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Abstract. Out-of-distribution (OOD) object detection is a challenging
task due to the absence of open-set OOD data. Inspired by recent ad-
vancements in text-to-image generative models, such as Stable Diffusion,
we study the potential of generative models trained on large-scale open-
set data to synthesize OOD samples, thereby enhancing OOD object
detection. We introduce SyncOOD, a simple data curation method that
capitalizes on the capabilities of large foundation models to automati-
cally extract meaningful OOD data from text-to-image generative mod-
els. This offers the model access to open-world knowledge encapsulated
within off-the-shelf foundation models. The synthetic OOD samples are
then employed to augment the training of a lightweight, plug-and-play
OOD detector, thus effectively optimizing the in-distribution (ID)/OOD
decision boundaries. Extensive experiments across multiple benchmarks
demonstrate that SyncOOD significantly outperforms existing methods,
establishing new state-of-the-art performance with minimal synthetic
data usage. The project is available at https://github.com/CVMI-
Lab/SyncOOD.
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1 Introduction

Modern object detectors, trained on closed-set data, have achieved remark-
able success. However, they often incorrectly and confidently classify out-of-
distribution (OOD) object categories as in-distribution (ID) categories in open-
world applications [10], raising concerns about their reliability for deployment.
To enhance the trustworthiness of object detection, researchers have studied the
OOD object detection task, which aims to identify and flag unknown or novel
objects as distinct from ID ones [3, 42].

The vulnerability of these models to OOD samples stems from their lack of
awareness of the unknown open data distribution during training. Consequently,
synthesizing OOD samples for model learning has emerged as a major research
direction for this task [15, 59–61]. Most existing studies [15, 60, 61] concentrate
on generating OOD objects in the latent space of an object detection model
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Fig. 1: Our pipeline replaces ID objects with semantic-novel yet visual-similar objects
for scene-level OOD object synthesis. Middle left: The concepts are imagined by an
LLM to ensure semantic separability and rationality, and reformed as text prompts
for controllable in-painting using Stable Diffusion. Middle right: During training, only
visually similar OOD objects are adopted based on instance-level feature similarity to
the original object. A lightweight binary classifier is optimized for OOD detection, and
other parts of the detector are kept unchanged.

trained on ID data. These synthesized samples are then used to optimize the
decision boundary between ID and OOD data. Alternative approaches include
directly synthesizing images by injecting adversarial noise [59] or identifying
OOD instances from video data [14]. While these methods have yielded promising
results, they remain limited to a closed-set setting, where the latent space for
synthesizing outliers or the data is derived from a closed-set data distribution.
Consequently, they may be biased towards the ID dataset, leading to suboptimal
performance. Besides, effectively handling the unknown may appear unattainable
when the unknown is never fully exploitable. Beyond that, is it possible to learn
them from massive open-world data knowledge condensed in foundation models?

To this end, we investigate text-to-image generation models trained on a
large amount of open-set data, which have demonstrated a superior ability to
capture the distribution of data across a wide range of visual concepts, in or-
der to synthesize novel data samples for enhancing OOD detection. Nonetheless,
automatically extracting meaningful data from generative models for OOD ob-
ject detection remains challenging due to the extensive vocabulary space to be
explored, the complex scene-level synthesis problem, the need for object-level
annotations, and potential distractions from contextual cues.

We introduce SyncOOD, an automatic data curation process that leverages
foundation models as tools to harvest meaningful data from text-to-image gen-
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eration models for OOD object detection (see Figure 1). The process is based
on two key observations: 1) Hard OOD samples that are close to the ID data
contribute more to learning a better OOD detector, and 2) Context may be-
come a distracting cue for OOD object detection tasks, leading to bias towards
contexts. With these observations in mind, the outlier synthesis process is formu-
lated as box-conditioned image in-painting, and driven by Stable Diffusion [49]
for high-quality controllable editing. The concepts to replace with are imagined
by a Large Language Model (LLM) [1] with the aim of semantic novelty,1 and
the associated bounding box is further refined with SAM [30]. Automated by
foundation models, this data collection pipeline requires minimal human labor,
while producing high-quality OOD data.

In comparison to existing methods for OOD object detection, our core insight
is to broaden the model’s exposure to a more extensive range of open-set data
and circumvent dataset biases by tapping into the open-world knowledge found
in off-the-shelf foundation models. Utilizing generative models also provides us
with control over the context of synthesized images and the data distribution.
Our comprehensive experiments demonstrate superior performance, emphasizing
the untapped potential of text-image-generation models in the context of OOD
object detection. Our key contributions are summarized as follows:

– We investigate and unlock the potential of text-to-image generative models
trained on large-scale open-set data for synthesizing OOD objects in object
detection tasks.

– We introduce an automated data curation process for obtaining control-
lable, annotated scene-level synthetic OOD images for OOD object detec-
tion, which utilizes LLMs for novel concept discovery and visual foundation
models for data annotation and filtering.

– We discover that maintaining ID/OOD image context consistency and ob-
taining more accurate OOD annotation bounding boxes are crucial for syn-
thesized data to be effective in OOD object detection.

– Comprehensive experiments on multiple benchmarks demonstrate the effec-
tiveness of our method, as we significantly outperform existing state-of-the-
art approaches while using minimal synthetic data.

2 Related Work

OOD Object Detection For detecting OOD objects in scene-level images, un-
like earlier works that constrain ID samples to a hypothetical distribution [12],
it has become a recent trend to explicitly synthesize the outlier data, and in-
corporate them into training to adjust models’ decision boundaries. However,
due to the complexity of scene-level images, all previous works bypassed photo-
realistic outlier synthesis in pixel space, and worked on generating outliers from
the model’s latent space [15, 60, 61], adversarial attack [59], or utilizing video
data in the wild [14]. In the former, outliers can be sampled from the latent
1 Concepts overlapping with the test data are removed to avoid information leakage.
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space using a simple Gaussian prior [15], or more advanced generative models
like VAE [61] or diffusion model [60]. Yet their upperbound are commonly limited
by the quality of the latent space, and synthesized samples lack interpretabil-
ity. Despite this, adversarial samples [59] lack semantic diversity, and auxiliary
pseudo supervision from videos [14] introduces additional requirements to the
setting. Unlike all above, our method applies LLM for OOD concept sampling,
and Stable Diffusion for controllable image editing. This decouples the sampling
and generation processes, elevates both parts to an unprecedented level, and
achieves photo-realistic scene-level OOD image synthesis for the first time.

Open-world Object Detection The fact that real-world applications require
object detectors the ability to tackle open categories is also considered in open-
world object detection. The focus of this field includes generalization to domain
shifts [57], incremental learning of novel classes [27,39,43], and zero-shot classi-
fication of open-vocabularies [17, 46]. Meanwhile, some works [18, 28] require to
distinguish known objects well, be able to detect unknown objects, and finally
be able to incrementally learn new objects. These works provide different per-
spectives on facing the challenges of real-world applications, which complement
OOD object detection as a joint effort, but are out of the scope of this paper.

OOD Image Classification Earlier paradigms for OOD image classification
either post hoc adjust models’ confidence score at the testing phase, or ap-
ply regularization at models’ training phase. The former line mainly focuses
on the design of score functions, including confidence-based [2, 22, 35], energy-
based [38,56,62], distance-based [34,47,50,51], gradient-based [26], and approx-
imating Bayesian [7,10,19,40,41] methods. The latter line of work includes reg-
ularizing models to produce lower confidence [23, 33], higher energy [29, 38], or
directly shaping latent representations [12]. While outlier synthesis has shown
to be effective by [15, 54], these are still generated in the latent space, and a
parallel line study utilizing natural images [11, 23, 29] from the wild. Recently,
photo-realistic outlier synthesis was first achieved by [13] with help from a text-
conditioned diffusion model [49]. However, it is not readily applicable for object
detection due to the complexity of scene-level images and the requirement for
object-level annotations. In contrast, our work studies under the detection set-
ting and requires outlier synthesis at scene level.

Foundation Models The evolution of large language models (LLMs) began
with training on web-scale datasets [9,45], leading to increasingly powerful foun-
dation models [4, 6] capable of harnessing vast open-world data. Notable ad-
vancements include models [1] that interact with users and perform complex
tasks like question answering, significantly broadening access to global knowl-
edge. In image generation, diffusion models [24, 49] offer robust capabilities in
synthesizing realistic content for applications such as image synthesis and in-
painting. Additionally, segmentation foundation models like SAM [30] represent
a leap forward in precise image segmentation, benefiting from extensive data
training. Foundation models provide diverse data, which provides unlimited po-
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Fig. 2: Detailed illustration of our outlier synthesis pipeline. It comprises (a) Instruct-
ing an LLM to imagine semantic-novel concepts given ID objects, (b) Editing the
selected regions to the expected concepts via prompt-conditioned image inpainting us-
ing Stable Diffusion, and (c) Refining the bounding boxes of edited objects using SAM.

tential for learning open-world knowledge from these models [55], where the
effectiveness of data [21,53,63] is also crucial to the downstreaming tasks.

3 Method

Preliminary For OOD object detection, the training set contains only ID scene-
level images xid with ID objects, annotation bounding boxes bid, and semantic la-
bels y, denoted as Did =

{
(xid,bid, yid)

}
. The labels of ID objects always belong

to a close set with K categories, denoted as yid ∈ Yid and Yid =
{
yid
1 , yid

2 , ..., yid
K

}
.

During inference, for each proposed object from an input scene-level image, it is
required to identify whether its category belongs to Yid or not.

Overview As illustrated in Fig. 1, our outlier synthesis pipeline consists of
(1) synthesizing a set of effective photo-realistic scene-level OOD images xedit,
denoted as Dedit =

{
(xedit,bedit)

}
, which contains novel objects and corre-

sponding annotation boxes bedit based on region-level editing from Did in a fully
automated, labor-free way; and (2) select and use the efficient synthetic data
to provide pseudo-OOD supervisions for training OOD object detector together
with the ID samples in the training set. Further design of the pipeline requires
answering the following questions: (1) how to distill the open-set knowledge em-
bedded in foundation models to scene-level OOD data and (2) how to utilize the
synthesized data to regularize the decision boundary and facilitate OOD object
detection. We discuss them accordingly in Sec. 3.1 and Sec. 3.2.

3.1 Synthesizing Semantic-novel Objects in Scene Images

Imagining Novel Concepts from ID objects As shown in Fig. 2(a), based
on the ID labels Yid in training set Did, we consider that novel concepts that
are different from ID categories can be potential candidates for generating OOD
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objects. The next is to discover novel concepts that offer hard OOD samples
sharing high visual similarity with ID samples and being contextually compati-
ble with the scene context for object detection. Rather than relying on human
labor to investigate all potential candidates, we leverage the vast knowledge and
reasoning capabilities of LLM, GPT-4 [1] to check the visual similarity and con-
textual compatibility. This allows us to associate ID objects and promote the
conceptualization of possible novel objects to replace existing ID objects through
the use of a prompt with in-context examples [4] as:

Here is a list containing several objects Yid. Now, if I provide you an object
name, you should return to me objects that are similar to the usage scenario
and volume of the provided object but are not in the previous object list. For
example, if I give you the word: person, you should respond and only respond:
‘mannequin’, ‘sculpture’, ‘scarecrows’, ‘doll’, ‘puppet’.

With its robust logical foundation and rich knowledge, the LLM envisions
a collection of novel objects for each ID object label, denoted as Ynovel, while
maintaining the semantic separability between imagined objects and ID objects.
We empirically find one in-context example that is sufficient for us to discover
novel concepts. For each ID label i, we discover M novel concepts using LLM
ynovel
i of M concepts.

Editing Objects on Selected Regions With the discovered novel concepts
Ynovel = {ynovel

1 ,ynovel
2 , ...,ynovel

K }, the next step is to use them as prompts for
the text-to-image generation model to generate an image. To generate a new
image with novel concepts yj ∈ ynovel

i , we choose to replace existing ID objects
in existing images with label yid

i instead of finding new locations or generating
one image from scratch. By doing so, we can ensure context compatibility and
eliminate distractions from the scene context as it is preserved. As illustrated in
Fig. 2 (b), we use Stable-Diffusion-Inpainting [49], denoted as SDI(·), to perform
region-level editing on ID images. The ID object is denoted as xid, with its
corresponding annotation box bid serving as the editing mask, and the associated
imagined novel concept ynovel are provided as inputs to the SDI, which is one of
the most successful models for conditional image generation and editing. Thus,
an edited image xedit containing a novel object is obtained as:

xedit = SDI(xid,bid,ynovel). (1)

Refining Annotation Boxes of Novel Objects Due to the randomness in
diffusion models, the attributes of edited objects, such as their quality, volume,
and localization, may not match the original object box. To address this issue,
as depicted in Fig. 2(c), we design an efficient and effective refiner based on
SAM [30] to obtain refined accurate bounding boxes on novel objects. First, for
an edited image xedit with the editing mask bid, we use a padding area extended
from bid as the prompt and employ SAM to output the instance mask with
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highest confidence mSAM for the novel object in the area:

mSAM = SAM(xedit;padding(bid, e)), (2)

where e represents the range of padding. Then, we convert obtained masks mSAM

to boxes bSAM, and calculate IoU between bSAM and the corresponding bid to
filter out novel objects that vary highly in scale:{

bedit
}
=

{
bSAM

∣∣∣ IoU(bSAM,bid) > γ
}
, (3)

where γ denotes a threshold value on IoU. It ensures a high enough recall rate
to rule out the instability of Stable Diffusion and SAM and uncontrollable local-
ization of the edited objects. Thus we obtain the synthetic outlier data Dedit as
illustrated in Fig. 1.

3.2 Mining Hard OOD Samples and Model Training

Mining Hard OOD Objects with High Visual Similarities for Training
We consider the novel objects that are most likely to be confused with the
corresponding ID objects by the object detector as the most effective ones. We
thus aim to find synthetic OOD samples that are most easily confused as ID
to participate in training based on pairwise similarity in the latent space of the
pre-trained object detector. For each novel object with bounding box bedit in the
synthetic data Dedit, we construct it with the corresponding original ID object
with its bounding box as a pair:

{
(bedit,xedit), (bid,xid)

}
. For an off-the-shelf

object detector, denoted by Fdet, we extract latent features, zedit and zid, for
each pair:

zedit, zid = Fdet(bedit;xedit),Fdet(bid;xid). (4)
The most effective novel objects are those with visual patterns that can be easily
mistaken for their corresponding ID objects by an object detector. Therefore,
we filter these novel objects based on their similarity to provide pseudo-OOD
supervision: {

zood} =
{
zedit∣∣ ϵlow < sim(zedit, zid) < ϵup

}
, (5)

where the similarities are computed between latent object features of edit-ID
pairs. Here sim(·) denotes cosine similarity calculating and ϵlow, ϵup stand for
the lower/upper similarity thresholds.

Optimizing ID/OOD Decision Boundary with Synthetic Samples Once
we have obtained the ID and synthetic OOD objects, we employ a lightweight
MLP, denoted as Food, as the OOD detector optimized with a bi-classify loss:

Lood = Ez∼zid

[
− log

1

1 + exp−Food(z)

]
+ Ez∼zood

[
− log

exp−Food(z)

1 + exp−Food(z)

]
. (6)

The aforementioned design ensures both semantic separability and pattern sim-
ilarity for the chosen synthetic samples. As a result, our proposed method ele-
gantly optimizes the decision boundary using only a limited number of samples.
It is further demonstrated and validated in the following experiments.
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4 Experiments

Datasets Following OOD object detection setting [15], we use the PASCAL-
VOC [16] and Berkeley DeepDrive (BDD-100K) [65] as the ID train-
ing datasets, which consist of 20 and 10 ID categories, respectively. Mean-
while, we evaluate the performance of our approach on two OOD datasets:
MS-COCO [36] and OpenImages [32] respectively. Categories from the OOD
datasets that overlapped with the ID datasets are removed to guarantee the ab-
sence of ID categories. We report ID categories, OOD categories, and texts used
in driving image synthesis in the supplementary material.

Metrics We primarily focus on reporting the FPR95 which represents the
false positive rate of OOD samples when the true positive rate of ID samples
is at 95% and lower is better. FPR95 is widely used to assess the OOD object
detection performance [12, 15, 59–61]. Additionally, we present the Area Under
the Receiver Operating Characteristic Curve (AUROC, higher is better) that
is widely utilized to evaluate binary classification problems. Since we only train
a plugin MLP on top of existing object detectors for OOD detection, ID perfor-
mance, e.g ., mean Average Precision (mAP) is unchanged and thus omitted.

Implementation Details For our synthetic data, in order to maintain the ex-
perimental setting of OOD object detection and avoid leaking prior knowledge
of foundation models, we remove all imagined novel objects that have the same
or similar meaning as the ground truth OOD data categories. For model train-
ing, we follow the architectures of the baseline method [15, 59] to use a Faster
R-CNN [48] as the base object detector with ResNet-50 [20] firstly. Then we
trained a simple and lightweight 3-layer MLP. We follow [59] to extract multi-
level features as training samples. ID samples are extracted from ID images and
OOD samples are extracted from selected synthesized images with OOD bound-
ing boxes. For training on the PASCAL-VOC dataset, we employ a learning rate
of 1e-4, while for the BDD-100K dataset, we use a learning rate of 5e-5. Both
training processes utilize a momentum of 0.9, a dropout rate of 0.5, and a batch
size of 32. All training is conducted on GeForce RTX 3090 GPUs.

4.1 Main Results on OOD Object Detection

We evaluate the performance of the proposed method on different challenging
benchmarks and obtain notable results (see Tab. 1). As the first work to intro-
duce synthetic scene-level natural images as OOD samples, we incorporate our
data-centric method to two off-the-shelf object detectors [15,48], achieving new
state-of-the-art performance in OOD object detection.

Compared with previous methods, we present comprehensive and substantial
performance improvements on FPR95. The encouraging outcomes clearly show
that our synthetic data offers superior OOD supervision and are well-suited for
forming a precise decision boundary between ID and OOD samples as illustrated
in Fig. 1, which significantly reduces the interference caused by contextual in-
formation when optimizing the decision boundary.
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Table 1: Comparing on varied ID (PASCAL VOC [16], BDD-100K [65]) and OOD
(MS-COCO [36], OpenImages [32]) datasets, our method significantly outperforms
other methods on different metrics and achieves SOTA performance on OOD object
detection. Our method is validated on two different existing object detectors, Faster
R-CNN [48] and VOS [15] (denoted as Faster R-CNN + Ours and VOS + Ours re-
spectively). (Top results are shown in bold.)

Method
ID:PASCAL-VOC ID:BDD-100K

MS-COCO OpenImages MS-COCO OpenImages

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP [22] 70.99 83.45 73.13 81.91 80.94 75.87 79.04 77.38
ODIN [35] 59.82 82.20 63.14 82.59 62.85 74.44 58.92 76.61
Mahalanobis [34] 96.46 59.25 96.27 57.42 57.66 84.92 60.16 86.88
Energy score [38] 56.89 83.69 58.69 82.98 60.06 77.48 54.79 79.60
Gram matrices [50] 62.75 79.88 67.42 77.62 60.93 74.93 77.55 59.38
Generalized ODIN [25] 58.57 83.12 70.28 79.23 57.27 85.22 50.17 87.18
CSI [52] 59.91 81.83 57.41 82.95 47.10 84.09 37.06 87.99
GAN-synthesis [33] 60.93 83.67 59.97 82.67 57.03 78.82 50.61 81.25
SIREN-KNN [12] 47.45 89.67 50.38 88.80 - - - -
VOS [15] 47.53 88.70 51.33 85.23 44.27 86.87 35.54 88.52
SR-VAE [61] 42.17 90.28 46.26 87.89 32.23 90.69 21.81 93.55
DFDD [60] 41.34 90.79 44.52 88.65 30.71 90.74 22.67 92.48
SAFE [59] 47.40 80.30 20.06 92.28 32.56 88.96 16.04 94.64
Faster R-CNN + Ours 36.44 86.52 13.34 95.37 22.67 95.44 12.96 96.26
VOS + Ours 34.97 87.90 11.25 96.96 23.09 94.32 14.12 96.41

Table 2: Ablation on the number of our synthetic data in training. Taking PASCAL-
VOC as the ID dataset, we perform seven groups of random sampling with different
numbers in the synthetic dataset to extract features as OOD samples, evaluate and
report the performance on the MS-COCO/OpenImages datasets.

#Sample 14k 12k 10k 8k 6k 4k 2k

FPR95↓ 36.70/12.96 36.27/13.01 37.31/13.25 36.53/13.30 36.70/12.96 36.44/13.34 37.82/13.87
AUROC↑ 86.65/95.54 86.68/95.55 86.64/95.51 86.69/95.52 86.75/95.56 86.52/95.44 86.03/95.18

Bridged by our synthetic data, foundation models’ extensive knowledge and
powerful logic about novel concepts are effectively injected into our model through
novel concept imagining and region-level editing. Furthermore, powered by the
similarity-based filter, our synthetic data proves to be highly effective. Com-
pared with SAFE [59] which uses a similar framework, we only use around 25%
(on PASCAL-VOC) and 20% (on BDD-100K) of auxiliary data to achieve a
significant performance improvement. Further analysis is presented in Sec. 4.2.

4.2 Ablation Study

Number of Training Samples We conduct an extensive ablation study on
the quantity of synthetic data utilized, as illustrated in Tab. 2. We employ seven
sets of synthetic data with varying quantities as OOD samples, using PASCAL-
VOC as the ID dataset. Features are extracted and the OOD detector is trained
based on the same Faster R-CNN checkpoint for each set. It is noteworthy that
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Table 3: We study the impact of associating varying numbers of imagined novel ob-
jects with each ID object. Taking PASCAL-VOC as the ID dataset, we report the
performance on MS-COCO/OpenImages datasets.

#Sample 3 4 5 6 7 8

FPR95↓ 36.96/13.58 37.13/13.15 37.31/12.82 36.87/13.25 37.91/13.53 37.13/13.15
AUROC↑ 86.56/95.54 86.63/95.51 86.46/95.47 86.51/95.37 86.43/95.35 86.44/95.56

Table 4: We randomly sample the same numbers of OOD features as the main ex-
periment instead of using the feature filter (denoted as w/o filter), and evaluate on
multiple datasets. The obtained results demonstrate the effectiveness of the proposed
data filter.

Method
ID:PASCAL-VOC ID:BDD-100K

MS-COCO OpenImages MS-COCO OpenImages

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

w/o filter 39.29 85.46 13.68 95.22 25.45 93.17 15.32 95.83
Ours 36.44 86.52 13.34 95.37 22.67 95.44 12.96 96.26

as the number of samples decreases from 14k to 2k, the performance does not
deteriorate but rather maintains stable and superior results. This highlights our
method’s data efficiency (SAFE used 16k samples). Combined with our feature
similarity-based filtering strategy as in Sec. 3.2, a small number of high-quality
OOD samples with visual similarity directly promotes the optimization of precise
decision boundaries to achieve stable improvements.

Meanwhile, we use the same detector checkpoint to assess the parallel base-
line, SAFE [59], and get the performance of 50.86/23.60 on FPR95 and
78.15/91.42 on AUROC. SAFE augments about 16k images and extracts
more than 100k instance-level features as OOD samples. In contrast, our ap-
proach utilizes fewer synthetic images and extracts only one instance-level fea-
ture from the edited novel object in each synthetic image as an OOD sample,
resulting in significantly superior performance compared to SAFE [59].

Number of Concepts to Imagine We employ in-context learning to guide
LLM in associating new objects for driving image editing. For each ID obejct, the
LLM connects a steady stream of novel objects. We further explore the impact
of the number of corresponding novel objects for each ID object on data per-
formance. We randomly sample different numbers of novel objects from LLM’s
responses for each ID object. As shown in Tab. 3, the performance remains sta-
ble despite changes in the number of concepts, further highlighting the stability
and robustness of our synthetic data.

SAM-based Refiner As mentioned in Sec. 3.1, we propose to utilize SAM-
based refiner to correct the bounding boxes of novel objects to obtain higher-
quality instance-level OOD features. Therefore, we comparatively remove the
proposed refiner and directly used the corresponding editing masks as bound-



Can OOD Object Detectors Learn from Foundation Models? 11

0.8 − 0.9 0.7 − 0.8 0.6 − 0.7 0.5 − 0.6 < 0.5> 0.9

In
iti
al

Sy
nt
he
tic

D
iff
-m
ap

In
iti
al

Sy
nt
he
tic

D
iff
-m
ap

1.0 0.0

Fig. 3: We show cases on six intervals of feature similarity (consistent with Eq. (5),
indicated at the bottom of the figure). The first line contains the corresponding initial
images, the second line contains the synthetic images with the corresponding boxes of
the novel objects (yellow boxes), and the third line contains the difference heat maps
of the latent feature maps extracted from the above image pairs (superimposed on the
corresponding synthetic images, denoted as Diff-map).

ing boxes to extract OOD features for training. Taking PASCAL-VOC as the
ID dataset, after removing the refiner, we obtain 39.55/13.72 of FPR95 and
85.94/95.37 of AUROC on MS-COCO/OpenImages datasets, which is bet-
ter than previous methods but worse than the results (Faster R-CNN + Ours
in Tab. 1) when using the refiner. This proves that OOD supervision signals
contained in the synthetic data are already extracted and achieve good results
under the localization of the fuzzy boxes, but more precise boxes mean higher
quality features. More demos and analyses of the SAM-based refiner are shown
in the supplementary material.

Similarity-based Filter The filter is designed to incorporate the most useful
data into training, and avoid unnecessary noise. The design is reflected in two
aspects: on one hand, the outlier object should process similar visual patterns to
the original object, thus being confusing and can facilitate learning; on the other
hand, over-high similarity may indicate failures of the editing process (e.g ., when
the concept is not an object). These considerations are applied as thresholding
on pairwise cosine similarity between object features, as in Eq. (5). As shown in
Tab. 4, this filter brings a notable improvement across benchmarks.
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Table 5: Comparing varied images as OOD samples for training, we first show some
synthetic object-centric images generated by Stable Diffusion (left side). Then with
PASCAL-VOC as ID dataset, we report the results obtained by using synthetic object-
centric images (denoted as object-centric images) and scene-level images with novel
objects but without bounding boxes (denoted as scene-level w/o boxes) as OOD sam-
ples to participate in training.

Object-centric Images
Data

MS-COCO OpenImages

FPR95↓ AUROC↑ FPR95↓ AUROC↑

object-centric images 51.99 81.48 20.70 93.85
scene-level w/o boxes 48.01 82.38 18.61 93.44

Ours 36.44 86.52 13.34 95.37

To provide more insights on the choices of filtering thresholds, we display
some cases in different intervals of feature similarity in Fig. 3. We show the
synthetic images, the corresponding initial images, and the difference between
feature maps (denoted as Diff-map), respectively. The Diff-maps prove that the
edited area is sensitively attended to by the model. But for images with extremely
high similarity (> 0.9), they always contain some editing failures and blurs. As
illustrated on the top of the first column in Fig. 3, it is not intuitively evident
what the ship has been edited into (the target object is a raft). Besides, as
the similarity upperbound decreases, we progressively obtain more realistic and
reasonable images. But note that when the similarity is excessively low, as seen
in the last column of Fig. 3, the objects are edited into the corresponding text or
an unnatural object, leading to image distortion. This strongly supports the idea
that the quality and usability of edited images are closely connected to visual
similarity. More cases and analyses are presented in the supplementary material.

4.3 Discussions on Outlier Synthesis

Scene-level Editing Matters Through regional-level editing, we replace the
ID object with a novel object with a bounding box and ensure consistent context
information. However, some simpler methods based on foundation models also
achieve the acquisition and use of OOD data. For example, Dream-OOD [13] uses
well-trained text-conditional space and diffusion model to synthesize realistic
object-centric data for promoting OOD image classification. Similarly, keeping
other settings unchanged, we use our novel concepts to drive Stable-Diffusion
instead of Stable-Diffusion-Inpainting [49] to synthesize novel images, which are
also processed and filtered by our proposed refiner and filter (some synthesized
images are shown in Tab. 5), thereby participating in the training as OOD
supervision. However, as shown in Tab. 5 (object-centric images), the synthetic
novel object-centric images do not aid in training and result in poor performance,
even though they possess high visual quality. This clearly validates our decision
to edit scene-level images rather than composing new ones, and highlights the
significance of maintaining contextual consistency.

Additionally, we examine the possibility of using the edited scene-level image
as a whole (ignoring the boxes) as OOD samples in the training process. The
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object similarity = 0.617

Context EditingInitial image

novel objects
with same context

novel objects
with novel context

object similarity = 0.727

object similarity = 0.361 (-0.255) object similarity = 0.475 (-0.252)

1.0 0.0

Fig. 4: We edit the context of the synthetic data (in blue box) so that the images con-
tain novel objects and novel context (in orange box). Then we calculate the similarity
between the instance-level feature of the corresponding objects from all synthetic im-
ages and the instance-level feature in the initial image (left, the bird). The similarities
and the corresponding difference maps are shown in the figure.

results, as depicted in Tab. 5 (scene-level w/o boxes), are significantly inferior
compared to our method’s performance. This demonstrates that controllable
bounding boxes are indispensable in this task.

Context Consistency Matters Given the importance of scene-level synthesis
as discussed in the previous paragraph, we study the factors that make scene-
level editing indispensable, and find context consistency to be a crucial one.
Besides calculating the similarity between ID/OOD object pairs before/after
box-conditioned editing, we also try further editing parts of the background of
the already edited images, and also calculate its object similarity with the initial
object. As shown in Fig. 4, even small editing on parts of the background (out
of the object boxes) can make foreground objects ‘look’ notably different as
perceived by the detector. This highlights the importance of keeping the context
unchanged when synthesizing outlier samples, in that if the context is changed,
the model easily identifies the object as OOD and cannot break the context bias.

5 Discussion

What Type of OOD Data Matters? We are the first to explore how to edit
scene-level images to include novel categories, which contain annotation boxes
and ensure context consistency, facilitating OOD object detection. The achieved
state-of-the-art performance (Tab. 1) benefits from the optimization of decision
boundaries driven by high-quality OOD features. Our exploration demonstrates
that annotation boxes and context consistency are particularly important for syn-
thesizing high-quality OOD instances. On the one hand, high-quality annotation
boxes provide the possibility to extract high-quality instance-level features from
scene-level images, while unrefined boxes (Sec. 4.2) or discarded boxes (Tab. 5)
will have a negative impact on performance. On the other hand, context con-
sistency ensures the most effective OOD features are not interfered by different
contexts and selected for utilizing (Fig. 4).
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How to Synthesize Suitable OOD Data? We are the first to build an au-
tomatic, transparent, and low-cost pipeline (Sec. 3.1) for synthesizing scene-level
images containing novel objects with annotation boxes and context consistency.
It benefits object detectors’ robustness and reliability to unseen data and sets up
clear state-of-the-art on multiple OOD object detection benchmarks. Specifically,
we organically combine and cleverly use different foundation models [1, 30, 49]
(Sec. 3.1) to distill open-world knowledge and inpaint the existing scenes for
simulating real OOD scenarios. In addition, our design takes into account the
instability of the current foundation models and can release better potential per-
formance in the future development of foundation models.

How to Select Suitable OOD Data? We are the first to explicitly decouple
OOD data synthesis and selection. On the one hand, we ensure the separability
of the synthetic objects in semantic concepts through open-world knowledge
provided by LLMs (Sec. 3.1). On the other hand, we ensure the similarity of ID
and OOD objects in visual patterns (Sec. 3.1), thereby optimizing the precise
decision boundary. This line of thinking has the potential to facilitate more
open-world solutions.

Broader Impacts Beyond showcasing engineering success via effectively com-
bining specific foundation models, our work uncovers the untapped potential of
the text-to-image generative models and visual foundation models in pushing for-
ward the OOD object detection task to effectively leverage the off-the-shelf open-
world data knowledge [5,31,66]. More importantly, our work establishes a bridge
between OOD object detection and the latest advancements in deep learning,
enabling it to benefit from ongoing developments, go beyond isolated academic
practice, and resolve practical challenges in open-world applications. Meanwhile,
automating novel data generation and curation will inspire more tasks in more
modalities, such as in visual-language [44,58] and 3D vision [8, 37,64].

6 Conclusion

In this paper, we investigate improving OOD object detection by distilling open-
world data knowledge from text-to-image generative models. We develop an
automatic and cost-effective data curation pipeline, SyncOOD, that leverages
foundation models as tools to obtain meaningful open-set data from generative
models. Through extensive studies, we discover that object boxes and context
consistency of the generated data contribute to the improvement of OOD object
detection performance. Our comprehensive experiments demonstrate that Syn-
cOOD not only advances the state-of-the-art in OOD object detection but also
emphasizes the untapped potential of utilizing large-scale generative models for
enhancing the robustness of machine learning systems in open-world settings. As
an initial exploration in leveraging foundation models for OOD object detection,
we hope our promising results encourage further research in advancing this area
in the future.
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