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In this supplementary material, Sec. 1 illustrates the details about the se-
lection of the IQA metrics and the structure of the regressor in MMLE. Sec. 2
describes more details of region integration strategy and corresponding visual-
ization results. Finally, Sec. 3 shows more visualization results of AdaDiffSR.

1 Details of MMLE

1.1 The selection of IQA metrics

As mentioned in Sec. 3.2 in the main paper, we select four FR-IQA metrics and
two NR-IQA metrics to measure the information gain from six perspectives, in-
cluding PSNR, LPIPS [8], AHIQ [3], NLPD [7], BRISQUE [4], and MUSIQ [2].
In this section, we further analyze the mutual interaction of IQA metrics within a
single category on the DIV2K validation set [6]. As shown in Tab. 1, we conduct
ablation studies on the impact of different NR-IQA metrics during the denois-
ing process. Only with a single NR metric to guide the denoising process, the
image achieve sup-optimal realism. As the number of NR metrics increases, the
reconstruction performance improves slightly while the training cost increases
considerably. Moreover, the specific categories of IQA metrics have no signifi-
cant impact on the restoration quality. Therefore, to achieve a better trade-off
between the efficiency and capacity of the MMLE regressor, we select the above
four FR-IQA metrics and two NR-metrics.

1.2 The structure of MMLE regressor

As mentioned in Sec. 3.2 in the main paper, we propose a lightweight regressor to
estimate the multi-dimensional information gain. The network structure of the
regressor is mainly based on the lightweight network MobileNetV3 [1], and we
⋆ Equal contribution.
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Table 1: Ablation studies of NR-IQA metrics in MMLE on DIV2K validation set [6].
The best and second-best performance are in red and blue color, respectively.

Exp. Components PSNR↑ SSIM↑ LPIPS↓MANIQA MUSIQ DBCNN NRQM NIQE BRISQUE
(a) ✓ 23.46 0.6941 0.2458
(b) ✓ 23.24 0.7013 0.2436
(c) ✓ ✓ 24.19 0.7356 0.2197
(d) ✓ ✓ 24.25 0.7355 0.2153
(e) ✓ ✓ ✓ 24.29 0.7344 0.2146
(f) ✓ ✓ ✓ 24.17 0.7378 0.2209
(g) ✓ ✓ ✓ ✓ 24.22 0.7376 0.2175
(h) ✓ ✓ ✓ ✓ 24.11 0.7359 0.2155

modified the average pooling layers to match our multi-dimensional information
gain which can be interpreted as a six-dimensional classification problem, and
the output will be normalized between zero and one. Then we calculate the multi-
dimensional information gain via the multi-dimensional representation score of
the input features. The input and output of the regressor are current timestep
latent feature and information gain, respectively. We decode this latent feature
using VAE decoder, as mentioned in Sec. 4.4 in the main paper, we use PY-
IQA toolbox on the decoded feature to get GT information gain. The regressor
achieves 97.3% and 96.1% (when the difference less than τ

15 ) accuracy on RealSR
and DRealSR dataset, making the DTSS strategy effective.

2 Details of region integration strategy

2.1 The algorithm of region integration strategy

As mentioned in Sec. 3.4 in the main paper, we adopt the region integration
strategy to eliminate the discontinuities in the boundaries of different image
regions. Here, we provide more details about this strategy. First, we use VAE
within the Stable Diffusion [5] to downsampling the original input image into the
latent feature with less spatial size, and crop this latent feature into overlapping
regions with 64× 64 spatial resolution. Then, we generate the Gaussian weight
map with 64×64 resolution using the Gaussian filter, and use this weight map to
aggregate these regions into result, the specific calculation process is as follows:

Ô =

N∑
i=1

ω

ω̄
× oi, (1)

where oi and Ô indicate the latent feature of the particular region and entire
image. ω represents the Gaussian weight map, and ω̄ =

∑
iω. Note that we

only conduct this strategy for images with resolution larger than 512 × 512,
and adopt this strategy only in the first and final denoising step to reduce the
computational resource overhead.
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2.2 The visual comparisons between different slicing strategy

As mentioned in Sec. 4.4 in the main paper, we conduct the ablation studies
to demonstrate the effectiveness of the static slicing strategy, which slices the
input LR images into multiple overlapping regions with the fixed resolution (i.e.,
512 × 512) as the pre-trained DMs. In this section, to compare the differences
between different slicing methods more intuitively, we further show more visu-
alization results. As shown in Fig. 1, we visualize the reconstruction results, it
can be noticed that using the super-pixel segmentation methods or not have a
significant influence on the restored results, since the fact that the feature vari-
ations in different image regions can adaptively adjust the timesteps during the
reconstruction process, thus achieving more precise and efficient reconstruction.
Besides, we also show the equivalent timesteps of different image regions during
the reconstruction process, as shown in Fig. 2. The foreground and background
regions are already well distinguished by the information gain. Furthermore, to
validate the boundary continuity of static slicing and integration strategy, we
show boundaries visualization case in Fig. 3. With the integration strategy, the
discontinuity of the slicing boundaries disappeared significantly.

a) FastSAM b) Ours(W/ FastSAM) c) Ours(W/O FastSAM)

Fig. 1: The visualization comparisons between the super-pixel segmentation method
and the static slicing strategy.

3 Additional Qualitative Results

In this section, to demonstrate the effectiveness of AdaDiffSR, we show more
qualitative results on real-world images. We follow Sec. 4.3 of the main paper
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Fig. 2: The visualization results of Equivalent timesteps in different image regions.

W / Integration GTW/O Integration

Fig. 3: The boundaries visualization comparisons with and without the region slicing
and integration strategy.

to report the visual results on static input resolution (i.e., 512× 512) and arbi-
trary resolution, respectively. As shown in Fig. 4 and Fig. 5, AdaDiffSR achieves
realistic details and sharp edges, significantly outperforms existing methods.
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(a) RealSR (b) BSRGAN (c) Real-ESRGAN+ (d) FeMaSR (e) LDM (f) ResShift (g) StableSR (h) Ours

Fig. 4: More qualitative comparisons on real-world images (static input resolution as
512× 512). Zoom in for the best view.
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(a) DASR (b) RealSR (c) BSRGAN (d) Real-ESRGAN+ (e) FeMaSR (f) ResShift (g) StableSR (h) Ours

(a) DASR (b) RealSR (c) BSRGAN (d) Real-ESRGAN+

(e) FeMaSR (f) ResShift (g) StableSR (h) Ours

(a) DASR (b) RealSR (c) BSRGAN (d) Real-ESRGAN+

(e) FeMaSR (f) ResShift (g) StableSR (h) Ours

Fig. 5: More qualitative comparisons on real-world images (arbitrary input resolution).
Zoom in for the best view.
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