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Abstract. Biomedical imaging datasets are often small and biased, meaning that
real-world performance of predictive models can be substantially lower than ex-
pected from internal testing. This work proposes using generative image editing
to simulate dataset shifts and diagnose failure modes of biomedical vision mod-
els; this can be used in advance of deployment to assess readiness, potentially re-
ducing cost and patient harm. Existing editing methods can produce undesirable
changes, with spurious correlations learned due to the co-occurrence of disease
and treatment interventions, limiting practical applicability. To address this, we
train a text-to-image diffusion model on multiple chest X-ray datasets and intro-
duce a new editing method, RadEdit, that uses multiple image masks, if present,
to constrain changes and ensure consistency in the edited images, minimising
bias. We consider three types of dataset shifts: acquisition shift, manifestation
shift, and population shift, and demonstrate that our approach can diagnose fail-
ures and quantify model robustness without additional data collection, comple-
menting more qualitative tools for explainable AI.

Keywords: Image editing · diffusion models · biomedical imaging

1 Introduction

Developing accurate and robust models for biomedical image analysis requires large
and diverse datasets that are often difficult to obtain due to ethical, legal, geographical,
and financial constraints [41]. This leads to biased training datasets that affect the per-
formance of trained models and generalisation to real-world scenarios [59, 40]. Such
data mismatch may arise from genuine differences in upstream data acquisition as well
as from the selection criteria for dataset creation, which materialise as various forms of
dataset shifts (population, acquisition, annotation, prevalence, manifestation) [7].
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Fig. 1: Stress-testing models by simu-
lating dataset shifts via image editing.
Top: editing out COVID-19 features re-
sults in false positives since the classifier
relies on acquisition differences, e.g., ra-
diographic markers (white arrow).
Middle: editing out a pneumothorax
(PTX) results in false positives since the
classifier instead detects chest drains.
Bottom: editing abnormalities into lungs
causes a lung segmentation model to
mislabel (blue: ground-truth segmenta-
tion; red: model prediction).
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Biomedical vision models, when put into real-world use, can be unhelpful or poten-
tially even harmful to patients if they are affected by dataset shifts, leading to missed
diagnoses [22, 74, 76, 56]. For example, the COVID-19 pandemic led to hundreds
of detection tools being developed, with some put into use in hospitals; yet Roberts
et al. [56] found that “none of the models identified are of potential clinical use due
to methodological flaws and/or underlying biases.” It is therefore crucial to properly
assess models for bias, prior to real-world use.

Recent deep generative models have made remarkable improvements in terms of
sample quality, diversity, and steerability [57, 48, 35, 28]. These models have been
shown to generalise to out-of-distribution domains [42, 6, 32, 19], opening up avenues
for new applications. One such application is generating synthetic data for stress-testing
models [51, 42, 72]. This involves creating data that is realistic, yet can represent set-
tings, domains, or populations that do not appear (enough) in the real training/test data.

In this work, we investigate how deep generative models can be used for stress-
testing biomedical imaging models. We consider three dataset shift scenarios:

1. Acquisition shift: classifying COVID-19 cases when the positive and negative
cases were acquired at different hospitals (Sec. 5.2).

2. Manifestation shift: detecting if pneumothorax1 was resolved when chest drains
(inserted to treat pneumothorax) are present (Sec. 5.3).

3. Population shift: segmenting lungs in the presence of abnormalities rarely or never
seen in the training dataset (Sec. 5.4).

For each of these scenarios, we simulate dataset shifts, producing stress-test sets which
can occur in the real world but do not appear or are underrepresented in the original
training/test sets. Following prior work, these test sets are synthesised using generative
image editing, which unlike generating images from scratch, only minimally modifies
the images, hence, better retains fidelity and diversity [51, 42]. For the above scenarios,
we use generative editing to 1. remove only COVID-19 features while keeping visual
indicators of the different hospitals; 2. remove only pneumothorax while keeping the
chest drain; and 3. add abnormalities that occlude lung structures in the image.

1 We provide descriptions of the medical terms used throughout the paper in Appendix A
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We train a diffusion model [27, 57] on a large collection of chest X-rays from a va-
riety of biomedical imaging datasets (Sec. 5.1), enabling us to add and remove a wide
variety of pathologies and support devices when editing. Despite the diversity within
these datasets, substantial biases are still present, some of which are learned by the
generative model; as a result, correlated features may also be modified. For example,
in Scenario 2, removing the pneumothorax might also remove the chest drains as both
features typically co-occur in datasets [58], since chest drains are used to treat pneu-
mothorax. Furthermore, when editing only within editing masks, artefacts often appear
at the border of the masks. Lastly, artefacts occur when editing images outside of the
training dataset domain of the diffusion model used for editing. To overcome these chal-
lenges, we propose using multiple masks to break existing correlations. This involves
defining which regions must change, and explicitly forcing correlated regions to re-
main unchanged. In addition, we allow the area outside of the masks to be modified by
the diffusion model to ensure image consistency. Since our proposed editing method,
which we call RadEdit, leads to only minimal overall changes of chest X-rays, we are
able to generate synthetic datasets that can be used to stress-test segmentation models
(Scenario 3), which, to the best of our knowledge, we are the first to demonstrate.

In summary, our contributions are as follows:
– We introduce a novel editing approach that reduces the presence of artefacts in

edited images and simplifies prompt construction compared to prior work [10, 51].
– Our editing approach allows us to construct synthetic datasets with specific data

shifts by performing zero-shot edits on datasets/abnormalities not seen in training.
– We conduct a broad set of experiments using these synthetic datasets to stress-test

and expose biases in biomedical classification and, for the first time, segmentation
models, introducing a new use case of synthetic data into the medical setting.

2 Preliminaries

In this section, we introduce background context for stress-testing biomedical imaging
models: failure modes of biomedical imaging models caused by different dataset shifts;
diffusion models as versatile generative models; and diffusion-based image editing.

2.1 Dataset shifts

Dataset shift refers to a discrepancy between the training and test data distributions due
to external factors [7, 34]. Such shifts are regularly observed in machine learning for
biomedical imaging, often due to data scarcity. For example, collected training datasets
might consist primarily of healthy patients. However, when the model is used in practice
after training, there could be a shift towards unhealthy patients. A taxonomy of different
types of dataset shifts in the context of biomedical imaging was developed by Castro
et al. [7]. In this paper, we consider three dataset shifts of particular interest.

Acquisition shift results from the use of different scanners (manufacturer, hardware,
and software) or imaging protocols as often encountered when using data from mul-
tiple cohorts. These changes affect factors such as image resolution, contrast, patient
positioning, and image markings.
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Manifestation shift results from the way the prediction targets physically manifest
in anatomy changes between domains. For example, training datasets could consist of
more severe pathological cases than observed in practice, or a pathology may co-occur
with different visual features, e.g., support devices.

Population shift results from differences in intrinsic characteristics of the populations
under study, changing the anatomical appearance distribution. This definition encom-
passes examples such as age, sex, ethnicity, and comorbidities, but also abnormalities
such as pleural effusion and support devices. In contrast to manifestation shift, the shift
in anatomical appearance is not affected by prediction targets.

2.2 Diffusion models
Denoising diffusion probabilistic models (DDPMs) [27, 67] are a versatile and effective
class of generative models that enable sampling from the data distribution by learning
to denoise samples corrupted with Gaussian noise. DDPMs are formed by defining a
forward time process that gradually adds noise to data points x0 through the recursion

xt =
√
1− βtxt−1 +

√
βtϵt, t = 1, . . . , T, s.t. xt =

√
ᾱtx0 +

√
1− ᾱtϵ̄t , (1)

where ϵ1:T , ϵ̄1:T ∼ N (0, I), β1:T is a predefined noise schedule that determines how
quickly to corrupt the data and ensures that xT contains little to no information about
x0, and ᾱt =

∏t
s=1(1 − βs). To form a generative model, the process is reversed in

time, gradually transforming Gaussian noise into samples from the learned distribution.
While the exact reversal is intractable, a variational approximation is defined by [68]:

xt−1= µ̂t(xt, fθ(xt, t, c)) + σtzt, (2)

µ̂t(xt, ϵt)=
√
ᾱt−1

xt−
√
1−ᾱtϵt√
ᾱt

+
√
1−ᾱt−1−σ2

t ϵt, (3)

where c is a conditioning signal such as a text description, fθ(xt, t, c) is a learned ap-
proximation of the noise ϵ̄t that corrupted the image x0 to obtain xt, z1:T ∼ N (0, I),
and σ1:T controls how much noise is introduced. The process is Markovian and known
as a DDPM [27] when σt =

√
(1−ᾱt−1)/(1−ᾱt)

√
1− ᾱt/ᾱt−1, while for σt =0 the pro-

cess is deterministic and is called a denoising diffusion implicit model (DDIM) [68].

2.3 Image editing
Since DDIMs have a one-to-one correspondence with latent vectors xT , we can de-
terministically map data points to latents by running the DDIM generative process in
reverse [68], called DDIM inversion. Several approaches [10, 46] have shown that im-
ages can be edited by running the reverse diffusion process augmented by the latent
vectors and a modified prompt c. However, this method can lead to undesired artefacts
in the edited images. For example, structures unrelated to the desired edit may also
change shape, size, or location. To address this, Huberman-Spiegelglas et al. [29] pro-
pose DDPM inversion. Here, the original forward process defined in Eq. (1) is adapted,
replacing the correlated vectors ϵ̄1:T with statistically independent vectors ϵ̃1:T (more
details in Appendix B). These noise vectors are then used in the generative process,
retaining the structure of the original image better than DDIM inversion.



RadEdit: stress-testing biomedical vision models via diffusion image editing 5

3 Related work

3.1 Generative image editing

With advances in deep generative modelling, several approaches to image editing have
emerged. Many of these early approaches use compressed latent manipulation [12, 52,
64, 71] where fine-grained edits are difficult to achieve and can result in unwanted
changes. More recently, the unparalleled flexibility of diffusion models, together with
advances in plain text conditioning, have opened up new avenues for editing techniques.

Here, we describe some notable diffusion editing methods. SDEdit [46] shows that
diffusion models trained solely on real images can be used to generate images from
sketches by perturbing sketches with noise, then running the reverse diffusion process.
Palette [60] is a diffusion model trained for inpainting by filling regions with noise and
denoising. Blended diffusion [2, 3] uses masks with CLIP [53] conditioning to guide
local edits. Multiple works show that injecting U-Net activations, obtained by encoding
the original image into the generation process, better retains image structure [24, 70].
DiffEdit [10] uses text prompts to determine the appropriate region to edit. Mokady
et al. [47] improve diffusion inversion quality by optimising the diffusion trajectory.

Crucially, in the works which use masks for editing, a single type of mask is always
used to define the region of interest. In this work, we argue that a second type of mask is
required to avoid the loss of features caused by spurious correlations. As better editing
approaches are developed, this requirement should be kept in mind.

3.2 Biomedical imaging counterfactuals

Generative models have also been applied to biomedical counterfactual generation.
Reinhold et al. [55] manipulate causes of multiple sclerosis in brain MRI with deep
structural causal models [49]. Sanchez et al. [62] and Fontanella et al. [15] use edit-
ing to remove pathologies for abnormality detection. Ktena et al. [39] generate out-of-
distribution samples to improve classifier performance. Gu et al. [21] train a diffusion
model to model disease progression by conditioning on a prior X-ray and text progres-
sion description. Unlike our approach, these methods do not use masks to enforce which
regions may or may not be edited, meaning that spurious correlations might affect edits.
Additionally, these methods use synthetic data to augment and improve model perfor-
mance whereas we focus on using synthetic medical data for stress-testing.

3.3 Stress-testing

Several approaches have used non-deep-generative-model methods to stress-test net-
works. Hendrycks and Dietterich [23] evaluate classification models’ robustness to
corruptions such as blurring, Gaussian noise, and JPEG artefacts. Sakaridis et al. [61]
stress-test a segmentation model for roads by using an optical model to add synthetic
fog to scenes. Koh et al. [38] collate a dataset presenting various distribution shifts.

More recent models have made use of conditional generative models to simulate
shifts. Prabhu et al. [51] propose LANCE, which stress-tests classification models by
using diffusion-based image editing to modify image subjects via caption editing with
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a large language model (LLM); Kattakinda et al. [36] do similar, but instead modify the
background. Li et al. [42] use diffusion models with a single subject mask to separately
edit backgrounds and subjects. Van Breugel et al. [72] use generative adversarial net-
works to simulate distribution shifts on tabular data. This line of research is partially
related to adversarial attacks [20], where the focus is on minimally modifying images
such that they are visually indistinguishable to a human, but the attacked model fails.

3.4 Limitations of existing editing-based stress-testing methods

Recent advancements in diffusion modelling have drastically improved image editing.
However, two prevalent approaches, LANCE [51] and DiffEdit [10], produce artefacts
in medical images, making them unsuitable for stress-testing biomedical vision models.

LANCE only uses a global prompt (no mask) for image editing. While effective
in the natural image domain, it leads to artefacts in the biomedical domain. For exam-
ple in Sec. 5.4, we add pathologies and support devices to images of healthy lungs to
stress-test lung segmentation models; in such cases we must ensure that the position and
shape of the lung borders are not altered during editing. However, we find that LANCE
changes the position and shape of the lung border thus making edited images unsuitable
for stress-testing such models (Sec. 5.5). In addition, we find that LANCE potentially
removes support devices when prompted to remove pathologies, a direct effect of the
correlations in the diffusion model’s training datasets (Sec. 5.1), making LANCE un-
suited for testing the robustness of models to manifestation shift.

DiffEdit addresses these issues by editing only inside an automatically predicted
mask medit. However, these predicted masks often mismatch the manually annotated
ground-truth, especially for small and complex abnormalities like pneumothorax1 (see
Sec. 5.5). Moreover, spurious correlations learned by the diffusion model can lead to the
inclusion of support devices in the automatically predicted masks. Furthermore, even
when relying on manually annotated masks, DiffEdit can introduce sharp discrepancies
at mask boundaries, leading to unrealistic artefacts, such as when adding consolidation
that should partially occlude the lung border (Fig. 10b in the Appendix).

4 Method

Our objective is to create synthetic test data through image editing that simulates spe-
cific data shifts, to rigorously evaluate biomedical imaging models. This synthetic data
is used to predict model robustness, eliminating need for additional real-world test data.

4.1 Improved editing with RadEdit

To address the issues outlined in Sec. 3.4, we propose RadEdit: by introducing ‘keep’
and ‘edit’ masks into the editing process, RadEdit explicitly specifies which areas must
remain unchanged (keep) and which should be actively modified based on the condi-
tioning signal (edit). Crucially, these masks need not be mutually exclusive, allowing
changes in the unmasked regions to ensure global consistency. Using masks, we assume
that spurious correlations are mostly non-overlapping [44].
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Algorithm 1 RadEdit (ours) uses multiple masks to decouple spurious correlations

Require: original image x0, inversion prompt cinv, editing prompt c, edit mask medit, keep mask
mkeep, CFG weight w, diffusion model fθ

(x̂1:T , z1:T )← DDPMINVERSION(x0, cinv) ▷ Encode image. Procedure in Appendix B
xT ← x̂T

for t← T to 1 do
ϵcond,t← fθ(xt, t, c) ▷ Predict conditional noise
ϵuncond,t← fθ(xt, t, c = ∅) ▷ Predict unconditional noise
ϵt← ϵuncond,t + w(ϵcond,t − ϵuncond,t) ▷ Combine noise predictions with CFG
ϵt←medit ⊙ ϵt + (1−medit)⊙ ϵuncond,t ▷ Use CFG only within medit

xt−1← µ̂t(xt, ϵt) + σtzt ▷ Move to next time step
xt−1←mkeep ⊙ x̂t−1 + (1−mkeep)⊙ xt−1 ▷ Undo edits within mkeep

return edited version of x0

RadEdit is detailed in Algorithm 1, where a number of key properties make RadEdit
more suitable for biomedical image editing than prior editing methods. Firstly, since we
aim to edit only within the edit mask medit, classifier-free guidance (CFG) [26] is used
only within this region, with high guidance values (following [29], we use a value of 15)
ensuring that pathologies are completely removed without drastically changing the rest
of the image. This approach also simplifies choosing a prompt for editing since we do
not have to take into account the effect of the prompt on the rest of the image. Secondly,
we allow the area outside medit to be modified via unconditional generation to ensure
image consistency. Lastly, the region of the keep mask mkeep is reverted to the encoding,
ensuring that this region remains the same. Instead of initiating our generating process
from pure noise we set xT = x̂T , where x̂T is the last output of the DDPM inversion.

In Fig. 3c, 10c, we show that RadEdit enables artefact-free editing while preserving
structures of interest. Because the anatomical layout remains intact after editing, masks
still correspond to the same structures, therefore the same masks can be reused to stress-
test segmentation models (Sec. 5.4). In practice, we use a latent diffusion model [57],
therefore all operations in Algorithm 1 are performed in the latent space of a variational
autoencoder (VAE) [57]; this does not limit the generality of the approach.

4.2 Using synthetic images to uncover bias

Despite advancements in biomedical computer vision, recent studies have shown that
bias in training and test data can lead to unrealistically high performance of machine
learning models on the test set [59, 11]. In our experiments, we use RadEdit to create
high quality synthetic test datasets that realistically capture specific dataset shifts, al-
lowing us to quantify the robustness of models to these dataset shifts. By using masks,
we can precisely edit the original training data to represent either acquisition shift, man-
ifestation shift, or population shift [7] (Secs. 5.2 to 5.4). These synthetic test sets are
used to stress-test (potentially biased) biomedical vision models by comparing perfor-
mance to the real (biased) test set; a significant drop in performance indicates that the
vision model is not robust to the dataset shift that can occur in clinical settings. This
serves as a complementary tool to visual explainable AI tools like Grad-CAM [63] and
saliency maps [66, 1], which offer qualitative insight into the robustness of models.
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4.3 BioViL-T editing score

Since generative models result in samples of varying quality, poor-quality samples can
be filtered out using image–text alignment scores, which quantitatively assess how
closely related image–text pairs are via a pre-trained model that embeds similar images
and text to nearby vectors [4, 54, 53, 14]. For image editing, we instead assess how
similar the change in text and image embeddings are after editing: for a real image–
text pair (Ireal, Treal), edited image–text pair (Iedit, Tedit), image encoder EI , and text
encoder ET , the editing score is defined based on directional similarity [17]:

SBioViL-T =
∆I ·∆T

∥∆I∥∥∆T∥
, where

∆I = EI(Iedit)− EI(Ireal) , and
∆T = ET (Tedit)− ET (Treal) .

(4)

Given the focus on biomedical data, we use the BioViL-T [5] image and text encoders:
domain-specific vision–language models trained to analyse chest X-rays and radiology
reports, therefore well suited to measure changes in the edited image, such as removed
pathologies. Following Prabhu et al. [51], we discard images with SBioViL-T < 0.2. This
is not only effective for filtering out poor quality edits but is also able to detect whether
the original image Ireal does not match the original text description Treal well.

5 Experiments

5.1 Diffusion model

Our editing method is heavily dependent on a latent diffusion model [57] that can gener-
ate realistic chest X-rays. We use the VAE [37, 25] of SDXL [50] which can adequately
reconstruct chest X-rays [8]. The VAE is frozen, and the denoising U-Net is trained
on three datasets downsampled and centre-cropped to 512 × 512 pixels: MIMIC-CXR
[33], ChestX-ray8 [75], and CheXpert [30], totalling 487 680 training images. This data
diversity allows us to perform zero-shot edits on datasets not seen during training.

For MIMIC-CXR, we only include frontal view chest X-rays, and condition the de-
noising U-Net on the corresponding impression section in the radiology report (a short
clinically actionable outline of the main findings). We employ the tokeniser and frozen
text encoder from BioViL-T [5]. For ChestX-ray8 and CheXpert, we condition on a list
of all abnormalities present in an image as indicated by the labels, e.g., ‘Cardiomegaly.
Pneumothorax.’. If the list of abnormalities is empty, we use the string ‘No findings’.
More details on the datasets and diffusion model training can be found in Appendix E.

5.2 Acquisition shift

Background To show how RadEdit can be used to quantify the robustness of mod-
els to acquisition shift, we closely follow the experimental setup of DeGrave et al.
[11], who show that deep learning systems built to detect COVID-19 from chest X-rays
rely on confounding factors rather than pathology features. This problem arises when
COVID-19-positive and -negative images come from disparate sources. In our setup,
all COVID-19-positive cases come from the BIMCV dataset [73] (denoted BIMCV+),
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Fig. 2: Removing COVID-19
features with LANCE2 (b)
also changes the laterality
markers and reduces contrast.
In contrast, RadEdit (c; ours)
preserves anatomical struc-
tures and laterality markers,
and retains the original con-
trast. (a) Original Image (b) LANCE [51] (c) RadEdit (ours)

and all COVID-19-negative cases from MIMIC-CXR [33] (see Fig. 11). A classifier
trained on these datasets will rely on spurious features indicative of the data’s origin,
e.g., laterality markers or the field of view, instead of features caused by the pathology.

Setup A synthetic test set is created by applying RadEdit to remove COVID-19 fea-
tures1 from BIMCV+ images using the prompt ‘No acute cardiopulmonary process’3

(Fig. 2); the included bounding boxes of COVID-19 features are used as the edit mask
medit. Since this is the only mask available, we set the keep mask as mkeep =1−medit.
After filtering using the BioViL-T editing (Sec. 4.3), this results in a synthetic dataset of
2774 COVID-19-negative images containing the same spurious features as BIMCV+.
Both the weak and strong predictor models are classifiers trained using a ResNet50
architecture (see Appendix F for more implementation details).

Findings Tab. 1, shows the performance of a COVID-19 classifier (weak predictor)
trained on BIMCV+ and MIMIC-CXR. In accordance with DeGrave et al. [11], we find
that the weak predictor performs exceptionally well on the real test set (i.e. test splits
of both datasets) since the model learned to distinguish the two data sources instead of
learning visual features related to COVID-19. However, in the second row of Tab. 1,
we see a drop of 95% in accuracy meaning that the model fails to classify the synthetic
images as COVID-19-negative. The weak predictor is not robust to a shift in acquisition.

To show that the decreased performance of the weak predictor is not caused by
artefacts in the edited images, we train a more robust COVID-19 classifier (strong pre-
dictor), using the BIMCV+ and BIMCV- datasets, as in [11], where the BIMCV- dataset
consists of only COVID-19-negative cases from BIMCV, and test on the same two test

Table 1: Quantifying robustness of COVID-19 detectors to
acquisition shift. We train a weak predictor on the ‘Biased’
dataset—a combination of BIMCV+ [73] and MIMIC-CXR
[33]; and a strong predictor on an unbiased dataset—a combi-
nation of BIMCV+ and BIMCV-; the ‘Synthetic’ test set con-
sists of 2774 COVID-19-negative images with the same spuri-
ous features as the BIMCV+ datasets, e.g. laterality markers.
We report mean accuracy and standard deviation across 5 runs.

Predictor Test data Accuracy

Weak Biased 99.1 ± 0.2
Weak Synthetic 5.5 ± 2.1

Strong Biased 74.4 ± 3.0
Strong Synthetic 76.0 ± 7.7

2For LANCE, we perform the text perturbation manually.
3This is a common radiological description of a ‘normal’ chest X-ray.
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Fig. 3: Removing pneumotho-
rax (red) with LANCE2 (b)
also removes the spuriously cor-
related chest drain (blue) and
reduces contrast. In contrast,
RadEdit (c; ours) preserves the
chest drain and better preserves
anatomical structures. (a) Original Image (b) LANCE [51] (c) RadEdit (ours)

datasets. Comparing rows one and three of Tab. 1, we find that the strong predictor per-
forms worse on the test set containing samples from BIMCV+ and MIMIC-CXR than
the weak predictor (row one). This is expected as the strong predictor relies on actual
pathology features. Lastly, rows three and four of Tab. 1 show that the strong predictor
performs similarly on the real and synthetic test sets, attesting to the quality of our edits.

5.3 Manifestation shift

Background In this section, we show how RadEdit can be used to quantify the robust-
ness of biomedical vision models to manifestation shift. We closely follow the experi-
mental setup of Rueckel et al. [59], who demonstrate that pneumothorax1 classification
models are strongly biased by the presence of chest drains: while the average perfor-
mance of pneumothorax classifiers is high, performance on the subset of images with a
chest drain but no pneumothorax is significantly lower. This is due to chest drains being
a common treatment for pneumothorax, resulting in the majority of images in datasets
like CANDID-PTX [13] containing a chest drain only if there is a pneumothorax. As a
result, only 1% of images in CANDID-PTX contain a chest drain but no pneumothorax.

Setup We use RadEdit to create a synthetic dataset containing images with chest drains
but no pneumothorax, by editing out the pneumothorax from CANDID-PTX images
using the prompt ‘No acute cardiopulmonary process’3 (Fig. 3). The edit mask medit is
set as a mask of the pneumothorax, and the keep mask mkeep set as the chest drain mask.
This ensures that the chest drain is not removed, while preventing border artefacts. After
filtering using the BioViL-T editing score (Sec. 4.3), 628 images are left; in contrast,
the real test set contains only 16 of cases with drains but no pneumothorax. The weak
predictor is a ResNet50 trained to classify pneumothorax. Following Rueckel et al.
[59], the strong predictor is an EfficientNet U-Net [69] trained on SIIM-ACR [77] to
both segment pneumothorax and classify pneumothorax (more details in Appendix G).

Findings In accordance with [59], we show in Tab. 2 that a pneumothorax classifier
(weak predictor) trained on CANDID-PTX performs exceptionally well on the test split
of CANDID-PTX, since very few images contain a chest drain and no pneumothorax.
However, in row two of Tab. 2, we show a drastic drop in performance on the synthetic
test set, i.e., the weak predictor is not robust to manifestation shift. To show that the drop
in performance on the synthetic dataset does not come from editing artefacts, we eval-
uate the more robust segmentation model (strong predictor) on the same test datasets
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Table 2: Quantifying robustness of pneumothorax detec-
tors to manifestation shift. The weak predictor is trained
on the biased CANDID-PTX [13] dataset to classify pneu-
mothorax; the strong predictor is trained on SIIM-ACR [77]
to classify and segment the pneumothorax. Real ‘Biased’ test
data comes from CANDID-PTX which exhibits strong con-
founding between the pneumothorax and chest tubes; ‘Syn-
thetic’ test data is 629 solely edited images containing chest
drains but no pneumothorax. We report mean accuracy and
standard deviation across 5 runs.

Predictor Test data Accuracy

Weak Biased 93.3 ± 0.6
Weak Synthetic 17.9 ± 3.7

Strong Biased 93.7 ± 1.3
Strong Synthetic 81.7 ± 7.1

(rows three and four of Tab. 2), we find that the strong predictor performs on par with
the weak predictor in row one; however, the strong predictor closes the majority of the
gap between the real test set and the synthetic one, attesting to the quality of our edits.
In agreement with Rueckel et al. [59], there is still a performance gap, indicating that
the strong predictor still suffers from mild manifestation shift.

5.4 Population shift

Background In this section, we show how RadEdit can be used to quantify the ro-
bustness of lung segmentation models to population shifts. Manually segmenting X-ray
images is labour intensive and requires high expertise, leading to small datasets often
limited to single pathologies or healthy patients [65, 31], e.g., MIMIC-Seg [9]. These
models are thus sensitive to occlusions such as medical devices or pathologies, which
typically appear as white regions on X-rays [43]. Evaluating model robustness requires
further image collection for each occlusion type, which is time-consuming and costly.

Setup Here, abnormalities are added to the lung region in healthy X-rays from MIMIC-
Seg (Fig. 4). The edit mask medit is set as a mask of the lung(s). When editing a single

Fig. 4: Adding pulmonary edema
(top), pacemakers (middle), and con-
solidation (bottom) with RadEdit. The
‘strong predictor’ (d), a segmentation
model trained on CheXmask [16]
(a large dataset containing various
abnormalities) is more robust to
these abnormalities than the ‘weak
predictor’ (c), a segmentation model
trained on MIMIC-Seg [9] (a small set
of mostly healthy patients): the weak
predictor traces around the pacemaker
and poorly annotates the consolidated
lung. Blue: ground-truth annotation;
red: predicted segmentation. (a) Original (b) Edited (c) Weak

predictor
(d) Strong
predictor
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Table 3: Quantifying robustness of lung segmentation models to population shift. The ‘weak
predictor’ is trained on MIMIC-Seg (a small set of predominantly healthy patients); the ‘strong
predictor’ is trained on CheXmask (a large mixed set of patients with various abnormalities).
Synthetic test data is created by using RadEdit to add edema, pacemakers, and consolidation. We
report the change (∆) in Dice score and AHD with respect to the segmentation models evaluated
on the ground-truth test set.

Weak Predictor Strong Predictor

Test data Dice↑ ∆↓ AHD↓ ∆↓ Dice↑ ∆↓ AHD↓ ∆↓

Real data 97.4 — 6.1 — 95.5 — 11.6 —
Healthy edit→ edema 93.8 3.6 21.8 15.7 93.9 1.6 22.8 11.2
Healthy edit→ pacemaker 85.0 12.4 49.8 43.7 87.3 8.2 29.5 17.9
Healthy edit→ consolidation 85.9 11.5 44.1 38.1 88.1 7.4 29.4 17.8

lung, the keep mask mkeep corresponds to the lung which must not change, while when
editing both lungs we set mkeep = 0 to allow opacity adjustments, or for elements to
be added outside of the lungs. Stress-test sets are generated for three abnormalities:
pulmonary edema, pacemakers, and consolidation1. Prompts are phrased to match sim-
ilar impressions in the training data (see Appendix H). Both predictors are EfficientNet
U-Net [69] models; the weak predictor is trained on MIMIC-Seg, while the strong pre-
dictor is trained on CheXmask [16], a larger dataset with various lung abnormalities
(more details in Appendix H). We evaluate segmentation quality using Dice similarity
coefficient, which is the harmonic mean of the precision and recall, and 95th percentile
average Hausdorff distance (AHD), a measure of the distance between two sets [45].

Findings Tab. 3 shows that the weak predictor model performs well on the real bi-
ased test data, since it is mostly composed of healthy subjects. However, testing on the
synthetic lung abnormality datasets (rows two to four), causes performance to drop sub-
stantially, i.e. the weak predictor is not robust to population shift. To show that this drop
in performance does not come from editing artefacts, we evaluate the strong predictor
on the synthetic test sets and see considerably smaller changes in performance. This
can be seen in Fig. 4: for pulmonary edema, both models can accurately segment, de-
spite the abnormality; for pacemakers, the weak predictor incorrectly segments around
the pacemakers, while the strong predictor more accurately segments the lungs; and for
consolidation, both models are less able to segment the lungs accurately, however, the
strong predictor gets closer to the ground-truth. See Appendix H for more examples.

5.5 Quantifying the limitations of existing editing methods

LANCE As seen in the second row of Tab. 3, adding edema leads only to a small drop
in performance of the strong predictor. We hypothesise that further drops in perfor-
mances stem from a mismatch of the original mask and the edited images. We therefore
use this setup to quantify how well LANCE and RadEdit preserve the shape and po-
sition of the lung borders. Additionally, we study the difference between results using
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(a) (b) (c) (d) (e)

Fig. 5: Comparison of LANCE2 and RadEdit. We mea-
sure how well the strong predictor from Tab. 3’s out-
puts matches the ground-truth lung masks (blue) for
four synthetic datasets created by adding edema using
LANCE and RadEdit with DDIM or DDPM inversion.
High Dice / low AHD indicates that the editing method
well preserves the lung border’s location and shape.

Editing Method Dice↑ AHD↓

(a) Original data 95.5 11.6
(b) LANCE w/ DDIM 78.9 65.1
(c) LANCE w/ DDPM 80.1 69.5
(d) RadEdit w/ DDIM 86.2 39.8
(e) RadEdit w/ DDPM 93.9 22.8

DDIM or DDPM inversion. For all four methods in Fig. 5, we use the same setup as in
Sec. 5.4: we first edit the original image with the prompt ‘Moderate pulmonary edema.
The heart size is normal’, and then compare the outputs of the strong predictor with the
original ground-truth lung masks. Here, we find that using masks and DDPM inversion
is necessary for RadEdit to preserve the shape and position of the lung border.

DiffEdit We quantify how well DiffEdit’s automatically predicted masks match the
manual ground-truth using the same setup as in Sec. 5.3: we take an image containing
pneumothorax and a chest drain, and try to remove only the pneumothorax. The editing
prompt is created by keeping only the parts of the impressions related to pneumothorax
and chest drains, and replacing the description of the pneumothorax with ‘No pneumoth-
orax’. DiffEdit should therefore predict a mask containing only the pneumothorax. We
perform a grid search on the MIMIC-Seg [9] validation set over DiffEdit’s hyperpa-
rameters (noise strength and binarising threshold) to optimise pneumothorax segmenta-
tion metrics, then evaluate on the training set. In Fig. 6 we see that DiffEdit’s predicted
masks obtain poor quantitative metrics where parts of the pneumothorax are often miss-
ing, and the spuriously correlated chest drain is often included in the predicted mask.
As a result, DiffEdit’s predicted masks are unsuitable for stress-testing.

(a) Examples of pneumothorax masks predicted using DiffEdit [10]. Blue:
ground-truth annotation; red: predicted editing mask.

Hyperparameters Dice AHD

Tuned per image 33.8 97.7
Tuned on validation 18.4 256.8

(b) Segmentation metrics for the pneumoth-
orax mask predicted by DiffEdit [10], for
hyperparameters tuned on the validation set
(bottom) and tuned per image (top; which re-
quires ground-truth masks).

Fig. 6: Evaluating pneumothorax masks predicted using DiffEdit [10]. (a) Predicted masks
(red) are noisy, with chest drains often incorrectly segmented as well as or instead of the pneu-
mothorax (blue); (b) this is demonstrated quantitatively with low Dice score and high AHD.
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6 Limitations and future work

Despite the encouraging results presented in the paper, RadEdit is not without limita-
tions and more work is needed to extend it to more applications. Currently, training
datasets and models must be manually analysed to predict potential failure cases, sim-
ulate these failures to test the hypothesis, and finally quantitatively evaluate the model;
future work could automate such failure mode discovery. Another limitation is that cur-
rent editing techniques do not enable all types of stress-testing; for example, with cur-
rent approaches, we are unable to test segmentation models’ behaviour to cardiomegaly
(enlarged heart) since this would require segmentation maps to be adjusted after editing.
However, this could potentially be enabled by enlarging heart segmentations to simulate
cardiomegaly and adjusting the ground-truth lung segmentation accordingly.

When using generative editing, it is not possible to guarantee that unwanted changes
will not occur. With RadEdit, we minimise this by forcing spuriously correlated regions
to remain the same, only using classifier-free guidance within the editing mask, and fil-
tering via image–text alignment. Future work to better maintain structure when editing
will help with this issue, but masks will still be necessary to bypass spurious correla-
tions. Furthermore, due to potential overlap of 3D structures, editing 2D X-rays can be
limited. In such cases, editing single structures using RadEdit may not be successful.
To address this, 3D CT images could be edited, then projected to synthetic X-rays [18].

When producing simulated stress test sets, several factors affect edit quality includ-
ing classifier-free guidance weight, number of inference steps, and time step to encode
to. Additionally, the text encoder must well understand specified pathologies to pro-
vide informative features to condition the generative model on; similarly, the diffusion
model must be able to capture fine details and well cover the data distribution.

Finally, more research is required to develop better approaches for quantifying edit
quality for downstream tasks. In particular, observing a change in downstream perfor-
mance is not necessarily indicative of real-world performance as edit quality may be
poor. While the introduced BioViL-T editing score can be used to quantify edit qual-
ity, this introduces reliance on a potentially biased model. Additionally, the BioViL-T
editing score is not suited to detect the artefacts introduced by LANCE and DiffEdit.

7 Conclusion

In this study, we illustrate the efficacy of generative image editing as a robust tool
for stress-testing biomedical vision models. Our focus is on assessing their robustness
against three types of dataset shifts commonly encountered in biomedical imaging: ac-
quisition shift, manifestation shift, and population shift. We highlight that one of the
significant challenges in biomedical image editing is the correlations learned by the
generative model, which can result in artefacts during the editing process. To mitigate
these artefacts, RadEdit relies on various types of masks to restrict the effects of the edit-
ing to certain areas while ensuring the consistency of the edited images. This approach
enables us to generate high fidelity synthetic test sets that exhibit common dataset shifts.
These synthetic test sets are used to identify and quantify the failure modes of biomed-
ical classification and segmentation models. This provides a valuable supplement to
explainable AI approaches such as Grad-CAM [63] and saliency maps [66, 1].
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