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Abstract. Diffusion models (DMs) have shown promising results on
single-image super-resolution and other image-to-image translation tasks.
Benefiting from more computational resources and longer inference times,
they are able to yield more realistic images. Existing DMs-based super-
resolution methods try to achieve an overall average recovery over all
regions via iterative refinement, ignoring the consideration that different
input image regions require different timesteps to reconstruct. In this
work, we notice that previous DMs-based super-resolution methods suf-
fer from wasting computational resources to reconstruct invisible details.
To further improve the utilization of computational resources, we propose
AdaDiffSR, a DMs-based SR pipeline with dynamic timesteps sampling
strategy (DTSS). Specifically, by introducing the multi-metrics latent en-
tropy module (MMLE), we can achieve dynamic perception of the latent
spatial information gain during the denoising process, thereby guiding
the dynamic selection of the timesteps. In addition, we adopt a pro-
gressive feature injection module (PFJ), which dynamically injects the
original image features into the denoising process based on the current
information gain, so as to generate images with both fidelity and realism.
Experiments show that our AdaDiffSR achieves comparable performance
over current state-of-the-art DMs-based SR methods while consuming
less computational resources and inference time on both synthetic and
real-world datasets.

Keywords: Super resolution · Diffusion models · Adaptive inference

1 Introduction

Real-world image super-resolution aims to recover a realistic high-resolution
(HR) image from an unknown degraded low-resolution (LR) counterpart. It is
adopted to enhance the image visual quality and is widely used in the fields of
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Fig. 1: Visual comparisons between background and foreground regions during denois-
ing process. The red and blue boxes represent the background and foreground regions,
respectively. We visualize the variations of several corresponding metrics as the radar
chart on the right, the smaller the better. As the timesteps increase from 50 to 200, we
find that the visual results of the foreground regions become more satisfactory while
the background remains almost unchanged.

satellite imagery [26], surveillance, etc. Nowadays, significant advances have been
made in diffusion models for image synthesis tasks [14,18,40,59]. Recent research
demonstrates that the pre-trained models (e.g ., SD [41]) can easily transferred
to various downstream low-level vision tasks, including image and video trans-
lation [41–43, 51]. In this work, we explore the potential of using pre-trained
diffusion models to perform super-resolution efficiently and effectively.

According to whether using pre-trained parameters, Existing DMs-based SR
methods [41–43,51] can be divided into two paradigms. The former [42,43] trains
the DMs-based SR model from scratch while using LR features as additional
input to constrain the fidelity of output. The latter [41, 51] incorporates con-
straints into the denoising progress of the pre-trained diffusion models, which
not only avoids the demand for computational resources to train the diffusion
models, but also enables better utilization of the diffusion prior within the pre-
trained diffusion models. However, all of the above methods inherently fail to
take into account the relationship between reconstructing different image regions
and the computational resources they cost. It means that some regions may re-
quire fewer timesteps to achieve a satisfactory reconstruction performance, while
others require larger timesteps. Consequently, these methods exhibit sub-optimal
utilization of computational resources. As shown in Fig. 1, with the increasing
of timesteps in the denoising process, the background regions (e.g ., sky or sea
in red boxes) are not visually distinct, and only the foreground regions (e.g .,
surfaces or structures in blue boxes) become more realistic.

In this paper, we propose a novel DMs-based SR pipeline, dubbed AdaDiffSR.
It utilizes the latent information gain to dynamically adjust timesteps during in-
ference and effectively reduces the computational resource overhead. Specifically,
we divide the entire input image into a series of sub-regions separately for the
denoising process. For these sub-regions, as shown in Fig. 2, we design a dy-
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namic timesteps sampling strategy (DTSS) that adjusts timesteps dynamically
according to the information gain within these sub-regions. To implement it,
we propose a multi-metrics latent entropy (MMLE) module, which incorporates
multiple image quality assessment (IQA) metrics and can perceive information
gain dynamically from both qualitative and quantitative perspectives. In addi-
tion, to balance the fidelity of the reconstructed image with the texture gen-
eration capability of diffusion models, we further propose a progressive feature
injection (PFJ) module. It dynamically adjusts the fusion process between orig-
inal input images and denoising features according to the current information
gain. Meanwhile, by applying the latent space region integration strategy, dis-
continuities between different restored sub-regions are effectively eliminated.

Our main contributions are as follows:

– We introduce AdaDiffSR, a diffusion model for real-world image super-
resolution. It is one of the first works to focus on optimizing the utilization
of computational resources in DMs-based SR paradigms and provides a new
inspiration for future research on denoising models.

– We design a dynamic timesteps sampling strategy (DTSS), in conjunction
with the proposed multi-metrics latent entropy (MMLE) module, which can
significantly reduce the computational overhead of the denoising process
while obtaining superior results.

– We propose a progressive feature injection (PFJ) module to dynamically
incorporate original image features into the denoising process, allowing the
recovered results with fidelity and rich texture details.

– Extensive experiments demonstrate that the proposed AdaDiffSR can sig-
nificantly reduce computational resources and inference time compared to
existing SOTA methods.

2 Related Work

2.1 Single Image Super-Resolution

Single Image Super-Resolution (SISR) aims to restore the corresponding HR
counterpart from the degraded LR image. The previous SR methods [10,11,24,
26, 27] focused on learning the mappings between LR and HR image for partic-
ular degradation kernel (e.g ., Bicubic downsampling or Gaussian blur kernel).
However, the above mappings have limited generalization capacity in real-world
scenarios and cannot achieve better visual performance.

Recently, more works [8, 12, 29–31, 34, 53, 60, 70] have focused on optimizing
the performance of real-world SR (or blind SR), which aims to learn the similar
degradation process in real-world scenarios. Due to the lack of paired real-world
training datasets, some methods [55, 71] explicitly synthesize the paired LR-
HR images for blind SR. Specifically, recent works [55, 71] present the effective
random degradation process, which produces the LR counterparts by applying
blur before downsampling the HR images, and then adding noise and applying
JPEG compression to the downsampled results. These degradation schemes have
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been crucial for GAN-based SR methods to achieve state-of-the-art performance.
Building upon these schemes, recent DMs-based SR methods [42,43,51,67] fur-
ther show more satisfactory performance in real-world scenarios. However, the
above SR methods failed to consider the utilization of computational resources
during the reconstruction process. In this work, we consider the latent informa-
tion gain and adjust timesteps of different image regions dynamically during the
denoising process, thus reducing the computational resource overhead effectively.

2.2 Diffusion Model in Super-Resolution

With the rapid development of diffusion models (DMs) in the image and video
generation tasks [59], recently, numerous DMs-based SR methods [28,36,42,43,
51, 67] have been proposed. Compared to the previous GAN-based SR meth-
ods [55, 57, 70] suffer from mode collapse [4, 35, 45] and convergence difficulty
during the training process, the existing DMs-based SR methods obtain the SR
results via iteratively refine the original noise images, which significantly en-
hances the model robustness and generalization capacity. Specifically, SR3 [43]
first introduces the diffusion models into the SR tasks and achieves state-of-the-
art performance on the face and natural datasets. Recent works [42, 51] have
attempted to improve DMs-based SR methods from the perspectives of image
degradation and image fidelity. In this work, we consider the utilization of com-
putational resources in DMs-based SR methods and propose to dynamically
adjust the timesteps of different image regions during the denoising process.

2.3 Adaptive Inference

The previous methods [64–66] focus more on designing slimmable network struc-
tures, which adaptively approximate the network performance according to the
data characteristics. Specifically, AutoSlim [64] trains a single slimmable net-
work to adjust the network performance of different channel configurations, and
then searches the optimized channel configurations under different resources.

Instead of adjusting the network structure, inspired by the fact that different
regions have different restoration difficulties, ClassSR [22] utilizes the character-
istics of different image regions by dividing the images into patches, then apply
different capacity models to the corresponding restoration difficulties. However,
the application of multiple models leads to a significant increase in model pa-
rameters. APE [54] proposes to learn the incremental capacity of each model
layer instead of restoration difficulties of patches, enabling the patch to exit
at the optimal layer, thus achieving more practical speedup. Although existing
methods [32, 49, 52] have taken into account the information variation (network
layer-wise) of different image regions during the reconstruction process, they
lack further exploration of the latent information variation (timestep-wise) dur-
ing the denoising process in diffusion models. In this work, we combine multiple
IQA metrics to measure the latent information gain during the denoising process
in DMs-based SR methods, thus guiding the dynamic timesteps selection and
reducing the computational resource overhead effectively.
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Fig. 2: The framework of AdaDiffSR. We calculate the information gain during the
denoising process, via information gain, we can modulate the original image features
to guide the PFJ module and adjust timesteps dynamically for different regions, thus
achieving a trade-off between the computational resources and restoration quality.

3 Methodology

3.1 Motivation

To reduce the computational resource overhead of DMs-based SR methods, we
observe that although latent diffusion models can significantly reduce computa-
tional resource overhead by reducing feature size, as shown in Fig. 1, there are
still a lot of computational resources used to reconstruct invisible details, which
leads to sub-optimal utilization of computational resources. Therefore, we pro-
pose AdaDiffSR to further improve the utilization of computational resources.
As shown in Fig. 2, AdaDiffSR consists of the following three components: multi-
metrics latent entropy module (MMLE) as shown in Sec. 3.2, dynamic timesteps
sampling strategy (DTSS) as shown in Sec. 3.3, and the progressive feature in-
jection module (PFJ) and region integration strategy are as shown in Sec. 3.4.

3.2 Multi-metrics latent entropy module

Based on the previous IQA metrics [2,6,9,13,19,20,23,33,38,39,46,50,61–63,72–
74, 76], we propose the multi-metrics latent entropy module (MMLE) to mea-
sure the information evolution from many different perspectives during denoising
process. More precisely, we calculate these metrics in latent space, and we find
that many perceptual-oriented IQA metrics fail to reflect the information evo-
lution process accurately. On the contrary, the traditional psnr-oriented metrics
accurately perceive the information evolution. The above phenomenon is due to
the massive Gaussian noise incorporated during the denoising process.

As shown in Fig. 3(b), we plot the variations of IQA metrics during the de-
noising process. To make it easier to observe the trends in variations of these
metrics, we divide these metrics into two categories (i.e., NR-IQA metrics (No-
Reference) and FR-IQA (Full-Reference) metrics) and normalize all metrics be-
tween zero and one. Significant differences between different IQA metrics during
the denoising process allow us to divide them into three categories of variations.
Specifically, the first category of variations positively correlates with the infor-
mation evolution process, including PSNR, AHIQ, etc. The second category of
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Fig. 3: To demonstrate the validity of different IQA metrics during the denoising
process. (a), we visualize the feature in perceptual-oriented metric LPIPS and the
corresponding denoised image during the restoration process. (b), we plot the variations
of several IQA metrics during the denoising process with 200 timesteps using DDPM
sampling strategy [15]. Best viewed when disabled some metrics (e.g ., TOPIQ [6],
CLIP-IQA [50] and etc.), the variations of these metrics are similar with HyperIQA [46].

variations has no significant correlation with the information evolution process,
mainly including TOPIQ, CKDN, HyperIQA, etc. The remaining variations are
categorized into the third category, which tends to significantly reflect the infor-
mation evolution in the second half of the denoising process. Since most of the
third category of metrics utilize CNN or Transformer [48] to extract features in
latent space, and in the first half of the denoising process, the latent features
are not clear enough to reflect image quality due to excessive Gaussian noise. As
shown in Fig. 3(a), the noise is gradually eliminated, and the latent feature tends
to be apparent, allowing these metrics to perceive the information evolution.

Based on the above conclusions, we select several IQA metrics with different
perspectives for discriminating the multi-dimensional information gain between
two latent features, thus guiding the subsequent dynamic timesteps sampling
strategy (DTSS) and progressive feature injection (PFJ) module. Specifically,
we define the information gain Ii, which measures the latent representation per-
formance between current timestep i and the previous timestep i− 1:

Ii = σ(Ri −Ri−1), (1)

where σ(·) represents the tanh function, Ri is the latent representation per-
formance of timestep i. Since information gain stems from multi-dimensional
metrics, evolution in some dimensions may lead to degradation in other dimen-
sions, through tanh function, we limit the range of Ii to [−1, 1] to perceive this
degradation. As shown in Fig. 3(b), FR-IQA metrics are more robust to the
information evolution, which is mainly reflected in the gradient continuity of the
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corresponding curve. On the contrary, NR-IQA metrics suffer from the limita-
tion of without reference image (i.e., original image feature) and cannot perceive
the image quality improvement until the second half of the denoising process.
To achieve the trade-off between capacity and efficiency, we select four FR-IQA
metrics (i.e., PSNR, LPIPS, AHIQ, and NLPD) and two NR-IQA metrics (i.e.,
BRISQUE and MUSIQ) to measure the information gain:

Ri =
∑
c∈C

ωc ×Mc(fi, o), (2)

where fi and o represent the denoising feature in timestep i and the original
image feature, respectively. ωc denotes the coefficients of different IQA metrics,
which are used to balance the influence of different metrics. Mc means the nor-
malized value of the corresponding IQA metric. C consists of the six metrics
mentioned above. Note that for the robustness of information evolution, we only
calculate the two NR-IQA metrics information gain during the second half of
the denoising process. During inference, considering the tremendous time cost of
calculating IQA metrics on the fly, we propose to train a lightweight regressor
that consists of multiple convolutional layers and global average pooling layers
to estimate the multi-dimensional information gain. More analysis of the IQA
metrics selection and the structure of regressor can be found in the ablation
studies and supplementary materials.

3.3 Dynamic timesteps sampling strategy

Inspired by previous works [22, 54], as shown in Fig. 1, we find that different
regions require different computational resources to achieve a trade-off between
utilization of computational resources and reconstruction performance. Benefit-
ing from the above MMLE regressor, we propose a dynamic timesteps sampling
strategy (DTSS), which improves the utilization of computational resources and
adaptively accelerates the DMs-based SR methods.

Specifically, to preserve the prior encapsulated within pre-trained diffusion
models, we first crop the input images into multiple sub-regions with the fixed
spatial resolution as pre-trained diffusion models. Then, we calculate the multi-
dimensional information gain using the MMLE regressor during the denoising
process, thereby guiding the dynamic timesteps selection for each sub-region.

The specific strategy for dynamic timestep selection is as follows. Firstly, we
define the information gain threshold and max timesteps of diffusion models as
τ and Tmax, respectively. Then, we generate a codebook to store the sampling-
related parameters for skipping from one timestep to another. With this code-
book, we can implement the skip-step strategy, which means that we perform
multiple original DDPM [15] or DDIM [44] timesteps at once. To improve the
inference time and stability of the denoising process, we define four intervals for
the skip-step strategy to adjust timesteps dynamically for different regions. The
conclusion obtained from Sec. 3.2 indicates that the FR-IQA metrics are robust,
while the NR-IQA metrics depend on the image region context. Therefore, we
divide these sub-regions into three categories from FR and NR perspectives:
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– Stable regions: The FR metrics increasing steadily while the NR metrics
are almost unchanged, indicating that the information within these regions
is not enhanced in perceptual perspectives (e.g ., the background regions in
Fig. 1). In these regions, we apply larger intervals for the better utilization
of computational resources and inference time.

– Growing regions: The FR and NR metrics increasing steadily together (e.g .,
the foreground regions in Fig. 1), the information within these regions is
growing along with the denoising process. Then we apply a smaller interval
to enhance the reconstruction quality.

– Saturated regions: We also notice the phenomenon that NR metrics signifi-
cantly declined with more denoising iterations, which is due to the informa-
tion within these regions being saturated. Therefore we save the best results
of these regions in NR perspective and exit the denoising process in advance.

Through the information gain threshold τ , we are able to distinguish between
different sub-region categories. Note that the category of sub-regions may change
during the denoising process, so the interval of skip-step can be modified dynam-
ically. Finally, when the timesteps reach the value of Tmax, the reconstruction is
finished and the final equivalent timesteps are much smaller than the Tmax, thus
achieving adaptive acceleration while keeping restoration quality. More analysis
about interval settings can be found in the ablation studies.

3.4 Trade-off between fidelity and realism

Benefiting from the powerful generative capacity of diffusion models, the recon-
structed images tend to be more realistic. Nevertheless, similar to other genera-
tive model based SR methods, the results may lack similarity from the original
input (i.e., lack of fidelity). Therefore, we propose the progressive feature injec-
tion module (PFJ) to achieve the trade-off between fidelity and realism. The PFJ
module dynamically incorporates latent features of original input images into the
denoising process based on the current information gain, thus enhancing fidelity
while maintaining realism. Specifically, the PFJ module dynamically regulates
the fusion intensity of the original image features according to the information
gain from different perspectives:

ô = α× o+ β; α, β = ϕ(o, Ii), (3)

where α and β represent the modulation coefficients of the original image fea-
tures o. And we design a small CNN network ϕ(·) to estimate the modulation
coefficients from the current timestep information gain Ii and original image
features o. Generally, if the NR perspectives information gain is more promi-
nent, which means that the realism of the current timestep denoising feature is
increasing. To balance the fidelity and realism, the ϕ(·) needs to predict larger
modulation coefficients to adjust the weights of the original image features for
better fidelity, and vice versa.
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Although the problem of image fidelity has been solved, the fixed input res-
olution of the pre-trained diffusion model limits the further application of DMs-
based SR methods. The previous CNN-based SR methods used the naive strategy
to integrate the overlapping regions, leading to discontinuities in the boundaries.
Inspired by [18, 51], we integrate these regions in latent space using the Gaus-
sian weight maps that are generated from Gaussian kernel, thus avoiding the
discontinuities in pixel space, as shown in Fig. 6. To speed up the reconstruction
while eliminating the mutual noise influence in adjacent regions, we only employ
the above integration strategy in the final timestep. The details of the region
integration strategy can be found in the supplementary materials.

4 Experiments

4.1 Implementation Details

Following previous work [51], we finetune the pre-trained diffusion model (Sta-
ble Diffusion 2.1-base [41]) using the synthetic training dataset. We follow Sta-
ble Diffusion to use Adam optimizer and set the learning rate as 5 × 10−5.
To avoid affecting the prior within the pre-trained diffusion model, we conduct
the fine-tuning process on 512 × 512 resolutions. During inference, we set the
max timesteps Tmax and information gain threshold as 1, 000 and 5× 10−3, re-
spectively. To handle the images with arbitrary resolutions, we adopt the region
integration strategy mentioned in Sec. 3.4. To train the MMLE regressor, we fol-
low the Real-ESRGAN [55] degradation pipeline to generate synthetic LR-HR
pairs with 512×512 resolutions. Then, we freeze the parameters of the finetuned
diffusion model to train the regressor using the L2 loss function.

4.2 Experimental Settings

Datasets. We follow the degradation pipeline of Real-ESRGAN [55] to synthe-
size LR-HR paired images on DIV2K [1], Flickr2K [47], and OutdoorSceneTrain-
ing datasets [56] for our training datasets. Then, we evaluate our method on both
synthetic and real-world testsets. For synthetic data, we follow the above degra-
dation strategy and generate LR-HR pairs from the DIV2K validation set [1].
For real-world datasets, we follow the common settings to conduct comparisons
on RealSR [3], DRealSR [58], and DPED-iPhone [16] testsets.

Evaluation Metrics For paired testsets (i.e., DIV2K Valid [1], RealSR [3],
and DRealSR [58]), follow previous works, we employ several perceptual-based
metrics including LPIPS [73], AHIQ [23], and MUSIQ [20] to measure the image
perceptual quality. We also employ PSNR and SSIM metrics to indicate differ-
ences between different methods. For datasets without ground-truth image (i.e.,
DPED-iphone [16]), follow previous works, we employ NR-IQA metrics including
BRISQUE [37], TOPIQ [6], NIQE [39], and MUSIQ [20] for perceptual quality.
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Table 1: Quantitative comparisons with the state-of-the-art methods on both synthetic
and real-world datasets. The best and second-best performances are in red and blue
color, respectively. Real-ESRGAN+ [55] is abbreviated as R-ESRG.

Datasets Metrics RealSR
[17]

DASR
[25]

BSRGAN
[70]

R-ESRG
[55]

FeMaSR
[7]

LDM
[41]

StableSR
[51]

ResShift
[67] Ours

DIV2K
Valid [47]

PSNR ↑ 25.11 28.33 25.26 24.84 22.97 20.58 23.83 24.53 24.25
SSIM ↑ 0.7170 0.8091 0.7325 0.7287 0.6857 0.5590 0.7059 0.7323 0.7355
LPIPS ↓ 0.2134 0.2892 0.2364 0.2284 0.2177 0.2556 0.2328 0.4406 0.2153
AHIQ ↑ 0.3746 0.4303 0.4047 0.3927 0.3841 0.3761 0.4117 0.3105 0.3985
MUSIQ ↑ 64.73 55.57 67.42 64.65 67.33 68.05 66.73 67.84 68.81

RealSR
[3]

PSNR ↑ 25.56 25.87 24.70 24.33 23.58 22.26 23.55 24.79 24.19
SSIM ↑ 0.7390 0.7560 0.7427 0.7456 0.7132 0.6462 0.7461 0.7423 0.7485
LPIPS ↓ 0.3719 0.3832 0.2713 0.2869 0.3016 0.3288 0.2543 0.2524 0.2595
AHIQ ↑ 0.2370 0.2709 0.3167 0.3009 0.2965 0.2925 0.3160 0.3061 0.3145
MUSIQ ↑ 41.69 35.19 64.62 57.55 60.53 61.42 59.92 59.67 60.47

DRealSR
[58]

PSNR ↑ 27.79 27.96 26.18 25.82 24.56 23.39 24.85 27.87 25.67
SSIM ↑ 0.8158 0.8357 0.7934 0.7987 0.7362 0.6723 0.8326 0.8056 0.8415
LPIPS ↓ 0.3851 0.3933 0.2929 0.2818 0.3374 0.3860 0.2853 0.5408 0.2627
AHIQ ↑ 0.2606 0.2887 0.3502 0.3478 0.3192 0.2859 0.3489 0.2849 0.3496
MUSIQ ↑ 22.41 21.88 35.50 35.25 31.78 37.98 35.39 42.68 38.66

DPED-
iPhone [16]

BRISQUE ↓ 5.69 46.95 15.89 16.49 3.46 22.12 13.31 13.43 11.19
MUSIQ ↑ 51.27 39.81 51.65 50.99 57.19 56.59 49.97 46.87 51.84
TOPIQ ↑ 0.4675 0.3365 0.4879 0.4646 0.5439 0.4329 0.4437 0.4611 0.4925
NIQE ↓ 3.20 6.19 3.37 3.17 5.09 5.56 3.80 5.58 3.09

4.3 Comparisons with Existing Methods

To verify the effectiveness of our method, we compare AdaDiffSR with several
state-of-the-art methods, including RealSR [17], DASR [25], BSRGAN [70], Real-
ESRGAN+ [55], FeMaSR [7], LDM [41], StableSR [51], and ResShift [67]. For
fair comparisons, we obtain the performance from the official code and models
for testing. Note that the metrics reported for LDM [41] in Tab. 1 are obtained
on the crop patches of corresponding datasets, because the LDM only supports
static input resolution of 512× 512.

Quantitative Comparisons. We first conduct the quantitative comparisons
with several state-of-the-art methods on the synthetic dataset [47] and three
real-world benchmarks [3, 16, 58]. As shown in Tab. 1, the proposed AdaDiffSR
outperforms state-of-the-art methods on several perceptual-based metrics includ-
ing LPIPS and NIQE. Specifically, on DRealSR, AdaDiffSR achieves a 0.2627
LPIPS score, which is 6.8% better than Real-ESRGAN+ and 25.5% better than
other GAN-based SR approaches. Moreover, AdaDiffSR achieves comparable
performance with other state-of-the-art methods in other benchmarks. Although
RealSR and DASR achieve higher PSNR and SSIM metrics, they show relatively
lower performance on perceptual-based metrics. As shown in Fig. 4, they fail to
reconstruct more realistic visual details, thus generating inferior visual results.
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(a) DASR (b) RealSR (c) BSRGAN (d) Real-ESRGAN+ (e) FeMaSR (f) ResShift (g) StableSR (h) Ours

(a) RealSR (b) BSRGAN (c) Real-ESRGAN+ (d) FeMaSR (e) LDM (f) ResShift (g) StableSR (h) Ours

Fig. 4: Qualitative comparisons on several real-world images. (The first three rows are
arbitrary resolutions, and the resolution of the last three rows is fixed at 512× 512)

Qualitative Comparisons. To further compare the visual qualities of differ-
ent approaches, we present visual results on real-world examples from real-world
benchmarks and the internet in Fig. 4. Due to the powerful generative capa-
bility of diffusion models, AdaDiffSR outperforms CNN-based and GAN-based
methods in detail generation. In addition, it can be noticed that AdaDiffSR has
significant improvements in realistic details compared to DMs-based methods,
especially for surfaces and structures. For example, in the first and fourth rows in
Fig. 4, AdaDiffSR significantly enhances the texture details of building surfaces.
More visual results can be found in the supplementary materials.

Complexity Comparisons. As for the complexity of AdaDiffSR, Tab. 2 shows
the detailed computational resources and inference time between different DMs-
based SR methods. #P and RT indicate parameters and runtime, respectively.
For fair comparisons, we use the author-released models to report inference times
and FLOPs for LR images with different resolutions running on the NVIDIA
Tesla 32G-V100 GPUs. All approaches use the same equivalent timesteps as 50
in DDIM sampling strategy [44] and input resolution as 512×512 or 1024×1024.
Compared to the state-of-the-art SR approach StableSR, AdaDiffSR achieves
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Table 2: The complexity compar-
isons between DMs-based methods.

Methods #P(M) FLOPs(G) RT(s)

LDM (2022) [41] 113.60 888.9 6.1
- -

StableSR (2023) [51] 140.91 1004.2 7.2
4016.8 25.9

ResShift (2024) [67] 118.59 922.3 19.7
3689.2 71.3

Ours 120.43 751.4 4.8
2768.2 16.8

Table 3: Ablation studies of interval in skip-
step on DRealSR dataset [58].

Exp. interval PSNR ↑ SSIM ↑ LPIPS ↓ RT(s)

(a) (5,5,5,5) 25.43 0.8437 0.2578 13.4
(b) (5,10,10,15) 25.57 0.8419 0.2607 11.8
(c) (5,10,15,25) 25.74 0.8261 0.2754 8.9
(d) (5,15,20,25) 25.82 0.8193 0.2796 8.4
(e) (10,15,20,25) 24.83 0.7965 0.2939 7.3

Ours (5,10,15,20) 25.67 0.8415 0.2627 9.1

Table 4: Ablation studies of IQA metrics
used in MMLE on RealSR dataset.

Exp. Components PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑
FR NR

(a) ✓ 25.24 0.7532 0.3628 42.53
(b) ✓ 22.37 0.6872 0.2714 51.23

Ours ✓ ✓ 24.19 0.7485 0.2595 60.47

Table 5: Ablation studies of PFJ on
DPED-iPhone dataset [16].

Exp. Components MUSIQ ↑ TOPIQ ↑ NIQE ↓CC CA PFJ

(a) ✓ 32.19 0.3765 7.94
(b) ✓ 42.37 0.4314 4.21

Ours ✓ 51.84 0.4925 3.09

comparable performance using 1.5× fewer inference times and 2.7× fewer FLOPs.
We also find that adding the proposed approach to the existing DMs-based
methods further improves the inference speed while maintaining reconstruction
quality. More relative analysis can be found in the supplementary materials.

4.4 Ablation Study

In this section, we conduct the ablation on the different modules, analyze the
visual superiority of progressive feature injection and region integration strategy.

Effect of the interval in skip-step. We first analyze the effectiveness of
interval in skip-step. As mentioned in Sec. 3.3, we use different timesteps in
different image regions, which is accomplished through skip-step strategy. We
conduct several different interval settings to demonstrate the influence of in-
tervals on DRealSR [58] dataset using DDPM sampling strategy. As shown in
Tab. 3, increasing the interval leads to a significant improvement in inference
time. However, it also brings the degradation in overall visual performance and
vice versa. Finally, we set the interval of skip-step as 5, 10, 15, and 20 to achieve a
trade-off between utilization of computational resources and restoration quality.

Effect of the metrics in MMLE. As mentioned in Sec. 3.2, we choose four
FR-IQA metrics and two NR-IQA metrics to measure the information gain dur-
ing the denoising process. Here, we further verify the impact of the selected
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Bicubic LR Exp.(a) Exp.(b) Ours

Fig. 5: Visual comparisons of different config-
urations in MMLE metrics.

(a) Bicubic LR (b) W/O RIS (c) W/ RIS

Fig. 6: Visualization results of us-
ing region integration strategy.

IQA metrics on RealSR [3] dataset. As shown in Tab. 4, only FR-IQA met-
rics (i.e., Exp. (a)) or NR-IQA metrics (i.e., Exp. (b)) to guide the denoising
process will lead to sub-optimal results. Specifically, only with FR metrics (e.g .,
PSNR or SSIM) leads to the denoising process focusing on the restoration of
latent features which consistent with the original image features, thus limiting
the powerful generative capacity of the diffusion model, and vice versa. As shown
in Fig. 5, we show visual comparisons to demonstrate the effectiveness of using
both FR and NR metrics. More IQA-metrics analysis about mutual interaction
within FR or NR metrics can be found in the supplementary materials.

Effect of the progressive feature injection. To demonstrate the effective-
ness of the PFJ module, we adopt several different configurations to validate the
influence of the PFJ module. CC and CA indicate concat and cross-attention
mechanisms, respectively. As shown in Tab. 5, when original image features are
fused in the concat mechanism, it leads to significant performance degradation.
With the cross attention mechanism, the reconstruction performance improves
obviously. Furthermore, the PFJ module uses modulation coefficients to regu-
late the original image features, and then injects these features into the denoising
process, leading to a better trade-off between fidelity and realism.

Effect between different region slicing strategy. As mentioned in Sec. 3.4,
we slice the input LR images into multiple overlapping regions with the fixed
resolution as the pre-trained DMs. However, the above slicing strategy is not con-
sistent with the original intent of distinguishing between foreground and back-
ground regions as mentioned in Fig. 1. To demonstrate the effectiveness of the
above slicing strategy, we apply super-pixel segmentation methods [21,68,69,75]
to distinguish the foreground and background regions, and the experimental re-
sults are shown in Tab. 6, the different slicing strategy has no significant impact
on the visual results. However, due to the input resolution limitation of pre-
trained diffusion models, we slice or fill these segmentation results into fixed
resolution regions using zero-padding, then feed these regions into the proposed
AdaDiffSR for inference, which may lead to the meaningless filled regions con-
suming massive computational resources, thus slowing the inference time. As
shown in Fig. 6, we visualize the effectiveness of the region integration strategy.
With this strategy, the discontinuities disappeared significantly.
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Table 6: Ablation studies of re-
gion slicing strategy on DIV2K Valid
dataset [47]. We report the inference
time on the 512× 512 resolution.

Exp. #P(M) PSNR↑ SSIM↑ LPIPS↓ RT(s)

SAM [21] 636 24.21 0.7368 0.2232 9.43
FastSAM [75] 68 24.11 0.7323 0.2182 8.79

MobileSAM [69] 10 24.14 0.7363 0.2178 8.59
EfficientSAM [68] 25 24.36 0.7311 0.2204 8.72

Ours 0 24.25 0.7355 0.2153 4.81

Table 7: Ablation studies of different
modules in AdaDiffSR on DIV2K Valid
dataset [47]. We report the inference time
on the 1024× 1024 resolution.

Exp. Models. #P(M) PSNR↑ SSIM↑ LPIPS↓ RT(s)

Baseline LDM [41] 113.60 20.58 0.5590 0.2556 22.3

(a) + DTSS (IQA) 113.60 22.16 0.5377 0.2843 21.5
+ DTSS (MMLE) 115.79 22.38 0.5294 0.2715 18.1

(b) + PFJ 120.43 24.22 0.7299 0.2338 16.5
(c) + RIS (Ours) 120.43 24.25 0.7355 0.2153 16.8

Effect of different modules in AdaDiffSR. To demonstrate the effective-
ness of components in AdaDiffSR, we add each component to the baseline model
LDM, and the results are shown in Tab. 7. DTSS (IQA) and DTSS (MMLE)
denote that calculate the IQA metrics using PYIQA toolbox [5] (i.e., the ground-
truth) and using regressor, respectively. There is no significant gap between the
above strategy, but the MMLE regressor would reduce the inference time consid-
erably. Besides, with the addition of the PFJ module, the experimental results
and inference time become better. Although the region integration strategy (RIS)
did not contribute significantly to the metrics, as shown in Fig. 6, this strategy
eliminated the discontinuity, thus improving the visual quality.

5 Limitations

Although the proposed AdaDiffSR achieves the trade-off between computational
resources and restoration quality compared to other DMs-based SR methods.
However, the DMs-based SR approaches require multiple denoising steps to ob-
tain the restored results, which is slower than previous CNN or GAN-based SR
methods. Moreover, since the fixed input resolution limitations of the pre-trained
DMs, the proposed method applies the static slicing strategy, which is somewhat
different from the original design intention mentioned in Fig. 1. Our future works
will concentrate on investigating new mechanisms that acclerate the denoising
process, and achieving more fine-grained region reconstruction.

6 Conclusion

In this paper, we explore the trends that apply adaptive inference strategy on
diffusion models based SR methods. To this end, we propose a novel DMs-based
SR pipeline AdaDiffSR for real-world image super-resolution, which utilizes the
latent information gain to adjust timesteps dynamically during the denoising
process and effectively reduces the computational resource overhead. Experi-
mental results on both synthetic and real-world benchmarks demonstrate that
the proposed AdaDiffSR achieves a better trade-off between computational re-
sources and restoration quality. We believe that our exploration will provide
more inspiration for future works.
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