
Boosting 3D Single Object Tracking with 2D
Matching Distillation and 3D Pre-training

Qiangqiang Wu1 , Yan Xia⋆2,3 , Jia Wan4 , and Antoni B. Chan1

1 Department of Computer Science, City University of Hong Kong
2 Technical University of Munich

3 Munich Center for Machine Learning (MCML)
4 School of Computer Science and Technology, Harbin Institute of Technology,

Shenzhen
qiangqwu2-c@my.cityu.edu.hk, yan.xia@tum.de, jiawan1998@gmail.com,

abchan@cityu.edu.hk

Abstract. 3D single object tracking (SOT) is an essential task in au-
tonomous driving and robotics. However, learning robust 3D SOT track-
ers remains challenging due to the limited category-specific point cloud
data and the inherent sparsity and incompleteness of LiDAR scans. To
tackle these issues, we propose a unified 3D SOT framework that lever-
ages 3D generative pre-training and learns robust 3D matching abili-
ties from 2D pre-trained foundation trackers. Our framework features a
consistent target-matching architecture with the widely used 2D track-
ers, facilitating the transfer of 2D matching knowledge. Specifically, we
first propose a lightweight Target-Aware Projection (TAP) module, al-
lowing the pre-trained 2D tracker to work well on the projected point
clouds without further fine-tuning. We then propose a novel IoU-guided
matching-distillation framework that utilizes the powerful 2D pre-trained
trackers to guide 3D matching learning in the 3D tracker, i.e., the 3D
template-to-search matching should be consistent with its corresponding
2D template-to-search matching obtained from 2D pre-trained track-
ers. Our designs are applied to two mainstream 3D SOT frameworks:
memory-less Siamese and contextual memory-based approaches, which
are respectively named SiamDisst and MemDisst. Extensive experiments
show that SiamDisst and MemDisst achieve state-of-the-art performance
on KITTI, Waymo Open Dataset and nuScenes benchmarks, while run-
ning at above real-time speed of 25 and 90 FPS on a RTX3090 GPU.

1 Introduction

3D Single Object Tracking (SOT) has emerged as a basic 3D task for numerous
practical applications in autonomous driving [30,67], robotics [41,66] and virtual
reality [1]. Given a target described as a 3D bounding box (bbox) in the first
frame, 3D SOT aims to track the target across all the frames in the 3D scene by
predicting the bbox pose and position, which can be considered as a 3D extension
of the 2D SOT task [62] but using a different input modality of 3D point clouds.
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Fig. 1: Comparison of our SiamDisst and MemDisst to state-of-the-art 3D SOT on
the Van category of the KITTI dataset [18]. Compared with Siamese-based trackers
(plotted as squares), our SiamDisst achieves the best performance while running at
the real-time speed of 25 FPS. Our lightweight MemDisst outperforms the other con-
textual memory and motion-based approaches (plotted as circles), setting new SOTA
performance on KITTI-Van, and runs efficiently at 90 FPS. This demonstrates that
our designs effectively boost 3D matching with limited category-specific training data
(e.g., the KITTI-Van training set only contains 1994 examples).

As illustrated in Fig. 2, existing 3D SOT methods [38,62,73] mainly focus on
learning robust 3D tracking models from sparse point cloud datasets [5,18]. For
example, 3D siamese trackers [27,33,47,77] follow a siamese matching paradigm
for accurate localization. To leverage more historical cues, MBPTrack [70] further
extends this framework to a contextual memory-matching mechanism. Although
the 3D matching models proposed by these methods play a key role in obtaining
favorable performance [5,18], the sparsity and incompleteness of the point cloud
training limits their abilities. Moreover, a paucity of large-scale category-specific
3D tracking datasets leads to insufficient training data for effectively learning
the 3D matching modules in existing 3D trackers.

In contrast to the 3D SOT task, various large-scale annotated video datasets
[29] are available for training 2D SOT methods. Existing 2D deep trackers can
fully benefit from the feature backbones learned from 2D image [22] or video
pre-training methods [62], enabling the learning of robust matching modules for
2D SOT on videos. The state-of-the-art trackers [38,62,73] with strong matching
abilities show excellent tracking results even without using online memory mech-
anisms. With the remarkable success of 2D SOT, our work is motivated by the
following questions: 1) Inspired by 2D SOT, can we design a general and effective
3D SOT framework that benefits from 3D pre-training? 2) Can we transfer the
well-learned matching ability of state-of-the-art 2D trackers to 3D matching in
3D SOT trackers, so as to facilitate training from limited category-specific point
cloud data?

The main challenge of achieving the transfer of the 2D matching ability
lies in two aspects. First, there is a significant misalignment between the input
modalities for 2D and 3D trackers, dense 2d images and sparse 3d point clouds,
respectively. Note that in the 3D SOT setting, only the single modality of point
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Fig. 2: The comparison of 3D SOT frameworks (a) the previous Siamese 3D SOT
trackers [27, 47, 77] focus on learning the 3D matching module from limited category-
specific point cloud (PC) training data. (b) The proposed 3D SOT framework bridges
the gap between 2D and 3D SOT by using our designed target-aware projection (TAP)
module, which enables the 2D tracker [73] trained on large-scale 2D videos to operate
well on the point clouds. The well-learned 2D matching pattern is further distilled to
facilitate the 3D matching learning. Note that only the 3D-related modules (denoted as
blue components) are optimized during the distillation training stage. The 2D tracker
and TAP module are not used during online inference to increase speed.

cloud data is used as input, which makes it difficult to directly apply the current
2D SOT trackers. Second, how to effectively transfer the 2D matching knowledge
in pre-trained 2D trackers to guide the learning of the 3D matching in 3D trackers
is unclear given the differences in internal representations between 2D and 3D
SOT, i.e., 2d dense feature maps and unordered 3D point embeddings.

To tackle the aforementioned challenges, we propose a general 3D SOT frame-
work that can effectively utilize knowledge learned in 2D SOT, which is illus-
trated in Fig. 2(b). We first propose to align the different input modalities of 2D
and 3D trackers via a learnable target-aware projection (TAP) module, which
takes the raw point cloud as the input and projects them into the 2D image space.
These projected images are suitable for 2D target matching and 2D bounding
box regression by 2D pre-trained trackers, i.e., no fine-tuning of 2D trackers is
required. Secondly, we propose a matching distillation approach that uses the
knowledge in the high-quality 2D matching patterns from the 2D tracker as guid-
ance for learning the matching patterns for 3D SOT. The proposed framework
employs a standard Vision Transformer (ViT) as the matching module, which
can naturally benefit from 3D pre-training approaches [42,49] and also creates a
design that is consistent with the 2D SOT trackers (e.g., OSTrack [73]) for more
natural distillation of matching knowledge.

We implement our framework with both Siamese [26, 27] and contextual
memory-based [70] matching paradigms, which are respectively named SiamDisst
and MemDisst. Extensive experiments demonstrate that our SiamDisst achieves
significant improvements over its baseline, and MemDisst sets new state-of-the-
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art performance on KITTI, while respectively running at a fast speed of 90 FPS
on a single RTX3090 GPU.

In summary, the main contributions of our work are:
– We build a general SOT framework that employs a standard ViT as the

target matching module, which is consistent with dominant 2D trackers [62,
73] for better knowledge transfer of matching patterns, and meanwhile can
naturally benefit from 3D pre-training.

– We propose a lightweight target-aware projection (TAP) module to bridge
the gap between the 2D and 3D tracking domains, which enables 2D pre-
trained trackers to be operated on point cloud data without additional 2D
tracker fine-tuning.

– We propose an IoU-guided matching distillation approach to guide 3D SOT
learning, which facilitates transfer of knowledge from powerful 2D pre-trained
foundation trackers to the 3D tracker. We show that the matching distillation
facilitates the 3D model learning in the low-data regime.

2 Related Work

3D Single Object Tracking. Inspired by the great success in the 2D tracking
community, much progress has been made in 3D SOT [43]. The pioneering work
SC3D [19] proposes the first 3D Siamese network to compute the similarity be-
tween the template and 3D candidate proposals. However, the time-consuming
matching pipeline in SC3D is not end-to-end trainable, thus degrading its perfor-
mance on 3D tracking benchmarks [5,18,53]. Inspired by the 2D region proposal
network (RPN) [20,36], P2B [48] proposes a 3D RPN to generate high-quality 3D
proposals, which achieves better tracking results while running at the real-time
speed. BAT [77] extends P2B with a box-aware feature design, which provides a
strong prior of the target shape. In contrast to previous approaches that directly
regress 3D bboxes from a sparse point cloud, V2B [26] proposes a voxel-based
localization head to localize the target in the Bird’s Eye View (BEV).

With the development of transformers, 3D transformer SOT trackers (e.g.,
LTTR [8], PTTR [79] and CMT [21]) are designed for target-aware feature learn-
ing. Further extensions include iterative transformer blocks [27], historical cue
modeling [33], contextual memory [69, 70], motion prediction [68, 78] and ad-
vanced architecture design [16, 64]. Despite these successes, learning robust 3D
tracking models is still limited by the sparse and insufficient category-specific
point cloud data. In this work, our aim is to leverage off-the-shelf 2D trackers
trained on large-scale video data for enhancing 3D trackers, thus alleviating the
current data bottleneck in 3D SOT.
2D Single Object Tracking. Traditional 2D SOT [10,17,23,39,59,60] follow a
correlation filter tracking framework due to its fast running speed and favorable
tracking performance. With the development of the deep learning, much progress
has been made in designing convolutional neural networks for video object track-
ing. Specifically, SiamFC [3] and SINT [50] employ a siamese neural network
and treat tracking as a template matching problem. Based on SiamFC, many
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improvements have been made, including architecture design [14,35,36,76], un-
supervised representation learning [56, 61, 62] and template updating [4, 72, 75].
Recent advances using transformers [7, 9, 38, 63, 71, 73] achieve state-of-the-art
performance on popular tracking benchmarks [13, 25, 32, 65]. The great success
in 2D tracking significantly inspires the development in the 3D tracking commu-
nity. However, there is no previous work trying to bridge the gap between the
2D and 3D tracking areas. In this paper, we propose a lightweight target-aware
projection (TAP) module to bridge the gap between 2D and 3D SOT, and use
the 2D tracker to effectively guide the 3D learning.
Knowledge Distillation. Knowledge distillation (KD) aims to transfer the
knowledge from a teacher model to a student model. Previous response-based
KD approaches [24,54,55,80] focus on using the final output of the teacher model
to supervise the training of the student model. To supervise the intermediate
feature learning, various feature-based KD approaches [2, 12, 28, 37, 45, 51] have
been proposed. FitNet [51] first uses the intermediate representations learned
by the teacher as hints to distill a student model. However, the intermediate
supervision is unsuitable in our cross-modality distillation case, since the 2D and
3D representations have a large gap. Unlike the above approaches, relation-based
KD [34,44] aims to leverage the relationships between various samples or feature
maps, e.g., FPS [74] uses the inner products of feature maps for distillation.
However, naively applying feature correlation as supervision is not helpful in
2D-to-3D tracking, which is due to the transfer noise and causes performance
degradation (see Table 2). In this paper, we propose a novel IoU-guided matching
distillation approach for better 2D knowledge transfer, which is also the first
attempt to perform cross-modality transfer for 3D SOT.

3 Methodology

In this section, we first present our general 3D SOT framework with a standard
ViT as the target relation modeling module, which could naturally benefit from
3D self-supervised pre-training and be consistent with 2D pre-trained trackers
for better distillation. To use the 2D pre-trained model (frozen) for guiding 3D
matching, we introduce a lightweight target-aware projection (TAP) module to
bridge the domain gap between 2D and 3D tracking. Finally, we explore our
IoU-guided matching distillation to boost the 3D tracking performance.

3.1 Unified 3D SOT Framework

Revisit of 3D SOT. Given the 3D bbox in the first frame, the goal of 3D SOT
is to accurately predict 3D bboxes in the following frames. Existing Siamese
matching approaches [26, 47, 68, 77] mainly use the point cloud (PC) data p̂1 ∈
RN̂×3 cropped in the first frame as the template to predict the 3D bbox Bt ∈
R7 from the PC pt ∈ RNs×3 in the t-th search frame. N̂ is the number of
sampled target points within the annotated 3D bounding box, Ns is the number
of points in each search frame, and Bt is parameterized by its center coordinates
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Fig. 3: The pipeline converting 3D point clouds (PC) to 2D images using our target-
aware projection (TAP) module, followed by the 2D pre-trained tracker.

(x, y, and z), orientation θ and box size (width, height and length). Recent
approaches [69, 70] fully leverage contextual information and use more memory
frames {pi}ti=t−k to predict Bt, where k is the number of memory frames. Instead
of explicitly removing template points, a target mask set {Ui}t−1

i=t−k−1 is used to
identify the points within the 3D bbox, where Ui ∈ RNs×1.
Target matching module. For simplicity and consistency, we use m ∈ RNm×3

to represent the unified memory used in the above approaches, where Nm = N̂
in memory-less Siamese approaches and Nm = Ns × k in memory approaches.
We then obtain the search point features ft = ϕ(pt) ∈ RNs×C and memory point
features fm = ϕ(m) ∈ RNm×C by applying a point feature extractor ϕ(·) on pt

and m respectively. The current 3D SOT trackers mainly focus on designing a
robust 3D matching module M(fs, fm) to perform the target matching between
the search and memory point features. However,learning this matching module
is challenging due to the sparsity of LIDAR point clouds and the lack of sufficient
category-specific training data.

To tackle these issues, inspired by 2D SOT [62, 73], we propose to use a
standard ViT [11] for 3D matching since: 1) the standard ViT can benefit from
3D self-supervised pre-training (e.g., [42,49]), which eases the need for large-scale
3D annotated data for 3D SOT training; 2) it has the consistent target relation
modelling architecture (i.e,. ViT) with dominant 2D trackers, which could more
naturally transfer its 2D matching knowledge. The 3D matching process with
ViT is formulated as:

f̂t = M(ft, fm + θ(U)), (1)

where the output f̂t ∈ RNs×C is the updated search features output from the last
layer of M, θ(·) is a learnable linear mapping that converts the 1-dim masks into
the C-dim feature maps. For siamese tracking paradigms, we drop this operation
since the template is well cropped. Finally, the matching output f̂t is fed to the
prediction head [26, 27, 70] for predicting the 3D bbox Bt. Briefly, we call the
memory-less Siamese-based and memory-based approaches with our standard
ViT matching module as SiamBase and MemBase (see Supp. for more details).
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3.2 Target-Aware Projection Module

Although SiamBase and MemBase can naturally benefit from 3D self-supervised
pre-training [42, 49], their performance is still limited due to the absence of
large-scale 3D datasets (e.g., ShapeNet [6] only contains 55 object categories
with 50k point clouds) for obtaining effective pre-training weights. To further
improve the 3D tracking performance, we propose to employ a powerful 2D
pre-trained tracker (denoted as T2D) as the distillation teacher to guide the
3D matching learning in SiamBase and MemBase. However, in 3D SOT, only
the single modality of point cloud data is available, making it hard to directly
utilize current 2D SOT trackers. To bridge the modality gap between 2D and
3D tracking, we thus propose a learnable target-aware projection (TAP) module
in this subsection, illustrated in Fig. 3.
3D-to-2D Projection. Using the domain knowledge that the objects-of-interest
for 3D tracking are typically on the ground plane (at similar fixed z-level heights),
we project the search point cloud pt from the orthogonal view along the z axis.
For each point, we round down the (x, y) coordinates to obtain its location on
the 2D xy plane, i.e., from the bird-eye view (BEV). We denote this 3D-to-2D
projection as ψ(pt).
Target-Aware Projection. Based on [58], the point features ft can be mapped
to the 2D plane based on the corresponding projection ψ(pt). However, simply
projecting search features to the 2D plane is not optimal since it does not consider
any target information, which may not well support the subsequent 2D matching
(see Table 2). Therefore, we use a cross-attention module C here to obtain more
effective target-aware search features:

f∗t = C(Q(ft),K(fm + θ(U) + E(m)), V (fm + θ(U) + E(m))), (2)

where Q, K and V are query, key and value embedding modules, respectively.
E is the 3D positional embedding module. We project the target-aware search
features f∗t ∈ RNs×C into the 2D plane via ψ(pt) and obtain the projected
feature maps with C channels, which are further input to a lightweight CNN
g [58] to reduce its channel dimension, yielding the projected search image:

It = g(ψ(pt)) ∈ RHt×Wt×3, (3)

where Ht and Wt are height and width of the projected search image. The same
operations are made on each memory frame and its corresponding features, thus
we obtain k projected memory images {Iim}t−1

i=t−k−1, where Iim ∈ RHm×Wm×3.
TAP training. The TAP module is trained via a simulated 2D tracking process
on the projected search and target images, so that the projected images can
obtain good 2D tracking performance. As illustrated in Fig. 3, the projected 2D
search and memory images are input to a ViT-based pre-trained 2D tracker (e.g.,
OSTrack [73]) for 2D bounding box regression. Specifically, the input images are
flattened into a sequence of 2D patches, projected into image embeddings, and
then concatenated along the spatial dimension to input to the 2D ViT model
for joint feature extraction and matching. The updated search features output
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(a)

(b)

(c)

Fig. 4: Visualization of the projected search image It obtained by our TAP module on
(a) KITTI-Pedestrian and (b) KITTI-Cyclist. (c): The attention maps are generated
via template-to-search matching from the 2D tracker on (b) KITTI-Cyclist. The red
box indicates the ground-truth (GT) 2D box projected from the GT 3D box. The blue
box denotes the prediction of the 2D pre-trained OSTrack [73]. Based on the target-
aware search features, the TAP module can effectively encode the target region with
unique color and texture, enabling subsequent 2D matching.

from the last layer is input to the prediction head for 2D box regression, which
can be generally formulated as:

B2D
t , f̂2Dt , f̂2Dm = T2D({Iim}t−1

i=t−k−1, It), (4)

where B2D
t ∈ R4 is the predicted 2D bounding box in the projected search frame,

and (f̂2Dt , f̂2Dm ) are the updated 2D search and memory feature maps from the
last layer of the 2D tracker. Here we use OSTrack as the 2D pre-trained tracker,
and use its same 2D loss L2D [62, 73] to evaluate the simulated 2D tracking
result, thus providing supervision on the TAP module. The ground-truth 2D
bounding box G2D

t is obtained by projecting the corners of the ground-truth 3D
box to the projected search image via the 3D-to-2D projection ψ.

After training the TAP module, the projection process is aligned with the
2D tracker. Note that we only update the parameters of the TAP module while
keeping the parameters in the 2D pre-trained tracker T2D fixed, which makes
the TAP training more efficient, and less likely to overfit. We also visualize the
projected 2D search images in Fig. 4. The learned TAP module can support
accurate 2D matching in the projected search image space well via the pre-
trained OSTrack model, which shows the effectiveness of the proposed TAP
module.

3.3 IoU-guided Matching Distillation

We introduce how to distill the 2D matching knowledge in T2D to guide the
3D matching learning in our 3D SOT trackers, SiamBase and MemBase. In (1),
we obtain the updated 3D search features f̂t ∈ RNs×C and updated 3D memory
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features f̂m ∈ RNm×C output from the last layer of M. Similarly, the updated 2D
search and memory feature maps, f̂2Dt ∈ R

Ht
s ×Wt

s ×C and f̂2Dm ∈ R
Hm
s ×Wm

s ×k×C ,
are obtained via (4) in the last layer of 2D ViT, where s denotes the patch size
for patch embedding. The 3D and 2D features belong to different embedding
spaces, and thus directly guiding the feature embeddings of the 3D tracker using
the 2D tracker is not straightforward (see Supplementary). Instead, we use the
matching correspondences (between feature maps) used by the 2D tracker to
guide the matching correspondences (between feature vectors) of the 3D tracker.
3D-to-2D feature indexing. Given a search point coordinate in the search
point cloud pt, we index its corresponding 2D feature vector via the 3D-to-2D
projection ψ. Specifically, we first obtain its 2D location in the projected search
image. Then, we interpolate its 2D features f̂2Dt to its original spatial sizeHt×Wt

via bilinear interpolation, and finally index its feature vector via the projected
2D location. Based on the above 3D-to-2D feature indexing, we obtain the 2D
search and memory features, denoted as f̃t ∈ RNs×C and f̃m ∈ RNm×C , that
correspond to the 3D search and memory point clouds.
Matching distillation. Note that f̃t and f̃m are obtained from the 2D ViT in
the 2D tracker, which is well learned on large-scale 2D annotated videos, thus
providing more robust matching results than our 3D counterparts (SimBase and
MemBase) trained on limited category-specific point cloud data. Thus, we use
the 2D memory-to-search matching pattern to guided the 3D matching process:

Ldist = IoU(B2D
t ,G2D

t ) · L1(f̂tf̂
T
m, f̃tf̃

T
m), (5)

where f̂tf̂
T
m is the inner-product (matching) matrix between the 3D search and

memory features, and likewise for f̃tf̃Tm, and L1 is the L1 loss that calculates the
mean absolute error between two matrices. IoU(·, ·) calculates the intersection-
over-union between the predicted 2D box B2D

t and projected 2D ground-truth
box G2D

t , which measures the reliability of our 2D tracker, i.e. if the 2D matching
is reliable enough and predicts the 2D box accurately (i.e., with high IoU),
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this 2D matching pattern will be used more for guiding the 3D matching. We
also use the typical 3D box regression losses L3D in the siamese paradigm (i.e.,
STNet [27]) and memory-based paradigm (i.e., MBPTrack [70]) to supervise our
SiamBase and MemBase, respectively. The overall training loss is:

Loverall = L3D + λLdist, (6)

where λ is a hyperparameter. After matching distillation, we denote the updated
3D SOT trackers as SiamDisst and MemDisst. Note that the TAP module, the
2D pre-trained tracker and the matching distillation are only used during the
offline training stage to improve the 3D matching ability. During online inference,
these modules are removed, and only our 3D trackers SiamDisst and MemDisst
are required, which run at the real-time speed of 25 and 90 FPS, respectively.

4 Experiments

Implementation details. For training the TAP module, as illustrated in Fig.
3, we sample memory and search PCs as the input, and project them into the
2D images for further matching in the 2D tracker. We use OSTrack [73] trained
on large-scale 2D video datasets [13, 25, 40], as the 2D tracker, and freeze its
weights, thus leading to efficient TAP training. The original 2D loss in OSTrack
is used to evaluate the 2D predictions without modification. For TAP training,
we use a batch size of 8 with a learning rate of 1e-4 and a total epoch of 40. For
SiamDisst, we use the same hierarchical backbone network and 3D prediction
head in STNet [27] for initial PC feature extraction and 3D prediction. For
MemDisst, we use the same lightweight PointNet [46] with Point-MAE [42] as the
backbone, and use the prediction head and memory mechanism in MBPTrack
[70] for a fair comparison. We employ ViT-384-6 and ViT-96-3 as matching
modules for SiamDisst and MemDisst respectively, which is illustrated in Table
3. The hyper-parameter λ is set to 1.0. The training and testing settings of
SiamDisst and MemDisst are following their baselines STNet and MBPTrack.
More details on implementation can be found in the Supplementary.
Datasets and Evaluation. We use three 3D datasets, KITTI [18], nuScenes [5]
and Waymo Open Dataset (WOD) [53], for training and testing our proposed
approaches. The KITTI dataset contains 21 training video sequences and 29 test
sequences. Following previous work [19], the training set is split into three parts:
0-16 for training, 17-18 for validation and 19-20 for testing. Following [26,27,69],
we use nuScenes and WOD to test the generalization ablity of our approaches.
We follow the one one pass evaluation [31], which is widely used in previous 3D
SOT works [19,26,27,70], to report Precision and Success metrics for evaluation.

4.1 Ablation Study

Component analysis. We evaluate the effect of the two main components
used in our proposed framework: 3D pre-training and 2D matching distillation.
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Variant Baseline 3D Pre-training 2D Distillation Success Precision
SiamBase ✓ 55.6 64.3
SiamBase ✓ 60.3 69.3
SiamBase ✓ ✓ 63.5 75.0
MemBase ✓ 61.3 72.7
MemBase ✓ 63.5 76.5
MemBase ✓ ✓ 66.6 79.3

Table 1: Component analysis of SiamDisst and MemDisst. ‘Baseline’ indicates the
variant initialized with the random weights and trained from scratch.

Variant Succ./Prec.
SiamDisst 63.5/75.0

unlearnable TAP 61.1/72.3
TAP w/o target-aware interact. 61.2/73.1

2D distill. w/o IoU weight. 56.4/66.3

Pre-training Succ./Prec.
Point-MAE [42] 63.5/75.0

ReCon [49] 62.9/73.6
2D MAE [22] 60.5/69.9
DropMAE [62] 61.9/74.0

Table 2: Ablation studies of SiamDisst on KITTI-VAN: (left) variants of the TAP
module and distillation; (right) using different 3D pre-trained models.

The 3D pre-training means the usage of the default pre-trained Point-MAE [42]
weights for 3D initialization. As shown in Table 1, SiamDisst and MemDisst
with 3D pre-training achieve 5% and 3.8% improvements over the naive base-
lines regarding the precision metric. By applying the 2D matching distillation,
SiamDisst and MemDissst can be significantly improved, leading to 5.7% and
2.8% precision gains, which shows the effectiveness of our approach.
TAP module. We study several variants of the proposed TAP module: includ-
ing 1) unlearnable TAP: we remove the learnable projection module in the TAP,
and use the z-axis value as the projected feature in the 2D image plane (repeated
for each of the 3 image channels); 2) TAP module w/o target-aware design: we
remove the cross attention module C and separately project the template and
search images; Table 2 (left) presents the results. The unlearnable TAP obtains
inferior performance, which is due to the low-quality projected images and more
2D tracking failures. Without the IoU weighting, the unlearnable TAP also has
severely degraded performance (see Supplementary for more details). For the
target-aware design, we can observe 2.1%/1.9% gains by using it, which shows
that learning target-aware features is beneficial in the 2D projection stage.
IoU-guided matching distillation. In the IoU-guided matching distillation,
we use the IoU to measure the reliability of the 2D prediction. To test its effec-
tiveness, we remove this IoU weighting in (5) and show the comparison in Table
2 (left). The variant w/o the IoU weighting degrades the performance with large
margins of 7.1%/8.7%, which is mainly because the 2D matching distillation
may introduce some low-quality and inaccurate 2D matching patterns for the
3D matching learning, thus severely degrading the learning.
Comparison of 3D pre-trained weights. We use various pre-trained weights
to initialize the ViT in our 3D tracker and test them in Table 2 (right). The
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method matching module succ./prec. FPS
SiamDisst ViT-384-6 63.5/75.0 25
SiamDisst ViT-96-3 60.5/71.7 30
MemDisst ViT-384-6 66.7/79.1 78
MemDisst ViT-96-3 66.6/79.3 90

Table 3: Comparisons of our approaches with various matching modules.

generative 3D Point-MAE pre-training provides the best result. Note that Re-
Con [49] adds the contrastive learning in the multi-modality generative pre-
training, which may not be suitable in the pure point cloud tracking setting. We
also test two typical 2D pre-trained models, i.e., MAE [22] and DropMAE [62]
(see Supp. for details). Interestingly, our SiamDisst with DropMAE initialization
achieves competitive results, which indicates that the temporal matching ability
of DropMAE learned in 2D videos is also helpful for the 3D tracking task.
Lightweight or heavy matching module. We explore various matching mod-
ules used in SiamDisst and MemDisst in Table 3. Note that ViT-384-6 is built
from the first 6 layers of ViT-Base [11] with 384 hidden dimensions and 6 heads.
We also design a lightweight ViT-96-3 model with 4 heads for comparison. We
initialize ViT-384-6 with the official Point-MAE weights and rerun Point-MAE
pre-training to initialize ViT-96-35. In Table 3, SiamDisst benefits more from the
heavy ViT-384-6 while MemDisst achieves favorable performance even using the
lightweight ViT-96-3. This is because SiamDisst has no effective online memory
mechanism and heavily relies on its matching module. For MemDisst, the online
memory provides more historical cues for matching, which eases the need for a
heavy online matching module. Considering the speed-accuracy trade-off, we use
ViT-384-6 and ViT-96-3 for SiamDisst and MemDisst, respectively.

4.2 State-of-the-art Comparison

We compare the proposed SiamDisst and MemDisst with state-of-the-art 3D
trackers on the KITTI, nuScenes and WOD datasets. Specifically, for KITTI,
comprehensive comparisons are made with two groups of trackers: 1) memory-
less Siamese-based 3D trackers, SC3D [19], 3DSiamRPN [15], P2B [48], LTTR
[8], MLVSNet [57], BAT [77], PTT [52], V2B [26], CMT [21], PTTR [79], and
STNet [27]; and 2) contextual memory or motion prediction based 3D trackers,
TAT [33], DMT [68], M2Track [78], CXTrack [69], and MBPTrack [70].

As shown in Table 4, our memory-less tracker SiamDissst outperforms the
other Siamese 3D trackers by large margins in terms of both success and pre-
cision metrics. Specifically, the overall performance (Mean column) achieved by
SiamDisst is 66.2%/83.9%, which has significant improvements (4.9%/2.8%) over
the baseline tracker STNet and demonstrates the effectiveness of our proposed

5 We follow the same pre-training hyper-parameters, steps and dataset (ShapeNet [6])
with Point-MAE [42] for pre-training.



2D Matching Distillation and 3D Pre-training 13

Method CM MP FPS Car Pedestrian Van Cyclist Mean
(6424) (6088) (1248) (308) (14068)

SC3D [19] 2 41.3/57.9 18.2/37.8 40.4/47.0 41.5/70.4 31.2/48.5
3DSiamRPN [15] 21 58.2/76.2 35.2/56.2 45.7/52.9 36.2/49.0 46.7/64.9

P2B [48] 46 56.2/72.8 28.7/49.6 40.8/48.4 32.1/44.7 42.4/60.0
LTTR [8] 23 65.0/77.1 33.2/56.8 35.8/45.6 66.2/89.9 48.7/65.8

MLVSNet [57] 70 56.0/74.0 34.1/61.1 52.0/61.4 34.3/44.5 45.7/66.7
BAT [77] 65 60.5/77.7 42.1/70.1 52.4/67.0 33.7/45.4 51.2/72.8
PTT [52] 40 67.8/81.8 44.9/72.0 43.6/52.5 37.2/47.3 55.1/74.2
V2B [26] 37 70.5/81.3 48.3/73.5 50.1/58.0 40.8/49.7 58.4/75.2
CMT [21] 32 70.5/81.9 49.1/75.5 54.1/64.1 55.1/82.4 59.4/77.6
PTTR [79] 53 65.2/77.4 50.9/81.6 52.5/61.8 65.1/90.5 57.9/78.1
STNet [27] 35 72.1/84.0 49.9/77.2 58.0/70.6 73.5/93.7 61.3/80.1
SiamDisst 25 73.7/85.1 58.4/83.9 63.5/75.0 76.9/94.5 66.2/83.9
TAT [33] ✓ - 72.2/83.3 57.4/84.4 58.9/69.2 74.2/93.9 64.7/82.8
DMT [68] ✓ 72 66.4/79.4 48.1/77.9 53.3/65.6 70.4/92.6 55.1/75.8

M2Track [78] ✓ 57 65.5/80.8 61.5/88.2 53.8/70.7 73.2/93.5 62.9/83.4
CXTrack [69] ✓ 34 69.1/81.6 67.0/91.5 60.0/71.8 74.2/94.3 67.5/85.3

MBPTrack [70] ✓ 56 73.4/84.8 68.6/93.9 61.3/72.7 76.7/94.3 70.3/87.9
MemDisst ✓ 90 74.1/85.6 69.1/94.1 66.6/79.3 77.2/94.7 71.3/88.9

Table 4: 3D tracking results on KITTI [18] for (top) memory-less 3D trackers; (bot-
tom) memory/motion-based 3D trackers. CM and MP represent the contextual memory
and motion prediction. Trackers are evaluated by per-category Success/Precision met-
rics. ‘Mean’ indicates the overall result averaged over frames. The best result is shown
in bold. For each category, the number in brackets indicates the test frame number.

IoU-guided matching distillation. Moreover, the proposed SiamDisst is more ef-
fective in identifying distractors during online tracking, e.g., obtaining best over-
all performance on the Pedestrian category. For MemDisst, it sets new state-of-
the-art performance on all the categories while running at a fast speed of 90 FPS.
The lightweight model used in MemDisst is well learned via the proposed learn-
ing framework, thus achieving promising tracking performance. Note that both
SiamDisst and MemDisst performs well in the low data regime (e.g., the Van cat-
egory only has 1994 training examples), which is mainly due to the effectiveness
of transferring the matching knowledge from the 2D pre-trained tracker.

To test the generalization performance of our proposed trackers, we use
our SiamDisst and MemDisst trained on KITTI to evaluate on the WOD and
nuScenes datasets. As seen in Table 5, SiamDisst performs best on both WOD
and nuScenes among all the Siamese-based 3D trackers, e.g., STNet, V2B and
BAT. This is mainly because our SiamDisst learns a more effective target match-
ing module via the 2D matching distillation, thus leading to more accurate track-
ing results. Compared with MBPTrack, our MemDisst obtains comparable per-
formance on WOD and outperforms it on nuScenes. Meanwhile, MemDisst runs
efficiently at the above real-time speed of 89 FPS, which is 53% and 162% faster
than MBPTrack and CXTrack, respectively. This lightweight MemDisst tracker
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Method WOD [53] nuScenes [5] FPS
Category Vehicle Pedestrian Mean Car Pedestrian Truck Bicycle Mean -

(No. Frames) (185731) (241752) (427483) (15578) (8019) (3710) (501) (27808) -
Su

cc
es

s
P2B 52.6 17.9 33.0 27.0 15.9 21.5 20.0 22.9 46
SC3D - - - 25.0 14.2 25.7 17.0 21.8 2
BAT 54.7 18.2 34.1 22.5 17.3 19.3 17.0 20.5 65*
V2B 57.6 23.7 38.4 31.3 17.3 21.7 22.2 25.8 37

STNet 59.7 25.5 40.4 32.2 19.1 22.3 21.2 26.9 35
SiamDisst 61.2 28.5 42.7 33.4 19.8 25.0 17.7 28.1 25
CXTrack 57.1 30.7 42.2 29.6 20.4 27.6 18.5 26.5 34
M2Track 61.1 32.0 44.6 - - - - - 57

MBPTrack 61.9 33.7 46.0 33.6 19.8 23.9 20.0 28.1 60*
MemDisst 61.9 33.6 45.9 34.0 20.0 28.1 18.1 28.9 89*
Category Vehicle Pedestrian Mean Car Pedestrian Truck Bicycle Mean FPS

P
re

ci
si

on

P2B 61.7 30.1 43.8 29.2 22.0 16.2 26.4 25.3 46
SC3D - - - 27.1 16.2 21.9 18.2 23.1 2
BAT 62.7 30.3 44.4 24.1 24.5 15.8 18.8 23.0 65*
V2B 65.9 37.9 50.1 35.1 23.4 16.7 19.1 29.0 37

STNet 68.0 39.9 52.1 36.1 27.2 16.8 29.2 30.8 35
SiamDisst 70.5 44.5 55.8 37.3 30.4 20.1 23.7 32.8 25
CXTrack 66.1 49.4 56.7 33.4 32.9 20.8 26.8 31.5 34
M2Track 69.3 49.7 58.2 - - - - - 57

MBPTrack 71.9 52.7 61.0 37.6 32.7 20.7 29.2 33.8 60*
MemDisst 71.8 52.8 61.1 38.0 32.2 23.9 24.1 34.2 89*

Table 5: 3D tracking results on Waymo Open Dataset (WOD) [53] and nuScenes [5].
For a fair comparison, we compare our SiamDisst and MemDisst with memory-less
Siamese-based trackers, and more complicated trackers with contexture memory or
motion prediction, respectively. The best result in each comparison is shown in bold.
* indicates the speed is re-evaluated on WOD for a fair comparison.

shows its potential to serve as a simple and strong baseline in the 3D tracking
community.

5 Conclusion

This paper improves the power of 3D point cloud tracking from two aspects.
First, we design a novel 3D SOT framework that could fully benefit from the 3D
self-supervised pre-training, which shows that the self-supervised pre-training
weights (e.g., Point-MAE [42] and Recon [49]) are effective to improve the 3D
tracking performance, especially in the low data regime (e.g., KITTI-Van and
KITTI-Cyclist). Second, we bridge the gap between 2D and 3D tracking domains
by leveraging a target-aware projection module, which enables to use a power-
ful 2D pre-trained tracker to facilitate the learning of 3D matching in existing
3D SOT trackers [27, 70] via matching distillation. We show that our proposed
SiamDisst and MemDisst trackers can achieve state-of-the-art performance on
KITTI and Waymo Open datasets, while running at real-time speed.
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