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Appendix

A Datasets and Metrics

Datasets We test and compare our method over various datasets including
modalities of MR and CT, the MR images further contain T1-weighted , T2-
weighted and FLAIR (fluid-attenuated inversion recovery) images.

– ADNI [30]: we use T1-weighted (2045 cases) MRI scans from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). All scans are acquired at 1 mm
isotropic resolution from a wide array of scanners and protocols. The dataset
contains aging subjects, some diagnosed with mild cognitive impairment
(MCI) or Alzheimer’s Disease (AD). Many subjects present strong atrophy
patterns and white matter lesions.

– HCP [19]: we use T1-weighted (897 cases) and T2-weighted (897 cases) MRI
scans of young subjects from the Human Connectome Project, acquired at
0.7 mm resolution.

– ADNI3 [60]: we use T1-weighted (331 cases) and FLAIR (331 cases) MRI
scans from ADNI3, which continues the previously funded ADNI1, ADNI-
GO, and ADNI2 studies to determine the relationships between the clinical,
cognitive, imaging, genetic and biochemical biomarker characteristics of the
entire spectrum of sporadic late onset AD.

– ADHD200 [9]: we use T1-weighted (961 cases) MRI scans from ADH200 Sam-
ple, which is a grassroots initiative dedicated to the understanding of the
neural basis of Attention Deficit Hyperactivity Disorder (ADHD).

– AIBL [23]: we use T1-weighted (668 cases), T2-weighted (302 cases) and
FLAIR (336 cases) MRI scans from The Australian Imaging, Biomarkers
and Lifestyle (AIBL) Study, which is a study of cognitive impairment (MCI)
and Alzheimer’s disease dementia.

– OASIS3 [35]: we use CT (885 cases) scans from OASIS3, which is a longi-
tudinal neuroimaging, clinical, and cognitive dataset for normal aging and
AD. For our experiments, we use CT and T1-weighted MRI pair with the
earliest date, from each subject.

Data for Synthetic Generator Brain-ID’s synthetic generator uses (1) brain
segmentation labels, for random-contrast input images generation (Sec. 3.1), and
(2) MP-RAGE, the target ground truth for anatomy-guided supervision (Sec. 3.2).
In this work, we use the segmentation maps of training images from ADNI [30],
as well as their corresponding MP-RAGE images. Note that we do not use any
type of real images from ADNI as input for Brain-ID’s pre-training.

Data Preprocessing For all datasets, we skull-strip all the images using Synth-
Strip [26], and resample them to 1 mm isotropic resolution. For all the images,
except T1-weighted MRI, in each dataset, we use NiftyReg [43] rigid registration
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to register all images to their same-subject T1-weighted MRI counterparts. The
gold-standard brain segmentation maps are obtained by performing SynthSeg [4]
on the T1-weighted MR images of all the subjects.

Metrics We resort to various metrics for evaluating individual tasks across
multiple aspects:

– L1: the average L1 distance, is used for intra/inter-subject feature distance
evaluation (Sec. 4.2), and the overall prediction correctness of anatomy re-
construction (Sec. 4.3), super-resolution and bias-field estimation (Sec. 4.3).

– normL2: the normalized L2 distance for bias field [16] is defined as:
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⌦ refers to the brain domain, Best and Btrue are the estimated and ground
truth bias fields, respectively. Normalization is necessary for the evaluation of
bias field estimation (Sec. 4.3) because nonuniformity correction may result
in arbitrary scaling of the bias field.

– PSNR: the peak signal-to-noise ratio (PSNR) that indicates the fidelity of pre-
dictions. It is used in anatomy reconstruction (Sec. 4.3) and super-resolution
(Sec. 4.3).

– (MS-)SSIM: the structural similarity scores between the generated and real
images. MS-SSIM is a variant of SSIM focusing on multiple scales of the im-
ages that are shown to correlate well with human perception [41, 58, 59].
They are used in intra/inter-subject feature distance evaluation (Sec. 4.2),
reconstruction (Sec. 4.3), and super-resolution (Sec. 4.3),

– Dice: the similarity score between predicted and ground truth segmenta-
tions, and it is used in brain segmentation evaluation (Sec. 4.3).

B Implementation Details

Model Architecture As mentioned in Sec. 4, Brain-ID can use any backbone
to extract brain features. We use the five-level 3D UNet [47] as Brain-ID’s
backbone for feature extraction, with 64 feature channels in the last layer.
– During the feature pre-training stage (Sec. 3.2), a linear regression layer is

added following the feature outputs for anatomy supervision (Eq. (3)).
– During downstream tasks adaptions, the regression layer for anatomy su-

pervision is abandoned, instead, a task-specific activation layer is added fol-
lowing the feature outputs (Sec. 3.3). Specifically, a linear regression layer
is added for the tasks, anatomy reconstruction/contrast synthesis, image
super-resolution, and bias field estimation. An additional softmax activation
is added for segmentation probability outputs.
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Table B.1: Brain-ID synthetic generator setups: mild, medium and severe levels. p
denotes probability, µ and � refer to the mean and variance of the Gaussian distribu-
tions, respectively.

Category Param
Corruption Level

Mild Medium Severe

Deformation

affine-rotationmax 15 = =
affine-shearingmax 0.2 = =
affine-scalingmax 0.2 = =

nonlinear-scale µmin 0.03 = =
nonlinear-scale µmax 0.06 = =
nonlinear-scale �max 4 = =

Resolution plow-field 0.1 0.3 0.5
panisotropic 0 0.1 0.25

Bias Field

µmin 0.01 0.02 0.02
µmax 0.02 0.03 0.04
�min 0.01 0.05 0.1
�max 0.05 0.3 0.6

Noises �min 0.01 0.5 5
�max 1 5 15

Feature Backbone Pre-training We pre-train Brain-ID on the synthetic
data from our generator (Sec. 3.1) for 300,000 iterations, with a patch size of
1283 and a mini-batch size (i.e., number of intra-subject augmented samples) of
4. We use the synchronized AdamW optimization, with a base learning rate of
10�4 and a linear warm-up in the first 2,000 iterations followed by a multi-step
learning schedule (learning rate drops at 160,000 and 240,000 iterations) with a
multiplier of 0.1.

Synthetic Data Generator As shown in Fig. 3, Brain-ID simulates its train-
ing samples of increasing corruption levels, from mild to severe. Tab. 3 also
explores the effects of different levels of sample corruption on feature robustness
and downstream performance. In Tab. B.1, we list the generator parameters
for mild, medium, and severe data corruption levels, respectively. Note that (1)
for each level, the setup parameters only control the corruption value ranges,
since the simulation is randomized, there could still be mildly corrupted samples
generated under the “severe” settings; (2) The random deformation fields are
independent of data corruption levels.

C Feature Robustness Evaluation

For the evaluation of feature robustness, we use T1-weighted MRI of 100 ran-
domly selected subjects from ADNI [30]. To challenge the model’s robustness
against data corruptions, and meanwhile obtain comparable and reproducible
results, we use our data generator (Sec. 3.1) to pre-augment all the input images.
Note that in this section, there is no contrast simulation step within data aug-
mentation, and only the random deformation and data corruptions are applied.
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For each selected subject, we generate intra-augmented samples. All samples are
generated with “medium” corruption settings as listed in Tab. B.1.

D Downstream Task Comparisons

For all the downstream tasks, the model architecture and date generation strat-
egy used for Brain-ID, SCRATCH and CIFL are the same. The only difference
between the three compared models lies in their initial weights. Brain-ID and
CIFL are initialized by their pre-trained weights from training on synthetic data
as described in Secs. 3.1 and 3.2.

For the state-of-the-art comparisons, we consider FastSurfer [24] and SAMSEG
[13,46] for brain segmentation, and SynthSR [27] for anatomy reconstruction/contrast
synthesis and super-resolution for T1-weighted images.

– FastSurfer [24] is a state-of-the-art brain segmentation model, which is
designed for segmentation on T1-weighted images. Therefore, we only re-
port the segmentation performance of FastSurfer on T1-weighted MRI. In
addition, since FastSurfer does not predict cerebrospinal fluid (CSF), we
remove the CSF label during the Dice score computation.

– SAMSEG [13,46] is a state-of-the-art, multi-modal brain segmentation model,
which works on both MR and CT images. Similar to FastSurfer, SAMSEG
does not predict the CSF label either, the CSF label is therefore removed
during the Dice score computation of SAMSEG.

– SynthSR [27] is a state-of-the-art, contrast-agnostic model for anatomy re-
construction/contrast synthesis. For input MRI images with any contrast
and resolution, SynthSR generates their corresponding high-resolution, 1 mm
isotropic T1-weighted MRI. In our comparisons, we apply SynthSR on our
anatomy reconstruction/contrast synthesis task, as well as the image super-
resolution task of T1-weighted MRI.

E Additional Experimental Results

Feature Representation Learning As discussed in Sec. 4.5, in Brain-ID we
adopt the high-resolution MP-RAGE scan as the anatomy guidance for brain
feature representation. Experimental comparisons in Tab. 3 illustrate that in-
corporating segmentation as the target for anatomical supervision in learning
brain feature representation leads to reduced high-frequency texture compared
to the use of MP-RAGE alone. The visual comparisons presented in Fig. E.1 re-
veal that the features with segmentation guidance indeed encompass anatomical
structures, however, they exhibit notably smoother texture within each struc-
tural region defined by the brain segmentation labels. In contrast, employing
MP-RAGE as the target for anatomical supervision inherently entails the tasks
of anatomy reconstruction and super-resolution simultaneously. The resulting
features from Brain-ID are shown to carry richer information content, as evi-
denced by the more pronounced high-frequency textures they manifest.
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Fig. E.1: Visualizations of features from (a) Brain-ID (MP-RAGE guided) with its
variants: (b) segmentation guided and (c) segmentation + MP-RAGE guided feature
representation models. Note that although the two testing subjects here for the three
models are the same, their respective selected feature channels are different, for the
purpose of better showing different frequency levels of features from each model.

Downstream Task Evaluation In addition to the qualitative results in Figs. 1
and 5, we provide more visualization comparisons of the downstream tasks in
Figs. E.2 to E.4.
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Fig. E.2: Qualitative comparisons on the downstream task of anatomy reconstruc-
tion/contrast synthesis, between Brain-ID, the baseline SCRATCH, and the state-of-the-
art methods CIFL [15], SynthSR [27]. Each row presents the comparison results of inputs
with their respective modality/contrast, as indicated in the listing. The mint circles
highlight some less noticeable details.
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Fig. E.3: Qualitative comparisons on the downstream task of image super-resolution,
between Brain-ID, the baseline SCRATCH, and the state-of-the-art methods CIFL [15],
SynthSR [27]. Each row corresponds to a different testing subject. The mint circles
highlight some less noticeable details.
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Fig. E.4: Qualitative comparisons on the downstream task of brain segmentation,
between Brain-ID, the baseline SCRATCH, and the state-of-the-art methods CIFL [15],
SAMSEG [13]. Each row presents the comparison results of inputs with their respective
modality/contrast, as indicated in the listing. The mint circles highlight some less
noticeable details.
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