film noir style, ink sketch vector, male man, highly detailed, sharp focus, ultra sharpness, 
monochrome, high contrast, dramatic shadows, 1940s style, mysterious, cinematic”

Ref Image

Pose

InstantID InstantID + FouriScale

Canny ControlNet ControlNet + FouriScale Depth ControlNet ControlNet + FouriScale

“Girl with Pearl Earring” “Spiderman lecture, photorealistic”

Fig. 5: Visualization of 20482 images generated by InstantID and ControlNet (with
SDXL), and them equipped with FouriScale.

5, we apply our method to InstantID [10] and ControlNet [11], our method works
well on these methods, demonstrating the scalability of our method.

4.3 Other Resolutions

In Fig. 6, we present more images generated at different resolutions by SD 2.1,
aside from the 4×, 6.25×, 8×, and 16× settings. Our approach is capable of
generating high-quality images of arbitrary aspect ratios and sizes.
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Fig. 6: More generated images using FouriScale and SD 2.1 with arbitrary resolutions.
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