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In the supplementary material, we provide chromatic spike camera details,
method implementation details, analysis of the hyperparameters (K, L, and W
in Sec. 4), and additional results. We further provide a supplementary video to
show the high-speed color videos reconstructed from mosaicked chromatic spike
streams.

7 Mosaicked chromatic spike camera

Fig. 8: Mosaicked chromatic spike camera.

We describe more specifics of the mosaicked chromatic spike camera. As we
mentioned in Sec. 3, a color filter array (CFA) is applied to the sensor to capture
mosaicked chromatic spike streams, adhering to the widely used Bayer pattern
(RGGB). The chromatic spike frames are transmitted to the main computer via
optical fiber, and are then stored to solid-state drives.
# Equal contributions. ∗ Corresponding author.
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8 Implementation details

𝑙 = 0 𝑙 = 1

𝑙 = 4 𝑙 = 5

𝑙 = 2 𝑙 = 3

Fig. 9: Additional results of progressive
warping. We visualize the intermediate
frames corresponding to increasing l (from
left to right, from up to down) and enlarge
some regions in red bounding boxes for de-
tailed observation.

In this section, we provide implemen-
tation details about our method.
Chromatic spikes denoising. Dur-
ing the training stage of our chromatic
spike denoiser, we employ a sampling
strategy where a subset of the masked
volume is randomly selected for each
iteration. The loss function remains
nearly the same, except for the re-
placement of mask-aware averaging
with summation. In terms of exper-
imental setup, we configured the pa-
rameters as follows. We set hs = ws =
4 for global-aware masking, η = 1
and λi = 0.05 for loss weighting,
and λ gradually increasing from 2 to
20 aligned with the training progress.
Furthermore, to accommodate a wide
range of signal-to-noise ratios, the ac-
cumulation temporal window size W
is randomly drawn from the range 5
to 200, enhancing the tolerance of the
denoising module to varied noise lev-
els. To address the scarcity of real-
world chromatic spike streams, we
augment our training data with com-
mon means, e.g ., randomly flipping
and cropping accumulated frames. As previously described in Sec. 4.1, our ap-
proach is based on the zero-mean assumption of the noise distribution of chro-
matic spikes. For the chromatic spike denosing module, we modify the U-Net [4]
to restore clean frames from the noise contaminated spike frames. The architec-
ture of our network comprises 5 blocks to extract multi-scale features, and there
are 5 blocks in the decoder, which reversely map the multi-scale features to an
output video frame. To preserve the texture information in low-level features,
we add skip connections between the encoder and decoder. Each block in the
encoder and the decoder consist of 2 convolutional layers, and the output of each
convolutional layer is activated by LeakyReLU [5]. Thus, the denoising module
consists of a total of 25 convolutional layers, including head and tail processing
layers.
Progressive warping. In the progressive warping module, we capitalize on the
existing method’s capacity to align multiple adjacent frames [2]. This approach
offers enhanced robustness against potential noise in frames accumulated over
short durations from chromatic spike streams, in comparison to other optical
flow estimation techniques. The initially accumulated frames, recovered from a
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small window size (e.g ., W = 10), may exhibit some degree of noise even after
denoising, which is detrimental to the alignment of small patches. Consequently,
we employ larger patch sizes for these initial frames, progressively decreasing the
patch size as the frames’ reliability improves. In our experiments, setting L = 3,
W = 10, and K = 3 is proved sufficient for most of the scenes. To achieve robust
progressive warping, we estimate the optical flow from multi-scale maps. At the
first step, we obtain multi-scale maps by downsampling the video frames with
the scales of 1

2 , 1
4 , and 1

8 . Thus, including the original resolution frame, each
group of multi-scale maps contains 4 frames. The process entails progressively
searching for the most suitable match from the pyramid maps to references,
starting from the lowest resolution and ascending to the highest. The culmination
of this process is the identification of the optimal optical flow required to align
K frames with the reference frame, specifically the (K + 1)/2-th frame. This
procedure is elaborated in Sec. 4.2 and represents a singular warping process.
The entire progressive warping pipeline is composed of L such warping steps. It
is noteworthy that the initial step in this sequence operates on spike planes (Sc),
as opposed to intermediate frames (Ic,l).
Spike simulator. Our chromatic spike simulator mainly follows the noise mod-
eling design of existing works (e.g ., [6,7]), including dark-current estimation and
perturbed stimulation threshold, and also introduces the simulation of Bayer-
pattern CFA.
Inference time. Our chromatic spike denoising module requires approximately
10 hours for training. The proposed method currently functions as an off-line
solver for 2000 FPS video reconstruction, with an inference speed of 16.7 FPS,
in the condition of L = 3,W = 10. It is worth noting that the primary time
consumption is optical flow estimation (∼ 65%), which is independent from our
main pipeline and can be independently optimized. We compare the inference
speed of our method with other methods in Tab. 2. All metrics are benchmarked
with an RTX3090 GPU, except SJDD [1], which utilizes an A6000 GPU due to
its higher memory requirements.

Table 2: Comparison of inference speed.

Method Ours TFP TFI TFSTP MS23 SJDD

FPS 16.7 1k 22 13.9 2.5 0.32

9 Analysis of hyperparameters

As discussed in Sec. 8, we empirically found that the set of hyperparameters
L = 3,W = 10,K = 3 is sufficient for our testing scenes. The three hyperparam-
eters jointly determine the pseudo-long exposure, that is, the exposure time is
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Fig. 10: Analysis of hyperparameters (K and W ). We illustrate the reconstruction
results from different combinations of K and W .
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Fig. 11: The ground truth of synthetic scenes.

equivalent to (K−1)×L×W +1. We further conduct an ablation study to ana-
lyze the impact of these hyperparameters on the reconstruction quality, as shown
in Fig. 9 and Fig. 10. We adjust the hyperparameters and evaluate the recon-
struction results qualitatively. With W and K increasing, our proposed method
obtains better performance at static regions, while leading to more potential
blur at motion regions. Specifically, small W (e.g ., W ≤ 5) makes optical flow
estimation almost unpractical, given that the detected photons are extremely
limited. Large W (e.g ., W > 20) introduces motion blur before flow estima-
tion and warping, leading to irretrievable blurry artifacts. We can empirically
conclude that W between 10 and 20 fits most of the cases, both static scenes
and dynamic objects. While the increase of W doesn’t change the computation
time very much (because the dimensions of I remain unchanged), K linearly
affects the computation costs. While greater K accumulates more spike planes
and suppresses noise better, we observe that K between 3 and 5 is sufficient for
most of the cases. As shown in Fig. 5 and Fig. 9, with the increase of L, our
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proposed method can refine the reconstruction results with adjacent frames. In
our experiment, we find that when L = 3, the quality of the reconstructed color
image can converge to a stable value. Note that the hyperparameters are not
totally fixed and can be customized based on user preference.

10 Additional results

Furthermore, additional results on both real and synthetic data are illustrated
in Fig. 12, ground truth images for all synthetic scenes are shown in Fig. 11, and
a comparison video is also uploaded with the supplementary material. Please
refer to the video for a more comprehensive comparison.

11 Compared to supervised learning on synthetic data

One significant challenge in current spike camera research lies in the substan-
tial disparity between synthetic data and real data, which makes models trained
on synthetic data perform poorly in real-world applications. Consequently, we
utilize real spike streams for self-supervised training to avoid the domain gap
issue in this paper. To substantiate this, we employ an identical neural net-
work to conduct supervised training on the GoPro dataset [3], leveraging the
video-to-spike simulators to generate synthetic spike streams. Subsequently, we
compare the performance of the supervised-learning (SL) model trained on syn-
thetic data with that of our self-supervised learning (SSL) model trained on real
data, as shown in Fig. 13. Our proposed method performs significantly better in
evaluation.

12 Compared to concurrent work

As SJDD [1] was published after our submission, it should be treated as concur-
rent work, and we did not include a comparison in our main figures. We compare
our proposed method with SJDD as shown in Fig. 14, which demonstrates the
superiority of our method in terms of noise supervision.
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Fig. 12: Additional reconstruction results for visual equality comparison of real (a-d)
and synthetic (e-h) data between the proposed method and compared methods.
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Fig. 13: Comparing the performance of supervised-learning denoiser (SL) and our
self-supervised learning denoiser (SSL). The noise in short-term temporal window ac-
cumulation (TFP) is better removed by our real-data-driven self-supervised learning
denoising module.
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Fig. 14: Comparing our method with SJDD [1].
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