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Abstract. We propose a simple but effective training-free approach tai-
lored to diffusion-based image-to-image translation. Our approach revises
the original noise prediction network of a pretrained diffusion model by
introducing a noise correction term. We formulate the noise correction
term as the difference between two noise predictions; one is computed
from the denoising network with a progressive interpolation of the source
and target prompt embeddings, while the other is the noise prediction
with the source prompt embedding. The final noise prediction network
is given by a linear combination of the standard denoising term and the
noise correction term, where the former is designed to reconstruct must-
be-preserved regions while the latter aims to effectively edit regions of
interest relevant to the target prompt. Our approach can be easily incor-
porated into existing image-to-image translation methods based on dif-
fusion models. Extensive experiments verify that the proposed technique
achieves outstanding performance with low latency and consistently im-
proves existing frameworks when combined with them.

Keywords: training-free image-to-image translation - diffusion models
- generative modeling

1 Introduction

The diffusion probabilistic model |725H27] is currently a dominant framework for
image generation. It has often been trained to generate high-fidelity images from
text prompts [19}21,23|, and has also been applied to image-to-image translation
given a target text prompt [1,[5,9H11,|13}|16},|29], where the goal is to modify
local regions in a source image based on the target prompt while preserving
its background or structure of the image. However, the text-driven image-to-
image translation task is an inherently challenging problem, mainly because it
is infeasible to find a desirable starting point of the reverse diffusion process for
denoising and is difficult to exclusively edit specific regions of generated images
without distorting the remaining parts.

To tackle the critical challenges, several approaches rely on fine-tuning |1}
9,/10] for customizing pretrained diffusion-based denoising networks; they en-
courage the translated images to reflect the target prompt and preserve the
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Fig. 1: Image-to-image translation results using the proposed method on data sampled
from the LAION-5B dataset . Our approach effectively preserves the structure and
the background in source images while successfully editing the local region of interest.

background or the structure in the source image. On the other hand, training-
free techniques focus on manipulating denoising strategies used
in the reverse process of diffusion models without incurring heavy training costs.

We present a simple but effective training-free image-to-image translation
technique, which proposes a variation of the DDIM reverse process. Our ap-
proach estimates the noise correction term to generate desirable images relevant
to target prompts, which is achieved by progressive prompt interpolation during
the reverse process of diffusion models. The proposed noise prediction network
for image-to-image translation is composed of two parts: (a) the denoising net-
work output given the source latent and the source prompt and (b) a noise
correction term defined as the difference between the two noise predictions of
the target latent conditioned on the progressively interpolated embeddings and
the source text embeddings. The first term ensures that the target image pre-
serves overall structure and background in the source image while the second
term facilitates alignment with the target domain by selectively editing the re-
gions of interest. We visualize text-driven image-to-image translation results in
Fig. [1 which demonstrates the outstanding performance of the proposed ap-
proach across various tasks.

The main contributions of our work are summarized below:

e We propose a novel approach to revise the standard noise prediction net-
work by utilizing the prompt interpolation, which progressively updates the
text embedding toward given target prompts during the reverse process of
diffusion models.

e We formulate the proposed noise prediction network using two terms, which
is coherent to the conceptual procedure of our task. One is the standard noise
prediction term given the source image and the source prompt to reconstruct
the overall structure and background, and the other is a new correction term
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using the progressive prompt interpolation to selectively modify regions of
interest.

e Experimental results demonstrate that our proposed method achieves re-
markable translation results with time-efficient inference and improves the
performance consistently when combined with existing methods.

The rest of our paper is organized as follows. Section [2] reviews the related
work about text-driven image-to-image translation based on diffusion models.
Section [3] describes the standard DDIM-based text-driven image-to-image trans-
lation algorithm, and Section [4] presents our approach. Our experimental results
are provided in Section [p] and we finally conclude our paper in Section [0}

2 Related Work

This section discusses previous works about diffusion-based text-to-image gen-
eration and text-driven image-to-image editing approaches.

2.1 Text-to-Image Generation based on Diffusion Models

Diffusion-based text-to-image generation models [19,21,]23| are typically trained
on large-scale training datasets with image-caption pairs. Motivated by two-
stage frameworks [3}/30], Stable Diffusion |21] projects input images onto a low-
dimensional space using a pretrained autoencoder and a diffusion model learns
to generate the low-dimensional features conditioned text embeddings given by a
text encoder. DALLE-2 [19] first learns a prior model to estimate CLIP [17] image
embeddings based on text captions and then employs a decoder to synthesize
output images given the image features and their corresponding text captions.
In contrast, Imagen [23] utilizes language models [18] to extract text features
and learns text-to-image diffusion models to generate images conditioned on the
text embeddings.

2.2 Text-Driven Image Editing based on Diffusion Models

The goal of text-driven image-to-image translation is to edit the specific re-
gions in a source image to align a resulting target image with the target prompt
while preserving the remaining parts. Existing text-driven image editing meth-
ods [1}5,(9,(10L/161/29] based on diffusion models are typically divided into two
groups depending on whether they require an additional training or not. For
example, DiffusionCLIP |10] fine-tunes a text-to-image diffusion model using
the directional CLIP loss [4] for fidelity and the identity loss for preserving the
background. Imagic [9] optimizes a pretrained diffusion model to reconstruct the
source images conditioned on its predicted source text embedding while gener-
ating target images based on the interpolation between predicted source text
embeddings and target text embeddings.

On the other hand, training-free image-to-image translation approaches |5,
16} 129] revise the reverse process of pretrained diffusion models. For instance,
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Prompt-to-Prompt [5] and Plug-and-Play [29] inject the internal representations
of source image—in the forms of cross-attention maps [5] or self-attention maps
(and simple feature maps) [29]—into the target generation module. Pix2Pix-
Zero |16] optimizes target latents by aligning the internal representations cor-
responding to the target and source latents and concurrently generates images
with the optimized target latents using the original reverse process. Besides,
diffusion-based image reconstruction techniques such as Null-text Inversion [15]
and Negative-prompt Inversion |14] can be combined with existing image-to-
image translation methods to improve performance, but they are not standalone
translation methods.

The proposed approach revises the reverse process of diffusion models without
any modification of the text-to-image diffusion backbones. Different from exist-
ing frameworks [5,/16,/29], we propose a simple but effective method to adjust
the noise prediction network for text-driven image-to-image translation. Since
our algorithm is orthogonal to existing methods, we empirically investigate the
potential of our approach for performance improvement by combining it with
the existing methods.

3 Text-Driven Image-to-Image Translation

This section describes the standard DDIM-based text-driven image editing ap-
proach, which consists of two deterministic processes: the inversion of a source
image and the translation to the target domain.

3.1 Inference of Latent Variables for Source Images

Denoising diffusion probabilistic Models (DDPM) [7,125] assume a Markovian
stochastic process with Gaussian transition kernels, where xq is a random vari-
able for an image and (x1, X2, -+ ,X7) denotes a sequence of latent variables rep-
resenting intermediate outputs in a diffusion process. Instead of using DDPM,
existing text-driven image-to-image translation methods often rely on the deter-
ministic DDIM inference [26] to reduce the number of inference steps without
sacrificing the quality of generated images. Utilizing the denoising network de-
noted by €g(-,-,-) which is parametrized with the U-Net architecture [22], the
forward process of DDIM is formally given by

Xifl = \/mfe(xirc7taysrc) + 1- at+169<xirc7t7ysrc)’ (1>

where x3"° is a source latent at a time step ¢, y*™ is the CLIP text embedding
of the source prompt p¥€, and «; is a constant decreasing monotonically over
time. From the above equation, fy(:,-,-) is derived as

X; — /1 — azep(xt,1,y)
\/ Qg '
Finally, x%° is obtained from x§’® by recursively leveraging the deterministic

DDIM forward process as described in Eq. , and is adopted for translating to

the image in the target domain, x(".

(2)

f@(xhtu}I) =
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Fig. 2: Visualization of the progressively updated noise correction term Aeg (x5, ¢, y+)
over time for each pair of source and target images.

3.2 Reverse Process of Target Images

By simply setting xtTgt equal to x7°, one can synthesize the target image using

the following DDIM process [26]:

ng,tl = v/ atflfﬁ(ngtat,ytgt) + 1-— at7169(ngtatvytgt)v (3)
where x{%" is a target latent and y'&® is a CLIP feature of a target prompt p'et.

tgt( STC

However, the starting point of the reverse process, x;+ (= x%°), is different from

its true position x%ﬁgt*. Therefore, the naive reverse process often fails to generate
desired images in the target domain. The goal of our approach is to reroute
the reverse process to compensate for its wrong initialization and successfully
generate target images without additional training.

4 Our Approach

This section discusses how to improve the quality of translated images for text-
driven image-to-image translation.

4.1 Overview

One of the reasons for poor image-to-image translation quality in naive ap-
proaches is the abrupt transition of text embedding from y®*° to y'8* at the
early stage in the reverse process. To address this issue, we formulate a noise
prediction strategy for the text-driven image-to-image translation by progres-
sively updating the text prompt embedding via time-dependent interpolations
of the source and target prompt embeddings. We derive the revised version of
the reverse process and introduce a correction term to update the convergence
trajectory conditioned on the target prompt. Algorithm [I] presents the detailed
procedure of the proposed method. We refer to the proposed algorithm as Prompt
Interpolation-based Correction (PIC).
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4.2 Noise Correction

To preserve the original structure or background in a source image, we compute
a mixture representation of y*'° and y'*, which is given by

Yy = h(ysrC, ytgtu t)7 (4>

where h(-,-,-) is an interpolation function with a time-dependent mixing coef-
ficient B, which will be discussed in Section Then, we replace the original
noise prediction network eg(x}, ¢, y**) with a new one, é(x{#", ¢, y*8"), which
is given by

Eo(x;% 1, y'8Y) = o (x5, 1, y7) + v Aen (x5, 1, y1), (5)

where 7 is a hyperparameter and Ae‘g(xigt,t,yt) is a correction term with the
interpolated text prompt embedding y;. In this formulation, €p(x5*¢, ¢, y*¢) en-
ables our approach to preserve the structure or background of a source image x{'
while the additional correction term facilitates the alignment of the generated
image to the target domain.

Conceptually, it is desirable for the noise correction term, Aeg (xigt, t,yt), to
only affect the relevant regions to the target prompt while preserving the rest of
the source image. The formal definition of the correction term Aeg(xigt, t,y:) is
as follows:

A€0 (ngta tv yt) = €9 (thfgta tv yt) — €9 (ngt’ tv ysrc)’ (6)

where y; moves from y*™ to y'*8* as t decreases. By plugging Eq. @ into Eq. ,
we obtain the following noise prediction network:

Eo(x,% 1, y"8Y) = eo(x7", 1, y™) + v (o (x5, t, ye) — ea(x5, 1, y)) . (7)

Our intuition behind the noise correction term is that the noise prediction
given the target latent and the progressively interpolated text embedding effec-
tively makes up for the gap between the unknown true initialization, x%gt* and
its trivial surrogate, ngt(: x5°). We observe that this correction term is par-
ticularly helpful at the early stage of the reverse process and is not necessarily
required for the rest of the iterations. Fig. [2]supports our intuition by visualizing
the noise correction term during the reverse process; it gradually highlights the

regions to be updated while the background area is set to negligible values.

4.3 Prompt Interpolation

We now describe the proposed prompt interpolation strategies with the source
and target embeddings, designed for the slightly different two tasks of interest:
word replacement and adding phrases.
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Algorithm 1 Target image generation by PIC

1: Input: source image x{ ¢, source prompt embedding y°'°, target prompt embedding
y'8" hyperparameters 3, v, T

2: fort <« 0,---,T—1do

3: Compute eg (x5, t, y*°) and obtain xj% by Eq. while saving e (x7°, t, y*)

4: end for

5: x}gt — x7°

6: fort<«<T,---, T—7+1do

7: Obtain y; based on y* and y'8" using Eq. or Eq. depending on the
given task

8: Compute ep(x}8",t,y:) and eg(x}%, ¢, y*™°)

9: Obtain the revised model é(x:%", ¢, y*&") using Eq.

10: Obtain x;*', using Eq. by replacing eg(x{*,t,y"8") with & (x5, ¢, y'8")
11: end for

12: fort < T —7,---,1do

13: Obtain x;g_tl using Eq.

14: end for

15: Output: target image x(&"

Word replacement For word replacement, we consider the scenario that the
tokens in the source prompt are replaced by other ones. For example, in the case
of ‘zebra — horse’, if the source prompt is ‘A zebra is lying on the grass.’, the
target prompt becomes ‘A horse is lying on the grass’ by replacing ‘zebra’ with
‘horse’. In this task, our simple linear prompt interpolation is given by

ye[l] = Bey ™ €] + (1 — Be)y™[{], (8)
where £ is a token index and the time-dependent coefficient ; is set to

Bo= Bt (1-6) x —, )

where (8 is an initialization value between 0 and 1. Note that the interpolated
embedding is progressively updated starting from the source prompt embedding
to the target prompt embedding during the reverse process.

Adding phrases We consider another task that involves the addition of tokens.
For instance, in the case of ‘dog — dog with glasses’, if the source prompt is ‘A
dog is lying on the grass’, then the target prompt becomes ‘A dog with glasses
1s lying on the grass’. In this task, we have to match tokens between the source
and target prompt embeddings for prompt interpolation, which is given by

y*eld, if 0 < 0
yill] = { y*&'[4], if £, < €<y (10)
Bey B0 4+ (1 — B)y™™ [l — Ly + L], if€> (5
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where n (= £; — l; + 1) tokens are inserted at the ¢! position of the source
prompt and [; is defined in Eq. @ Note that this strategy interpolates the
embeddings of the source and target prompts from the next token positions of
the added phraseEI

4.4 Integration into Existing Methods

The proposed technique can be conveniently incorporated into state-of-the-art
methods for diffusion-based image-to-image translation such as Prompt-to-Prompt
[5], Plug-and-Play [29], and Pix2Pix-Zero |16]|. The algorithm-specific noise pre-
diction network, ép(x\%", ¢, y*"), derived from Eq. is expressed as

ézlg(xigt, t,y"8) 1= ep (x5, 1, y™C) + VAeglg(x:gt, t,¥t), (11)

where Aeglg(xigt,t,yt) is the noise correction term, specific to the individual

translation algorithms [5,|16}29]. The rest of this subsection discusses how to

obtain the new noise correction term Aeglg (x{&",t,y,) for each algorithm.

Prompt-to-Prompt [|5] The extension of the proposed prompt interpolation
technique to Prompt-to-Prompt is simple. During the reverse process, Prompt-
to-Prompt replaces the cross-attention and self-attention maps in €y (ngt, t,y'e")
with the matching attention maps in €p(x5", ¢, y*°). Different from the vanilla
Prompt-to-Prompt, our extension replaces the attention maps in eg(xigt,t,yt)
to ones in €p(x3%, ¢, y*¢), instead of eq(x2, ¢, yt8t).

Plug-and-Play |29] Plug-and-Play performs the reverse process with the sub-
stitution of the self-attention maps and the intermediate feature maps in the de-
noising network e (x5, t, y°) for those obtained from eg(x;%", ¢, y*8*). As in our
extension to Prompt-to-Prompt, we use €5(x}%",¢,y;) instead of ep(x}%", ¢, y*e")

to compute the attention and feature maps for the replacements.

Pix2Pix-Zero |16] For the reverse process, Pix2Pix-Zero obtains the target
latent X;gt by taking a gradient step from X;gt using the cross-attention guidance
loss, which aims to align the cross attention maps in the denoising network given

the source and the target latents. The optimized target latent is given by

R = A Ve [ M — M. (12)
where M{* and M3™ denote the cross attention maps in ey(x%',¢,y;) and
€p (x5, t, y%°). Respectively, Ay, is a hyperparameter, and || - ||r indicates the

Frobenius norm. Note that vanilla Pix2Pix-Zero obtains M{#" from ey (x;", ¢, y'&t).
Therefore, the noise correction term specific to Pix2Pix-Zero, is given by

AGOPQP (Xigta t7 Yt) = €9 ()’\(Egt7 ta Yt) — €9 (izgt7 t7 ysrc), (13>
where x;*" is replaced by %,*" from Eq. (6).

1 Our prompt interpolation strategy for adding phrases can be generalized to the cases
where phrases are removed.
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Table 1: Quantitative comparisons of PIC with Prompt-to-Prompt [5], Plug-and-
Play [29], and Pix2Pix-Zero [16] on images sampled from the LAION-5B dataset [24]
using the pretrained Stable Diffusion |21] backbone. Black and red bold-faced numbers
denote the best and second-best performances within each row for each metric.

Task PtP PnP P2pP PIC (Ours)

: CS (1) BD (1) SD (4)|CS (1) BD (1) SD (1)|CS (4) BD (1) SD (1)|CS (1) BD (1) D (1)
dog — cat 0.290 0.076 0.038 |0.293 0.100 0.032 | 0.281 0.127 0.099 |0.293 0.045 0.031
cat — dog 0.288 0.095 0.042]0.291 0.099 0.033 | 0.282 0.100 0.054 |0.288 0.057 0.033
horse — zebra 0.320 0.133 0.042|0.333 0.158 0.042] 0.323 0.193 0.078 |0.324 0.085 0.037
zebra — horse 0.291 0.183 0.051 {0.299 0.152 0.043| 0.282 0.216 0.104 |0.292 0.126 0.050
tree — palm tree 0.315 0.147 0.045 |0.314 0.122 0.039 |0.314 0.129 0.046 |0.314 0.085 0.036
dog — dog w/glasses| 0.310 0.041 0.020 | 0.302 0.087 0.025 |0.322 0.050 0.015|0.312 0.026 0.016
Average 0.302 0.113 0.040 {0.305 0.120 0.036| 0.301 0.136 0.066 |0.304 0.071 0.034

Table 2: Quantitative comparisons of the proposed method with Prompt-to-Prompt [5]
on images sampled from the LAION-5B dataset |24] using the pretrained Stable Diffu-
sion [21]. Out technique is integrated into Prompt-to-Prompt and the results of Prompt-
to-Prompt are obtained from Tab. [1} Black bold-faced numbers represent better per-
formance on each metric between two approaches.

Task PtP PtP + PIC (Ours)
CS() BD() SD() | GS(1) BD(U) SD()
dog — cat 0.290 0.076 0.038 0.283 0.051 0.021
cat — dog 0.288 0.095 0.042 0.291 0.052 0.027
horse — zebra 0.320 0.133 0.042 0.292 0.071 0.018
zebra — horse 0.291 0.183 0.051 0.290 0.131 0.034
tree — palm tree 0.315 0.147 0.045 0.301 0.070 0.026
dog — dog w/glasses 0.310 0.041 0.020 0.301 0.038 0.011
Average 0.302 0.113 0.040 0.295 0.069 0.023

5 Experiments

We evaluate the performance of our approach, PIC, in comparison with the state-
of-the-art training-free diffusion-based image-to-image translation methods |[5|
16}29]. We identify the 250 most relevant images for the desired source domain
given a task, based on their CLIP similarities, and use them as inputs for image-
to-image translation methods to be tested in the task. Note that the algorithm
integrating PIC is denoted by by ‘[Algorithm Name| + PIC’.

5.1 Implementation Details

We implement the proposed method using the publicly available code of Pix2Pix-
Zero (PZP)H We integrate PIC into the existing techniques—Prompt-to-Prompt
(PtP)EL Plug-and-Play (PnP)E| and Pix2Pix-Zero (P2P)—using their official codes.
To accelerate the text-driven image-to-image translation process, the inference
time steps for the forward and reverse processes are set to 50. For all experiments,
Stable Diffusion v1.4 is employed as the backbone model. During the forward

2 https://github.com/pix2pixzero/pix2pix-zero
3 https://github.com/google/prompt-to-prompt
* https://github.com/MichalGeyer/plug-and-play
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Table 3: Quantitative comparisons of the proposed method with Plug-and-Play [29|
on images sampled from the LAION-5B dataset [24] using the pretrained Stable Diffu-
sion |21]. Out technique is integrated into Plug-and-Play and the results of Plug-and-
Play are obtained from Tab.

Task PnP PnP + PIC (Ours)

: CS(t) BD() SD() | CS(f) BD() SD()
dog — cat 0.293 0.100 0.032 0.282 0.092 0.027
cat — dog 0.291 0.099 0.033 0.288 0.083 0.028
horse — zebra 0.333 0.158 0.042 0.317 0.121 0.035
zebra — horse 0.299 0.152 0.043 0.285 0.135 0.037
tree — palm tree 0.314 0.122 0.039 0.295 0.070 0.024
dog — dog w/glasses 0.302 0.087 0.025 0.300 0.085 0.024
Average 0.305 0.120 0.036 0.295 0.098 0.029

Table 4: Quantitative comparisons of the proposed method with Pix2Pix-Zero [16|
on images sampled from the LAION-5B dataset |24] using the pretrained Stable Diffu-
sion |21]. Out technique is integrated into Pix2Pix-Zero and the results of Pix2Pix-Zero
are obtained from Tab. E

Task P2P P2P + PIC (Ours)
Cs(t) BD() sSD) | C€S(®) BDWU) SD()
dog — cat 0.281 0.127 0.099 0.282 0.051 0.017
cat — dog 0.282 0.100 0.054 0.285 0.056 0.016
horse — zebra 0.323 0.193 0.078 0.309 0.070 0.016
zebra — horse 0.282 0.216 0.104 0.279 0.117 0.017
tree — palm tree 0.314 0.129 0.046 0.298 0.047 0.014
dog — dog w/glasses 0.322 0.050 0.015 0.302 0.053 0.011
Average 0.301 0.136 0.066 0.293 0.066 0.015

process, we adopt Bootstrapping Language-Image Pretraining (BLIP) [12] to
generate a source prompt for conditioning the denoising network. The target
prompt is given by replacing the specific words in the source prompt with the
alternatives defined by an assigned task as mentioned in Section[4.3] We use the
same source and target prompts of all algorithms for the fair comparisons dur-
ing both the forward and reverse processes. Additionally, we adopt classifier-free
guidance [8] following [5,(16}29].

In our implementation, 7 and v are set to 25 and 1.0, respectively, for all
experiments. Also, we set 3 to 0.3 for word replacement tasks (e.g. ‘dog — cat’
and ‘horse — zebra’) while it is set to 0.8 for adding phrases tasks (e.g. ‘tree —
palm tree’ and ‘dog — dog with glasses’).

5.2 Evaluation Metrics

For quantitative evaluation, we measure CLIP Similarity [6], Background Dis-
tance, and Structure Distance [28] following Pix2Pix-Zero [16]. The CLIP simi-
larity (CS) quantifies how well the translated images are aligned with the target
prompts using the cosine similarity. On the other hand, the background dis-
tance (BD) calculates the Learned Perceptual Image Patch Similarity (LPIPS)
score [31] between the background regions of the source and translated images.
To identify background regions, we employ the prediction of the pretrained ob-
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Fig. 3: Qualitative comparisons between PIC and state-of-the-art methods on
images from LAION-5B using the pretrained Stable Diffusion . PIC generates
target images with higher-fidelity than others in all tasks. Note that all algorithms fail
to preserve pose and texture of the source image in the last task, but PIC still shows
a favorable result.
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Fig. 4: Qualitative results of existing state-of-the-art methods and their combinations
with PIC based on the pretrained Stable Diffusion : (top) Prompt-to-Prompt ,
(middle) Plug-and-Play [29], and (bottom) Pix2Pix-Zero [16]. The examples are sam-
pled from LAION-5B .

ject detector . Also, the structure distance (SD) is employed to evaluate the
structural difference between the source and translated images. It computes the
Frobenius norm between the self-attention maps given by the DINO-ViT network
output |2| using the source and translated images as inputs.

5.3 Quantitative Results

To compare the proposed method with state-of-the-art methods [5,[16,[29], we
present quantitative results in Tab. [[] The table shows that our method con-
sistently achieves the best performance in terms of BD and mostly outperforms
the previous methods in terms of SD. As for CS, the proposed method shows
the highest performance on the dog — cat task, while it ranks second in the
remaining tasks. Note that, because the CLIP similarity only reflects the fidelity
to the target prompt without considering the similarity to the source images, it
is not sufficiently discriminative to evaluate image-to-image translation perfor-
mance by itself. In addition, Tabs. [2 to [] demonstrate that PIC is effective to
improve the performance when incorporated into existing methods .

5.4 Qualitative Results

Fig. [3] illustrates qualitative results generated by the proposed approach and
other state-of-the-art methods . It presents that our method effectively
preserves the background and structure of source images while selectively edit-
ing the region of interest. On the other hand, existing algorithms often fail to
preserve the structure or background. We present a failure case of our algorithm



Diffusion-Based Image-to-Image Translation by Noise Correction 13

Table 5: Inference time comparisons between PIC and other state-of-the-art meth-
ods [5,/161[29].

‘ PtP ‘ PnP ‘ P2pP ‘ PIC (Ours)
Inference time (s) [ 312 | 244 | 522 | 18.1

Table 6: Contribution of the noise correction and the prompt interpolation tested
on LAION-5B dataset [24]. DDIM+PI synthesizes target images by replacing
co(x{®° ¢, y"") with eg(x(®",t,y;) in the reverse DDIM process. The model with the
noise correction, DDIM-+NC, substitutes eg(x{%", ¢, y'8") for eg(x\%",t,y+) without the

consideration of the prompt interpolation.

Task DDIM DDIM+PI DDIM-+NC PIC (Ours)

Cs (1) BD (1) SD (1)|CS (1) BD ({) SD ({)|CS (1) BD (J) SD (J)|CS (1) BD (1) SD (1)
dog — cat 0.289 0.158 0.086 [0.289 0.130 0.070 |0.293 0.054 0.038 [0.293 0.045 0.031
cat — dog 0.283 0.185 0.089 |0.285 0.150 0.070 |0.288 0.068 0.041 |0.288 0.057 0.033
horse — zebra 0.325 0.287 0.123 |0.330 0.214 0.097 {0.333 0.113 0.050| 0.324 0.085 0.037
zebra — horse 0.294 0.295 0.104 |0.294 0.254 0.097 |0.294 0.139 0.055|0.292 0.126 0.050
tree — palm tree 0.304 0.234 0.088 | 0.306 0.222 0.084 |0.312 0.085 0.056 |0.314 0.085 0.036
dog — dog w/glasses| 0.318 0.134 0.072 | 0.310 0.132 0.065 |0.317 0.029 0.021 | 0.312 0.026 0.016
Average 0.302 0.216 0.094 | 0.302 0.184 0.081 |0.306 0.081 0.044|0.304 0.071 0.034

in the last row of Fig. 8] where the result from PIC is still favorable compared
to others. Fig. [f] demonstrates that PIC is effective to improve the previous
methods when integrated into them.

5.5 Inference Time

To evaluate the inference time of each algorithm, we measure the wall-clock time
using a single image on an NVIDIA A6000 GPU. As shown in Tab. [f] PIC is
the most time-efficient even with its outstanding performance.

5.6 Ablation Study

Prompt Interpolation To analyze the impact of each component in our al-
gorithm, we compare PIC with its three variations—DDIM, DDIM+PI, and
DDIM-+NC. DDIM denotes a naive application of the original DDIM algo-
rithm [26] to image-to-image translation. DDIM+PI replaces the denoising net-
work eg (x5, t, yte) in Eq. with ey (x}2", ¢, y;) using interpolated prompts y,
while DDIM+NC substitutes eg(x;2", t, y*8¢) for €5(x}®",t,y;) in Eq. (7) to com-
pute the noise correction term without the proposed prompt interpolation. As
presented in Tab. [6], DDIM+PI improves performance by using prompt interpo-
lation compared with the standard DDIM and DDIM-+NC is particularly helpful
in preserving the background or structure of the source images by integrating
the noise correction term. Our algorithm, PIC, incorporating both the noise cor-
rection term and the prompt interpolation, achieves the best performance in the
text-conditional image editing task. The qualitative results are presented in Fig.
6 of the appendix.
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A
L/«C\’u’ Wl

source v=0.5 y=1.0

Fig. 5: Qualitative results of the proposed method by varying v on data sampled from
the LAION-5B dataset , relying on the pretrained Stable Diffusion .

Effect of Hyperparameter v We study the effect of the hyperparameter ~
introduced in Eq. @ to discuss the trade-off between the fidelity to the target
prompt and the structure preservation.

For the experiment related to -, we explore five different values of v €
{0.5,1.0,1.5,2.0,2.5} for PIC. Fig. [j| illustrates that our results are fairly con-
sistent to the value of y. However, we observe that a low value of v tends to
preserve the structure or background with relatively low fidelity, while a high
value of v enhances fidelity at the expense of structure deformation. Note that
we use v = 1.0 throughout all experiments.

6 Conclusion

We presented a novel training-free approach for image-to-image translation based
on text-to-image diffusion models. We revised the original noise prediction net-
work by incorporating a noise correction term with progressive interpolation of
text embeddings. Technically, the proposed noise prediction network for image-
to-image translation consists of two parts: (a) the denoising network given the
source latent and the source prompt and (b) a noise correction term defined
as the difference between two noise predictions of the target latent conditioned
on the progressively interpolated text embeddings and the source text embed-
dings. Extensive experiments demonstrate that the proposed algorithm achieves
outstanding performance with reduced inference time and consistently improves
existing techniques through the combination of those methods.
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