
22 F. Pérez-García, S. Bond-Taylor et al.

Supplementary Material

RadEdit: stress-testing biomedical vision models via
diffusion image editing

A Medical terminology

With our editing approach being readily applicable to many (non-medical) applications,
we tried our best to keep the paper as accessible as possible to a wider audience, using
only a small number of medical terms. In the following section we describe the terms
used in more detail.

Note, when interpreting a chest X-ray, it is important to remember that the left and
right sides are switched. This is because we view the patient from their anatomical
laterality point of view, as if we are facing them. So, what appears on the left in an
image is actually the patient’s right side, and vice versa.

A.1 Pathologies

Cardiomegaly This term refers to an enlarged heart, which is usually indicative of an
underlying heart condition. The enlargement can include the entire heart, one side of
the heart, or a specific area. On a chest X-ray, the heart may appear larger than normal.

Opacities In the context of a chest X-ray, opacity is a nonspecific descriptor for areas
that appear whiter than normal lung. Normally, lungs look dark gray on an X-ray due to
presence of air (note the black pure air surrounding the patient on x-ray for reference).
If there are whiter areas, it means something is filling up that space inside the lungs,
replacing the air.

Pulmonary Edema is caused by accumulation of fluid in the lungs. In the context of
chest X-rays, pulmonary edema appears as increased opacity within and around the air
space. In Fig. 12, we show a variety of pulmonary edema examples.

Consolidation In the context of chest X-rays, consolidation refers to a region of the
lung where the air spaces are filled with fluid, cells, tissue, or other substances. This
results in a white region on the X-ray. In Fig. 14, we show a variety of consolidation
examples.

COVID-19 refers to pneumonia caused by SARS-CoV-2 virus which manifests most
commonly as multifocal, bilateral opacities with predominance in the lower half of the
lung.
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Pneumothorax This condition occurs when air leaks into the pleural space (between
the lung and chest wall), causing the lung to collapse. It can be a complete lung collapse
or a collapse of only a portion of the lung. On a chest X-ray, a pneumothorax is seen as a
dark region around the edge of the lung, lacking any white texture (except the ribs). The
border of the collapsed lung can be seen as in Fig. 8a at the inferior contour of the mask.
Often small pneumothorax can be hard to spot on a chest X-ray which contributed to
computer vision models overly relying on chest drains for detection, see Sec. 5.3.

A.2 Support devices

Chest drain This is a tube inserted into the pleural space to remove unwanted air
(pneumothorax) or fluid (pleural effusion). On an X-ray, you can see the tube in the
form of two parallel thin white lines. Its position depends on what it is treating: for
pneumothorax it is aimed towards the top; if it is draining fluid, it is towards the bottom.

Pacemaker This is a device placed under the skin near the collarbone. It helps control
abnormal heart rhythms. It has two parts: a control unit (battery and electronics) and
wires (white lines) that connect to the heart. In Fig. 13, we show a variety of pacemaker
examples.

B Details for DDPM inversion and DiffEdit

In this section we provide some additional details on how the editing process is per-
formed. Algorithm 2 describes the DDPM inversion process which is used by RadEdit
to encode images to a sequence of vectors. Additionally, to explicitly see how RadEdit
(Algorithm 1) differs from DiffEdit [11], we provide Algorithm 3, which describes the
DiffEdit editing method using DDPM inversion.

Algorithm 2 DDPM inversion [30]

Require: image x0, inversion prompt cinv,
diffusion model fθ

▷ Sample statistically independent ϵ̃t
for t← 1 to T do

ϵ̃t ∼ N (0, I)
x̂t←

√
ᾱtx0 +

√
1− ᾱtϵ̃t

▷ Isolate zt from series x̂1:T

for t← T to 1 do
ϵt← fθ(x̂t, t, cinv)
zt← (x̂t−1 − µ̂t(x̂t, ϵt))/σt

▷ Avoid error accumulation
x̂t−1← µ̂t(x̂t, ϵt) + σtzt

return (x̂1:T , z1:T )

Algorithm 3 DiffEdit [11] w/ DDPM inversion

Require: image x0, inversion prompt cinv, edit
prompt c, edit mask medit, CFG
weight w, diffusion model fθ

(x̂1:T , z1:T )← DDPMINVERSION(x0, cinv)
xT ← x̂T

for t← T to 1 do
ϵcond,t← fθ(xt, t, c)
ϵuncond,t← fθ(xt, t, c = ∅)
▷ classifier-free guidance (CFG)
ϵt← ϵuncond,t + w(ϵcond,t − ϵuncond,t)
xt−1← µ̂t(xt, ϵt) + σtzt
xt−1←medit⊙xt−1+(1−medit)⊙x̂t−1

return edited version of x0
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C Details for the limitations of LANCE

During the development of RadEdit, we observed numerous artefacts when editing im-
ages from the BIMCV+ or CANDID-PTX datasets without using masks. In both in-
stances, the pathology and the lateral markings or chest tubes were removed, leading
to potential misinterpretations of the results if these edited images were used for stress-
testing. Note, that instead of using a captioner and perturber as seen in the original im-
plementation of LANCE, we manually select the prompts used for editing. In Fig. 7, we
compare RadEdit with LANCE (which does not use masks) in editing images from the
BIMCV+ dataset. This comparison follows the same experimental setup as in Sec. 5.2.
RadEdit retains the laterality marker on the left of the image, whereas LANCE com-
pletely removes it. In both scenarios, we employ the prompt ‘No acute cardiopulmonary
process’3 to edit the image.

(a) Original Image (b) LANCE [53] (c) RadEdit (ours)

Fig. 7: Using LANCE (b) to remove COVID-19 features (rectangle in (a)),the laterality markers
are missing. In addition, the field of view is changed. In contrast, RadEdit (c; ours) uses masks to
preserve laterality markers, which also preserves anatomical structures in the process, and retains
the original contrast.

Similarly, in Fig. 8, we attempt to remove only the pneumothorax from an image
containing a pneumothorax and chest drain, using the prompt ‘No acute cardiopul-
monary process’3, while preserving the rest of the image, including the chest drain.
For a more comprehensive description of the experimental setup, refer to Sec. 5.3. For
LANCE (Fig. 8b), we note that not only is the region containing the pneumothorax
altered, but the chest drain is also removed. This makes LANCE unsuitable for evalu-
ations such as our manifestation shift evaluation (Sec. 5.3), which requires the preser-
vation of support devices like chest drains. We argue that this artefact suggests that
the diffusion model has learned correlations between pathologies and support devices,
leading to the removal of support devices when prompted to remove a pathology.

In Fig. 9, we compare RadEdit with LANCE in editing images from the CANDID-
PTX dataset using the prompt ‘No pneumothorax’. We observe that LANCE generates a
variety of artefacts. While it retains most of the chest drain, LANCE fails to effectively
remove the pneumothorax, instead altering its appearance to resemble a wire. Addition-
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(a) Original Image (b) LANCE [53] (c) RadEdit (ours)

Fig. 8: Removing pneumothorax (red) from X-rays using LANCE (b) results in the spuriously
correlated chest drain (blue) also being removed. RadEdit (c, ours) uses pneumothorax and chest
drain masks to remove the pneumothorax while preserving the chest drain. LANCE results in
decreased contrast and poorly defined anatomical structures, preserved by RadEdit.

ally, there are extensive bilateral artefacts, with modifications to the abdomen, face, and
arms, altered gas pattern and heart, and the lung apices no longer being asymmetrical,
raising questions about whether the X-rays are from the same patient.

One potential explanation for the artefacts seen in this section is found in recent lit-
erature on diffusion models for image-to-image translation. In Su et al. [71], the authors
show that image-to-image translation can be performed with two independently trained
diffusion models. They first obtain a latent representation x̂t from a source image x0

with the source diffusion model, and then decode the latent using the target model to
construct the target image. We argue that since the diffusion model in Sec. 5.1 was not
trained on data from BIMCV+ or CANDID-PTX, in those cases we perform image-
to-image translation along with the image editing. I.e., editing images outside of the
training distribution of the diffusion model leads to images that look more similar to
images from within the training distribution. In the case of RadEdit, where we heavily
rely on masks to control the editing, we only observe minor artefacts. However, in the
case of LANCE, we observe major artefacts that make LANCE unsuitable for stress-
testing of biomedical imaging models. To avoid artefacts, we tried different values for
the LANCE hyperparameters, such as the guidance scale, without success.

D Details for the limitations of DiffEdit

In contrast to LANCE, DiffEdit employs a single mask medit for editing. As the edit-
ing is only applied within medit, DiffEdit avoids the artefacts described in the previous
section. However, DiffEdit introduces new artefacts.

In general, DiffEdit consists of two steps. First, it predicts the edit mask medit using
the difference between the original prompt and the editing prompt. Second, the editing,
following the editing prompt, is applied inside the predicted mask medit, leaving the area
outside of the mask unchanged. When applying DiffEdit to the experimental setups of
Sec. 5.3 and Sec. 5.4 we find problems with both instances.
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(a) Original Image (b) LANCE [53] (c) RadEdit (ours)

Fig. 9: Removing pneumothorax from X-rays using RadEdit (c; ours) results in a minimally mod-
ified X-ray, with the pneumothorax successfully removed and chest drain still present. In contrast,
LANCE (b) fails to properly remove the pneumothorax while keeping most of the chest drain in
place, instead modifying the appearance of the drain to look more like a wire; moreover, there
are extensive artefacts bilaterally, with abdomen, face, and arms added, modified gas pattern and
heart, as well as the lung apexes no longer being asymmetrical, making it unclear whether the
X-rays are of the same patient. Blue: ground-truth annotation for chest drain; red: ground-truth
annotation for pneumothorax.

Initially, we quantify how well the mask automatically predicted by DiffEdit aligns
with the ground-truth annotation. We use the same setup as in Sec. 5.3: we take an image
containing a pneumothorax and a chest drain (sourced from the CANDID-PTX dataset)
and aim to remove only the pneumothorax. We create the editing prompt by splitting
the original impressions into one part containing a description of the pneumothorax and
another part containing a description of the chest drain. We then replace the part contain-
ing the description of the pneumothorax with ‘No pneumothorax’. Therefore, DiffEdit
should predict a mask containing only the pneumothorax. We perform a grid search on
the validation CANDID-PTX dataset over DiffEdit’s hyperparameters, optimising for
pneumothorax segmentation metrics, and then evaluate on the training set. In Fig. 6, we
show that masks predicted by DiffEdit obtain poor quantitative metrics compared to the
manually annotated masks, where parts of the pneumothorax are often missing, and the
spuriously correlated chest drain is often included in the automatically predicted mask.
As a result, masks predicted by DiffEdit are unsuitable for editing images that can be
used for stress-testing.

Secondly, in contrast to RadEdit, which allows the area outside of the mask to
change for consistency, DiffEdit restricts the changes to happen inside the mask. While
this would generate valid edits for the experiment in Sec. 5.2, it can lead to artefacts in
the case of the experiments in Sec. 5.3 and Sec. 5.4.

Following the setup from Sec. 5.4, our goal is to add consolidation to the left upper
lung of a healthy patient. In Fig. 10, we compare the editing results of RadEdit and
DiffEdit. While RadEdit leads to a realistic occlusion of the heart, DiffEdit fails to gen-
erate a realistic-looking edit. Instead, it creates a visible gap between the consolidation
and the heart border, which makes the edited image unsuitable for stress-testing a lung
segmentation model.
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(a) Original Image (b) DiffEdit [11] (c) RadEdit (ours)

Fig. 10: Adding consolidation to the left lung using DiffEdit (b) results in a dark border along the
original lung mask (red) since editing can only occur within the masked region. RadEdit (c; ours)
allows the region outside of the mask to change to ensure consistency, resulting in more realistic
edits. For both editing methods, we use ground-truth masks of the lung.

E Experimental details for Section 5.1: diffusion model

In this section, we provide additional details on how the diffusion model used for all
experiments in Sec. 5 was trained. The VAE downsamples the input images by a factor
of eight, meaning that the latent space has spatial dimensions 64 × 64. For the diffusion
model, we use the linear beta schedule and ϵ-prediction proposed by Ho et al. [28]. The
U-Net architecture is as used by Rombach et al. [59], which we instantiate with base
channels 128, channel multipliers (1, 2, 4, 6, 8), and self-attention at feature resolutions
32 × 32 and below, with each attention head being 32-dimensions. The BioViL-T text
encoder [5] has a maximum token length of 128, so sentences within the impression
are shuffled and then clipped to this length. An exponential moving average is used on
model parameters, with a decay factor of 0.999. We drop the text conditioning with
p = 0.1 during training to allow CFG when sampling [27]. Training was performed
using 48 V100 GPUs for 300 epochs using automatic mixed precision. The AdamW
[46] optimiser was used, with a fixed learning rate of 10−4.

The preprocessing steps are:
1. Resize such that the short side of the image has size 512, using bilinear interpola-

tion;
2. Centre-crop to 512 × 512 pixels;
3. Map minimum and maximum intensity values to [−1, 1].

We use the following label categories for the CheXpert dataset:
1. Atelectasis
2. Cardiomegaly
3. Consolidation
4. Edema
5. Enlarged

cardiomediastinum
6. Fracture
7. Lung lesion

8. Lung opacity
9. No finding

10. Pleural effusion
11. Pleural other
12. Pneumonia
13. Pneumothorax
14. Support devices



28 F. Pérez-García, S. Bond-Taylor et al.

For ChestX-ray8, we use:
1. Atelectasis
2. Cardiomegaly
3. Consolidation
4. Edema
5. Effusion
6. Emphysema
7. Fibrosis
8. Hernia

9. Infiltration
10. Mass
11. No Finding
12. Nodule
13. Pleural thickening
14. Pneumonia
15. Pneumothorax

F Experimental details for Section 5.2: acquisition shift

The datasets used and their respective train / validation / test splits are as follows:

1. BIMCV+: 3008 / 344 / 384
2. BIMCV-: 1721 / 193 / never used for testing
3. MIMIC-CXR: 5000 / 500 / 500 (randomly sampled)
4. Synthetic: never used for training or validation / 2774 (after filtering)

All splits were made ensuring non-overlapping subject IDs.
The filtering of the synthetic test dataset was done using the prompts: ‘Opacities’

and ‘No acute cardiopulmonary process’3.
For training, we converted the original labels of the BIMCV datasets as follows: if

an image has the label ‘Negative for Pneumonia’ or ‘Atypical Appearance’ we assign
label 0; while if it has the label ‘Typical Appearance’ or ‘Indeterminate Appearance’
we assign label 1.

The classifier is trained using a ResNet50 architecture with batch size 32, 100
epochs and learning rate 10−5. The model was evaluated at the point of best valida-
tion area under the receiver operating characteristic curve (AUROC).

The preprocessing steps are as in Appendix E, but image intensities are mapped to
[0, 1].

The following augmentations were used:
1. Random horizontal flip with probability 0.5
2. Random affine transformations with rotation θ ∼ U(−30, 30) degrees and shear

ϕ ∼ U(−15, 15) degrees
3. Random colour jittering with brightness jb ∼ U(0.8, 1.2) and contrast jc ∼ U(0.8, 1.2)
4. Random cropping with scale s ∼ U(0.8, 1)
5. Addition of Gaussian noise with mean µ = 0 and standard deviation σ = 0.05

G Experimental details for Section 5.3: manifestation shift

The datasets used and their respective train / validation / test splits are as follows:

1. CANDID-PTX: 13 836 / 1539 / 1865
2. SIIM-ACR: 10 712 / 1625 / never used for testing
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(a) Example image from MIMIC-CXR
[34]. (b) Example image from BIMCV+ [76].

Fig. 11: Comparison of the visual appearance between the MIMIC-CXR and BIMCV+ datasets.
As shown by [12] there are distinct differences in the laterality markings (top left corner) and
field of views of the images. Bounding boxes in (b) indicate the presence of abnormalities caused
by COVID-19.

3. Synthetic: never used for training or validation / 629 (after filtering)
All splits were made ensuring non-overlapping subject IDs.

The filtering of the synthetic test dataset was done using the prompts: ‘Pneumotho-
rax’ and ‘No acute cardiopulmonary process’3.

After observing that the contours of the pneumothorax and chest drain masks of-
ten do not include the borders of the pneumothorax or chest drain we apply isotropic
dilation with a radius of 5. Examples of such dilated masks can be seen in Fig. 9 (a).

For the weak predictor, the same model architecture, training hyperparameters and
data augmentation are as described in Appendix F

In the case of the strong predictor model, a segmentation model is trained using the
EfficientNet U-Net [72] architecture. We add a single classification layer to the lowest
resolution of the U-Net. The segmentation model is trained to segment pneumothorax,
and the classifier is used to detect the presence of pneumothorax.

The combined model is trained for 100 epochs with batch size 16, learning rate
5 × 10−4 , and a cosine scheduler with warm-up during the first 6% of steps. The model
was evaluated at the point of best validation AUROC for the pneumothorax classifier.

Data preprocessing and augmentation were as described in Appendix F, with s ∼
U(0.9, 1.1). Additionally, a random elastic transform with scale 0.15 (as implemented
in Albumentations [7]) was used.

H Experimental details for Section 5.4: population shift

Prompts used are as follows:

– Pulmonary edema: ‘Moderate pulmonary edema. The heart size is normal’
– Pacemaker: ‘Left pectoral pacemaker in place. The position of the leads is as ex-

pected. Otherwise unremarkable chest radiographic examination’
– Consolidation: ‘New [left/right] upper lobe consolidation’
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The datasets used and their respective train / validation / test splits are as follows:

1. MIMIC-Seg: 911 / 114 / 115
2. CheXmask: 169 206 / 36 580 / 36 407
3. Synthetic Edema: never used for training or validation / 787 (after filtering)
4. Synthetic Pacemaker: never used for training or validation / 744 (after filtering)
5. Synthetic Consolidation: never used for training or validation / 1577 (after filtering)

All splits were made ensuring non-overlapping subject IDs.
The same segmentation model architecture, training hyperparameters, and data aug-

mentation/preprocessing steps are used as described in Appendix G.
In Figures 12 to 14 we show more examples of edits produced by RadEdit to stress

test the segmentation models. RadEdit edits are high-quality, with both general anatomy
maintained after the edit, as well as image markings.
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(a) Original (b) Edited (c) Weak
Predictor

(d) Strong
Predictor

Fig. 12: Additional edits simulated by RadEdit for stress-testing two segmentation models. The
‘weak predictor’ (c) and the ‘strong predictor’ (d) are trained on MIMIC-Seg [10] and CheXmask
[17] respectively, by adding pulmonary edema, via the prompt ‘Moderate pulmonary edema. The
heart size is normal.’ Blue: ground-truth mask: ; red: predicted. Similar to the example in Fig. 4,
both segmentation models predict relatively accurate segmentation maps, indicating a high level
of robustness to this pathology. Edits are visually high quality, with anatomy well maintained,
and the edema clearly identifiable.
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(a) Original (b) Edited (c) Weak
Predictor

(d) Strong
Predictor

Fig. 13: Additional edits simulated by RadEdit for stress-testing two segmentation models. The
‘weak predictor’ (c) and the ‘strong predictor’ (d) are trained on MIMIC-Seg [10] and CheX-
mask [17] respectively, by adding pacemakers, which can be seen in the top left of images, via
the prompt ‘Left pectoral pacemaker in place. The position of the leads is as expected. Other-
wise unremarkable chest radiographic examination.’ Blue: ground-truth mask: ; red: predicted.
Similar to the example in Fig. 4, the segmentation model trained on MIMIC-Seg (which contains
predominantly healthy patients) incorrectly segments around the pacemakers, while the model
trained on CheXmask (which is larger and contains various abnormal cases), segments more ac-
curately.
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(a) Original (b) Edited (c) Weak
Predictor

(d) Strong
Predictor

Fig. 14: Additional edits simulated by RadEdit for stress-testing two segmentation models. The
‘weak predictor’ (c) and the ‘strong predictor’ (d) are trained on MIMIC-Seg [10] and CheXmask
[17] respectively, by adding upper-lobe consolidation, via the prompt ‘New [left/right] upper lobe
consolidation.’ Blue: ground-truth mask: ; red: predicted. Similar to the example in Fig. 4, both
models are less able to segment the lungs accurately, however, segmentations by the model trained
on MIMIC-Seg are notably worse, often excluding the consolidated region.


