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In this supplementary material, we provide additional details on implemen-
tation, overall architecture, ablation study, and qualitative visualization. Sec. A
illustrates the implementation details in our Target-Aware Projection (TAP)
module and 3D trackers (i.e., SiamDisst and MemDisst). Sec. B details the
overall architecture of our proposed 3D trackers including both SiamDIsst and
MemDisst. More ablation studies are conducted in Sec. C. More tacking results
w/ limited training data is shown in Sec. D. The additional results is presented in
5. Sec. F shows the qualitative visualization of the 3D tracking results and pro-
jected 2D images w/ or w/o target-aware interaction generated by our approach.
We discuss the limitation and future work in Sec. G.

A Implementation Details

For the TAP module, it consists of a backbone network, a lightweight cross-
attention module C and a CNN-based head g. The backbone network and the
head g follow the same implementation in [8]. The lightweight cross-attention
module C is implemented as a simple transformer layer with 2 heads and 96
hidden dimensions. The matching module is used to extract target-aware search
features, which are further input to the voxel-based head in SiamDisst or point
cloud (PC) based head in MemDisst for 3D box prediction. Note that the memory
mechanisms used in STNet [3] and MbpTrack [9] are different, i.e., STNet mainly
focuses on sampling memory points from the initial template frame and the
previous frame, while MBPTrack samples memory points from three historic
frames for matching. Without any modifications, we follow the same memory
sample mechanisms in STNet and MBPTrack to sample the memory points for
training our TAP modules used in SiamDisst and MemDisst, respectively. The
hyper-parameter λ is set to 1.0 for MemDisst and 0.1 for SiamDisst.

Following one pass evaluation [5], we use Precision and Success metrics to
evaluate the 3D tracking performance. Specifically, the Precision metric calcu-
lates the AUC for the distance between the centers of the predicted 3D bounding
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Fig. 1: The overall architecture of the proposed MemDisst. Note that SiamDisst shares
a similar overall architecture with MemDisst, except that it drops the mask linear
projection θ(·) since the template used in SiamDisst is well cropped. The dashed and
solid lines indicate the steps used in the training and inference stages, respectively.

Variants Learnable TAP Unlearnable TAP IoU Weighting succ./prec.
SiamBase ✓ ✓ 63.5/75.0
SiamBase ✓ 56.4/66.3
SiamBase ✓ ✓ 61.1/72.3
SIamBase ✓ 56.0/65.1

Table 1: Comparisons of our SiamBase with various strategies.

box and the ground-truth box from 0 to 2 meters. The Success metric evaluates
the IOU between the two 3D bounding boxes. All datasets use the same Precision
and Success metrics for evaluation.

B Architecture

The overall architecture of our 3D trackers (i.e., SiamDisst and MemDisst) is
shown in Fig. 1. The memory frames can be constructed with a well-cropped tem-
plate PC in SiamDisst or contextual memory frames in MemDisst. The matching
distillation and initialization with 3D pre-trained weights are denoted as dashed
lines, which are only used during the training stage. The proposed SiamDisst
and MemDisst can run efficiently at 25 and 90 FPS on a single RTX-3090 GPU,
respectively.

C More Ablation Studies

Unlearnable Proj. w/o IoU weighting. In Table 1, following the same com-
parison in the main paper, for unlearnable TAP, we remove the learnable pro-
jection module in the TAP and use the z-axis value as the projected feature in
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Distillation Method λ succ./prec.
IoU-guided Match. Distillation 0.1 63.5/75.0

Feat.-based Distillation 0.01 59.41/70.11
Feat.-based Distillation 0.1 61.9/72.6
Feat.-based Distillation 0.5 58.6/69.9
Feat.-based Distillation 1.0 56.2/67.1

Table 2: Comparisons of our IoU-guided matching distillation with feature-based dis-
tillation on SiamDisst.

Variant 3D Pre-train. 2D Distill. Car Pedestrian Van Cyclist
SiamBase ✓ 72.5/83.7 52.7/80.1 60.3 69.3 73.9/94.2
SiamBase ✓ ✓ 73.7/85.1 58.4/83.9 63.5/75.0 76.9/94.5
MemBase ✓ 73.1/85.2 68.2/93.6 63.5/76.5 75.8/94.2
MemBase ✓ ✓ 74.1/85.6 69.1/94.1 66.6/79.3 77.2/94.7
Table 3: Component analysis of SiamDisst and MemDisst on the KITTI dataset [2].

the 2D image plane for each of the 3 image channels. The unlearnable TAP w/
IoU weighting obtains inferior performance to our full variant (learnable TAP
w/ IoU weighting), which is mainly because the projected images are not good
enough to provide more reliable 2D features for distillation. Without using the
IoU weighting, the performance is severely degraded.
Feature-based distillation. Similar to the previous feature-based distillation
[1,4,7], we use the 2D template and search features to directly supervise the 3D
template and search features, which can be formulated as:

L =
λ

2
(L1(H(f̂t), f̃t) + L1(H(f̂m), f̃m)), (1)

where λ is a scaling hyper-parameter and is also used in our loss (Eq. (6) in Main
paper), and H(·) is a learnable linear projection to align the 3D dimension to be
consistent with the 2D dimension. We test various choices of λ for the feature-
based distillation in Table 2 for a fair comparison. Our IoU-guided matching
distillation outperforms the optimal feature-based distillation with a margin of
1.6%/2.4% on KITTI-Van. Moreover, our IoU-guided matching distillation has
no need to learn an additional linear projection H(·) for dimension alignment.
Component analysis. In Table 3, we show the component analysis results on all
categories of the KITTI dataset [2]. With the usage of 2D matching distillation,
our approaches obtain consistent improvements over all the categories, which
demonstrates the effectiveness of our matching knowledge transfer.

D Learning in the Low-Data Regime

We test the robustness of our SiamDisst in the low-data regime. We subsample
the original KITTI-Van training set into various subset percentages. The TAP
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Training subset percentage 15% 30% 60% 100%
No. training frames. 299 598 1196 1994

baseline, random 31.7/35.7 40.7/43.1 53.4/60.0 55.6/64.3
+ 3D pre-training 33.1/36.8 42.8/46.5 54.6/64.3 60.3/69.3

+ 2D distillation (SiamDisst) 37.1/40.3 46.5/50.6 57.7/66.4 63.5/75.0
Table 4: Comparisons of variants trained with different training percentages on
KITTI-Van. The best performance (success/precision) is in bold. Our full variant
SiamDisst achieves favorable performance in the low-data regime (e.g., 15% and 30%).

(a) Raw Search PC (b) t-SNE Visualization of Point Feats. (c) Bird-View Visualization

Target
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Fig. 2: We input the (a) raw search PC from KITTI-Pedestrian to the matching module
of SiamDisst to extract target-aware search features, which are visualized in (b) and (c).
The points with a similar color mean that their point features are close in the feature
space based on t-SNE. The red bbox in (b) and (c) is predicted by our DiamDisst.

module is re-trained in each training situation for fair evaluation. We use the
original testing set in KITTI-Van for evaluating all variants. Table 4 shows that
by adding the 2D matching distillation, our approach achieves large performance
gains even for low amounts training data.

E More Results

We follow the evaluation in MBPTrack and train our models with the larger
dataset nuScenes (see Table 5). MemDisst outperforms MBPTrack, and ours is
lightweight (6.22M), runs faster (89FPS) than MBPTrack (60FPS, 7.38M) and
M2-Track (57FPS). Notably, MemDisst improves a lot in ’Trailer’, showing its
potential as an effective baseline for learning with limited data. In addition, fpr
the speed comparison, memDisst is more lightweight than MBPTrack (6.22M
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(a) Raw Search PC (b) t-SNE Visualization of Point Feats. (c) Bird-View Visualization

Fig. 3: We input the (a) raw search PC from KITTI-Cyclist to the matching module of
SiamDisst to extract target-aware search features, which are visualized in (b) and (c).
The points with the similar color mean that their point features are close in the feature
space based on t-SNE. The red bbox in (b) and (c) is predicted by our DiamDisst.

Ground Truth MemDisst MbpTrack

Fig. 4: Visualization of the qualitative tracking results on the sparse scenes (i.e.,
KITTI-Van). Best viewed on a screen.

vs 7.38M) and uses a more efficient backbone (PointNet vs DGCNN), making
it significantly faster. For SiamDisst, it uses the same hierarchical backbone in
STNet and extracts dense points. The global attention in SiamDisst increases
the complexity, thus limiting the speed (25fps).

F Qualitative Visualization

Tracking results. We visualize the qualitative tracking results in Fig. 4. We
compare our MemDisst with the contextual memory-based MBPTrack. As can
be seen, our MemDisst can effectively handle sparse LiDAR scans and more
accurately predict the 3D bounding box. This can explain why our MemDisst
can significantly outperform MbpTrack with a large margin of 5.3%/6.6% on
KITTI-Van.
t-SNE visualization. We visualize the extracted updated search features in
Fig. 2 and Fig. 3 using t-SNE [6]. The examples are sampled from KITTI-
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Method FPS Car(64159) Ped.(33227) Truck(13587) Trailer(3352)
P2B 46 38.8/43.2 28.4/52.2 43.0/41.6 49.0/40.1
BAT 65 40.73/43.29 28.83/53.32 45.34/42.58 52.59/44.89

M2-Track 57 55.85/65.09 32.10/60.92 57.36/59.54 57.61/58.26
MBPTrack 60 62.5/70.4 45.3/74.0 62.2/63.3 65.1/61.3
MemDisst 89 63.3/71.5 46.6/74.9 63.5/64.7 67.5/63.4

Table 5: Comparison on the nuScenes dataset.

KITTI-Van

KITTI-Cyclist

Fig. 5: Visualization of the projected 2D contextual memory frames (i.e., the top row),
search frames (middle) and average attention maps (bottom) obtained by MemDisst.
The red box indicates the ground-truth (GT) 2D box projected from the GT 3D box.
The blue box denotes the prediction of the 2D pre-trained OSTrack [10].
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Pedestrian and KITTI-Cyclist, which contains various distractors during the
online tracking. The search features extracted by our SiamDisst can well identify
the target and distractors, which well supports the following 3D bbox prediction.
Visualization of the projected 2D search frames, contextual memory
frames and attention maps. In Fig. 5, we sample memory and search frames
from (t − 1)-th frame to (t + 5)-th frame and t-th frame to (t + 6)-th frame
for visualization, respectively. For the (t-th) prediction in the search frame, the
previous k memory frames are used for matching, and the average attention
maps are shown in the bottom. Our TAP module can effectively project 3D
point cloud into 2D space, which leads to accurate 2D prediction obtained by
the 2D pre-trained OSTrack.

G Limitation

In this paper, we improve the power of 3D point cloud tracking via 3D pre-
training and 2D matching distillation. We demonstrate that a simple yet effective
target-aware projection (TAP) module can be used to effectively bridge the
gap between 2D and 3D tracking. However, this TAP module is still trained
separately in the first stage of training. Although it is lightweight (0.49MB) and
the training is efficient, it is still not convenient enough to perform the two-stage
training on all the datasets. One naive solution is that we train the TAP module
jointly with the 3D tracker in the 3D training stage, but this may lead to a
trivial solution since the TAP module in the 2D teacher may easily adapt to the
3D tracker via the joint learning, rather than the 3D tracker is guided by the 2D
teacher. In the future, we aim to solve this limitation and provide an end-to-end
learnable solution.
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