
Explicitly Guided Information Interaction
Network for Cross-modal Point Cloud Completion

Hang Xu1∗, Chen Long1∗, Wenxiao Zhang2†, Yuan Liu3, Zhen Cao1, Zhen
Dong1, and Bisheng Yang1

1 LIESMARS, Wuhan University
{190107xh, chenlong107, zhen.cao, dongzhenwhu,bshyang}@whu.edu.cn

2 University of Science and Technology of China
wenxxiao.zhang@gmail.com

3 The University of Hong Kong
yuanly@connect.hku.hk

Abstract. In this paper, we explore a novel framework, EGIInet (Ex-
plicitly Guided Information Interaction Network), a model for View-
guided Point cloud Completion (ViPC) task, which aims to restore a
complete point cloud from a partial one with a single view image. In
comparison with previous methods that relied on the global seman-
tics of input images, EGIInet efficiently combines the information from
two modalities by leveraging the geometric nature of the completion
task. Specifically, we propose an explicitly guided information interac-
tion strategy supported by modal alignment for point cloud completion.
First, in contrast to previous methods which simply use 2D and 3D back-
bones to encode features respectively, we unified the encoding process to
promote modal alignment. Second, we propose a novel explicitly guided
information interaction strategy that could help the network identify
critical information within images, thus achieving better guidance for
completion. Extensive experiments demonstrate the effectiveness of our
framework, and we achieved a new state-of-the-art (+16% CD over
XMFnet) in benchmark datasets despite using fewer parameters than
the previous methods. The pre-trained model and code and are available
at https://github.com/WHU-USI3DV/EGIInet.

Keywords: point cloud completion · cross-modality · multi-modal fu-
sion

1 Introduction

The extensive application scenarios and significant research value of 3D Com-
puter Vision have garnered increasing attention. Point clouds [16], serving as a
discrete representation of stereoscopic space, play a crucial role in various areas
such as 3D reconstruction [29], scene understanding [15, 19], and autonomous
driving [6, 24]. However, due to inherent constraints imposed by scanning sen-
sors, reflections and occlusions, the raw point clouds obtained from 3D scanners
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are often sparse, noisy, and occluded [11, 26, 27]. Hence, it is necessary to con-
duct point cloud completion on this raw data before applying it to downstream
tasks like point cloud segmentation [30,44] and reconstruction [2,45] and so on.
To achieve this, point cloud completion emerges as a cost-effective and desirable
way to restore the complete shape of the underlying surface.

Traditional point cloud completion methods [4, 5, 7, 21, 23, 28, 32–34, 36–43,
48–51,54,56,57] aim to restore the complete shape from given incomplete point
clouds. However, due to the inherent sparsity and unstructured nature of point
clouds, learning the mapping from incomplete shapes to complete shapes solely
based on point cloud data is extraordinarily challenging. As a more pragmatic op-
tion, [55] introduced the task of View-Guided Point Cloud Completion, wherein
a partial point cloud is supplemented with an additional single view image to
facilitate a more coherent completion.

Unfortunately, while the image provides rich texture and structure informa-
tion to guide the completion procedure, the inputs from different modalities also
brought significant challenges for the design and training of models. To address
this issue, ViPC [55] and CSDN [58] leverage the ideas from single-view re-
construction methods for result-level fusion with partial point clouds. However,
estimating the 3D coordinates from images is an ill-posed problem [17]. Inspired
by recent multi-modal fusion approaches, the most recent work XMFnet [1] pro-
posed a fusion strategy based on latent space operations that incorporate a
cross-attention mechanism to conduct information fusion among multi-modal
features. Nevertheless, XMFnet [1] overlooks the inherent domain differences be-
tween inputs, and the indiscriminate stacking of cross-attention layers simply
lacks explicit guidance for the process of information fusion. As shown in Fig. 1
(c), we visualize the attention map of image features within the cross-attention
layers. It can be observed that XMFnet [1] tends to gain the abstract global
feature from the images, aiming to estimate global semantics while neglecting
the inherent geometric structural characteristics of point cloud completion tasks,
thus leading to sub-optimal completion outcomes.

Fig. 1: Cross-attention weight map projection of our method (b) and XMFnet [1] (c).
Compared with XMFnet [1], our method extracts clearer structural information about
the images.
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In order to solve this problem, we rethink the fundamental nature of the View-
guided point cloud completion task, and consider the most important question:
How to find the critical information contained in a corresponding image and fuse
it into the completion process?

To answer this question, we propose a novel completion framework named
EGIInet, which identifies the critical information within images by explicitly
guiding the information interaction, thus enhancing the effectiveness of single-
view images in guiding the completion process. Specifically, We divide the com-
pletion process into two steps: Modal Alignment and Information Fusion.
Fig. 2 illustrates the whole pipeline of EGIInet.

Firstly, diverging from existing methods that use different backbone networks
to extract features, we have devised a unified multi-modal feature extractor
aimed at mitigating modal disparities and reducing the difficulty of subsequent
information interaction. Tokenization techniques are adopted to map data of
different modalities into a unified representation, and a shared encoder struc-
ture is used to unify the learning process, thus ensuring features from different
modalities are compatible in latent space. Each token feature contains the local
geometry and the arrangement of the token sequence encapsulates the global
structure. Through this unified encoder structure, the modal disparities among
image features and point cloud features can be effectively reduced, thus promot-
ing and simplifying the subsequent information interaction and feature fusion.

Secondly, instead of fusing the two modality features directly for completion
like previous methods, we expect the network could perceive the corresponding
relation between the point cloud tokens and image tokens, which could help the
network figure out which image tokens are helpful for point cloud completion.
To achieve this, we propose a separated information interaction process with
explicit structural guidance, which is achieved by an indirect interaction network
supervised by a dual-designed loss function. Through this interaction process,
the structural information in the image and point cloud can be transferred to
each other. Finally, we fuse these two "transferred” features with only one simple
cross-attention layer for final completion. Fig. 1 (b) visualizes the weight map of
image features within our cross-attention layer, demonstrating that our network
could find the important structures for completion by performing explicit guided
interaction between token features of images and point clouds, thus achieving
better completion.

We conduct a comprehensive experimental evaluation of our approach on the
benchmark dataset, where we achieved a 16% improvement over the SOTA
method XMFnet [1] in terms of the CD metric, despite utilizing fewer parameters
(9.03M < 9.57M).

Our contribution can be summarized as follows:

– We analyze the limitations of mainstream methods and propose a novel point
cloud completion framework called EGIInet. It consists of a unified encoder
and a novel token feature structure transfer loss to provide an explicitly
guided information interaction, which could help get more reliable and better
performance for the completion task.
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– We assess the performance between ours and other SOTA methods on some
simulated and real challenging datasets. Extensive experiments show the
effectiveness of our methods, our method achieves superior performance,
reaching the state of the art.

2 Related Work

2.1 Point cloud completion

The pioneer work of point cloud completion is PCN [51], which proposed a coarse-
to-fine approach that is widely referenced in following studies [4,21,23,25,28,33,
34,36–38,41–43,54,56,57]. Though there are differences in feature extraction and
utilization, the basic idea of these studies is to reconstruct the skeleton of the
complete shape first and then refine it. PointTr [49] does not follow the coarse-
to-fine manner but only generates the missing part of the partial point cloud.
The idea of only generating the missing part also appeared in [48,50]. In [32], a
generative adversarial network is used for point cloud completion. PMP-Net [39]
and PMP-Net++ [40] treat point cloud completion as a kind of deformation and
complete point cloud by moving points to the right positions. P2C [5] introduces
additional losses to supervise the latent expressions. Other unsupervised point
cloud completion works [3, 13, 18, 52] achieve higher robustness through special
training strategies Limited by inputs, these models must learn information about
the complete shape from the occluded shape, which may lead to turning the task
into a translation process from the occluded shape to the complete shape without
meticulous analysis and design of the model.

2.2 View-guided point cloud completion

The purpose of the view-guided completion process is to introduce the missing
geometric information from images to obtain better completion results. The pio-
neering work of View-guided point cloud completion is ViPC [55], which designed
a multi-modal architecture for image and point cloud and built the ShapeNet-
ViPC dataset. The ViPC [55] model first used a modality transformer to convert
images directly to skeleton point cloud and concatenate it with occluded point
cloud, then refine it with concatenated image features and point cloud features.
Rather than concatenation on results, CSDN [58] leverage the IPAdaIN [20] to
let image features affect the process of deforming point cloud features into coarse
point clouds, then by using pixel-wise aligned local features to performer dual-
refinement. XMFnet [1] is the most recent baseline network that applied stacked
cross-attention and self-attention layers to fuse the image feature with the point
cloud feature and complete the point cloud in an end-to-end way using only
the fused feature. The recent work CDPNet [9] introduce a two phase strategic
which leverage global information from images to predict rough shape. These
works show that the multi-modal information fusion strategy plays a critical
role in view-guided point cloud completion.
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3 Method

The task of view-guided point cloud completion is to use an input occluded
point cloud P ∈ RN×3 and a single view image I ∈ RH×W×C to predict the
complete shape. The purpose of our design is to achieve better information fusion
by performing modal alignment and information interaction, thus leading to a
better prediction of the complete shape. To this purpose, we study i) a unified
encoder for multi-modal input; and ii) a novel token feature structure transfer
loss that guides the modal alignment and information interaction. Fig. 2 shows
an overview of our proposed architecture EGIInet.

Fig. 2: Architecture of EGIInet. The modal alignment is conducted by Unified En-
coder. In the Information Fusion, FT-Loss (Ltransfer) explicitly guides the indirect
interaction between image information and point cloud information.

3.1 Unified Encoder

The main difficulty in designing feature fusion in multi-modal models is to over-
come the domain gap between different modals [31]. Our design reduces modal
differences in both format and latent space by utilizing tokenization techniques
and shared structure. The proposed Unified Encoder consists of Tokenizers and
a shared feature extractor (SFE) which will be detailed in the following.

Tokenizers The gap between the image and point cloud lies in the differences
in data organizing, so the first step of modal alignment is to give a unified way
of describing the image and point cloud. Tokenization is a common technique to
convert data into a sequence of tokens that is similar to the sentences in natural
language. Therefore, tokens are ideal for uniform representation of images and
point clouds since both of them can be described in natural language. By unifying
the description of the image and point clouds, the following alignment in latent
space can be simplified and information fusion can be conducted in a more
explicit way. The function of tokenizers is to transfer point clouds P and images
I into a unified format, that is features F ∈ RN ′×C′

consists of N ′ tokens
T ∈ R1×C′

. The point cloud feature F pc and image feature F img consist of
same number(N ′) of tokens.
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In order to explicitly guide the interaction of structural information, we need
to first extract features that can represent both global structure and local ge-
ometry. For images, we can take advantage of the grid property of the image to
represent the global structure using the organizational pattern among tokens.
For point clouds, additional positional embedding is added to the token features
to reduce the impact of the irregular nature of point clouds. Therefore, the image
and point cloud tokenizers are designed to divide the image and the point cloud
into several parts for mapping. In this way, the global structural information is
contained in the organizational pattern among tokens and each token represents
a certain local geometry. As shown in Fig. 3 (a), for tokenizing images, we use

Fig. 3: Tokenization process for images (a) and point clouds (b).

a convolution layer with large kernel size and stride to divide the image into
several parts and each part is described by one token. In this way, we can learn
a simple projection from image to tokens.

As shown in Fig. 3 (b), for tokenizing point clouds, we adopt t steps of FPS
(Farthest Point Sample) [10] downsampling while aggregating features in each
step using Ball-query cluster. By aggregating the feature of each cluster, each
point in the down-sampled point cloud P center can be matched to one token and
each token can describe the geometry of a specific area of the point cloud. In
order to reduce the impact caused by the irregular nature of the point cloud, we
extract the per-point features of the downsampled point cloud as the position
embedding and add it to the tokens.

Shared Feature Extractor (SFE) Another reason why multi-modal features
are difficult to fuse is the difference between 2D backbones and 3D backbones.
The features extracted by different network architectures have differences in
latent distribution and semantic structure, which makes it difficult to merge
information directly. To solve this problem, we use a unified shared architecture
to learn the token sequences from different modals, so that the features of the
image and point cloud are mapped to the adjacent latent space. Meanwhile, in
order to make our model focus on the structural information that is essential
for completion, we use self-attention-based ViT blocks [8] as the backbone of
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SFE. The SFE takes token sequence F pc,F img ∈ RN ′×C′
as input, and export

processed features F stc
pc ,F

stc
img ∈ RN ′×C′

. The process of SFE can be described
in Formula 1 and Formula 2.

F stc
pc = SFE(F pc) (1)

F stc
img = SFE(F img) (2)

3.2 Information Fusion

Intuitively, the most critical information contained in the image from a different
sight is that representing the missing part of the point cloud. However, the tra-
ditional latent fusion strategy could not always focus on this critical information
due to the lack of structural guidance, leading to a sub-optimal solution for point
cloud completion. To effectively fuse the critical information into the inference
process of missing part, we introduce a dual-designed loss function to explicitly
guide an information interaction process separated from the encoding stage. In
the following sections we introduce the Shared Feature Transfer Network (SFT-
net) which provides the information interaction process and the Feature Transfer
Loss (FT-Loss) which explicitly guides the information interaction.

Shared Feature Transfer Network (SFTnet) Separating the information
interaction process from the encoding process makes the network have specific
learning objectives at specific stages, thereby reducing the overall optimization
difficulty. Meanwhile, we observe that directly fusing the point cloud and image
features in latent space like previous methods will lead to an ambiguous feature
interaction, as there is no explicit guidance to decide which part of the image
contains critical information. Also, direct feature fusion will change the organiza-
tional pattern of features, leading to an extra learning on new latent expressions.
Therefore, the SFTnet is purposed to give an independent interaction process
without direct contact between features. In this way, point cloud features and
image features can interact with each other in an explicitly guided manner while
maintaining their respective information organization pattern. This transfer pro-
cess is supervised by the Feature Transfer Loss (FT-Loss) which will be detailed
in the next section.

The SFTnet consists of ViT-based blocks [8] similar to SFE in implemen-
tation. The reason for using the similar design of SFE is that a unified shared
design helps to maintain the information organization pattern of the features, so
as to conduct the information interaction without destroying the original struc-
ture of the features. The process of Shared Feature Transfer Network can be
described in Formula 3 and Formula 4.

F ′
pc = SFTnet(F stc

pc ) (3)

F ′
img = SFTnet(F stc

img) (4)
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Feature Transfer Loss (FT-Loss) We implement explicit guidance for fea-
ture interaction in the form of loss supervision, in this way we can artificially
determine the information that features need to be interacted with. We explicitly
guide the information transfer between image features and point cloud features
to conduct the identifying of the critical information within the image and the
transformation of the critical information from the image features to the point
cloud features, thus achieving the ultimate goal of making the critical informa-
tion in the image act in the point cloud completion.

The purposed FT-Loss Ltransfer consists of Informational Loss Linfor and
Structural Loss Lstc. The function of Linfor is to interact with the critical struc-
tural information in image features and point cloud features while the function
of Lstc is to maintain the information structure of the point cloud features.

We leverage the Gram matrix of features as the basis for information loss since
the Gram matrix provides a way to describe the structural criticality of features.
The Gram matrix can be considered as an eccentricity covariance matrix for
features and can be calculated through Formula 5. For each feature, each element
of its Gram matrix corresponds to a channel-wise global structural criticality.

G (F ) = F T • F (5)

The purpose of Information Loss Linfor is to make the features of one modal
perceive the structural information present in the features of another modal.
To achieve this, we adopt a dual-designed loss to pass information between the
transferring processes of images and point clouds. The Information Loss Linfor

is defined as Formula 6. By supervising the similarity of the Gram matrix of fea-
tures, we can indirectly align the structural criticality of features, thus achieving
structural information transformation. Through the alignment of structural crit-
icality, the missing relationship contained in point cloud features can be trans-
ferred to the image features and the structure of the missing part contained in
image features can be transferred to the point cloud features.

Linfor =

(
G

(
F stc

img

)
−G

(
F ′

pc

))2
+

(
G

(
F stc

pc

)
−G

(
F ′

img

))2
N × C

(6)

Where F stc
img, F

stc
pc are inputs of SFTnet and F ′

img, F
′
pc are outputs of SFT-

net.
As mentioned before, 2D features from images have difficulty predicting 3D

coordinates directly, so the fused feature used to reconstruct the missing part
should be based on 3D features from point clouds. The purpose of Structural
Loss is to maintain the information structure of 3D point cloud features through
the transfer process. The Structural Loss Lstc is defined as Formula 7.

Lstc =
(
F stc

pc − F ′
pc

)2 (7)

By supervising these two losses simultaneously we provide an explicitly guided
information interaction method to transfer information between to modals, thus
improving the fusion efficiency. The FT-Loss Ltransfer is defined as Formula 8.

Ltransfer = Linfor + Lstc (8)
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Chamfer Distance (CD) [46] is widely used in the reconstruction task. The cal-
culation of l1 − CD is shown in Formula 9 where P =

{
p ∈ R3

}
is the ground

truth point cloud and P̂ =
{
p̂ ∈ R3

}
is the output completed point cloud of our

model.

Ll1−CD

(
P , P̂

)
=

1

2N

∑
p∈P

min
p̂∈P̂

||p− p̂||2 +
1

2N

∑
p̂∈P̂

min
p∈P

||p− p̂||2 (9)

Together with Chamfer Distance, the total loss of our architecture can be
defined as Formula 10 where α is a hyperparameter. In implement, α is fix to
0.01 since Ltransfer is a large value compared with Ll1−CD

Ltotal = α× Ltransfer + Ll1−CD (10)

Feature Fusion To aggregate the features, we adopt a simple cross-attention
layer to fuse the image feature and point cloud feature since these two features
have been fully interacted within the previous process.

3.3 Completion Decoder

In order to decode the acquired fusion features into the complete point cloud, we
need a decoder that is flexible and has a certain learning ability. To do this, we
use a decoder architecture similar to XMFnet [1] to accept similar fused features
and learn their implicit expressions to predict 3D coordinates.

4 Experimental Results

In this section, we first introduce the dataset and evaluation metrics in section
4.1. Quantitative and Qualitative comparisons are shown in section 4.2. Ablation
studies are conducted in section 4.3. We also report the generalization ability
of our method in section 4.4. Finally, the model complexity can be found in
supplementary materials.

4.1 Experimental Settings

Dataset In this work we train and test our model on ShapeNet-ViPC dataset
[55]. The dataset contains 38,328 objects from 13 categories. For each object,
ViPC [55] generates 24 incomplete point clouds under 24 viewpoints. In this
paper, we follow the same dataset settings of ViPC [55].

Evaluation metrics We use l2 − CD [46] and F-score [22] to evaluate our
model the same as the previous works do. The l2 −CD of point cloud X and Y
is calculated as shown in Formula 11, where NX and NY denotes the number of



10 H. Xu and C. Long et al.

points in X and Y . Since CDPNet [9] was not open sourced during our study,
we did not compare with it.

CD (X,Y ) =
1

NX

∑
x∈X

min
y∈Y

||x− y||22 +
1

NY

∑
y∈Y

min
x∈X

||x− y||22 (11)

The F-score [22] is defined in Formula 12, where thresh hold d equals 0.001 the
same as the previous works.

F(X,Y ) =
2X(d)Y (d)

X(d) + Y (d)
, (12)

where X(d) and Y (d) denote the mean of the squared distances that are less
than the threshold d. The calculation of squared distances follows the same in
calculating CD.

4.2 Results on ShapeNet-ViPC

In this section we report our quantitative comparison with the existing works
[1, 55, 58] that use the same training data on ShapeNet-ViPC dataset [55] and
other SOTA point cloud completion methods [14,21,25,34,35,43,47,49,51,53,56]
taken from [58], results are reported in Table 1 for the CD and Table 2 for the F1-
score. We conduct a qualitative comparison with CSDN [58] and XMFnet [1] in
Fig. 4. It is shown that while keeping the decoding structure the same, our model
is able to improve the CD by 16% compared to XMFnet [1]. This means that
our design of better feature extraction and fusion can lead to better completion
results. Specifically we achieve a great improve on lamps due to the accurately
extracted information and well designed information interaction.

Fig. 4: Qualitative results on ShapeNet-ViPC dataset [55].
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Table 1: Mean Chamfer Distance per point (CD × 103 ↓).

Methods Avg Airplane Cabinet Car Chair Lamp Sofa Table Watercraft
AtlasNet [14] 6.062 5.032 6.414 4.868 8.161 7.182 6.023 6.561 4.261
FoldingNet [47] 6.271 5.242 6.958 5.307 8.823 6.504 6.368 7.080 3.882
PCN [51] 5.619 4.246 6.409 4.840 7.441 6.331 5.668 6.508 3.510
TopNet [34] 4.976 3.710 5.629 4.530 6.391 5.547 5.281 5.381 3.350
PF-Net [21] 3.873 2.515 4.453 3.602 4.478 5.185 4.113 3.838 2.871
MSN [25] 3.793 2.038 5.060 4.322 4.135 4.247 4.183 3.976 2.379
GRNet [43] 3.171 1.916 4.468 3.915 3.402 3.034 3.872 3.071 2.160
PoinTr [49] 2.851 1.686 4.001 3.203 3.111 2.928 3.507 2.845 1.737
PointAttN [35] 2.853 1.613 3.969 3.257 3.157 3.058 3.406 2.787 1.872
SDT [53] 4.246 3.166 4.807 3.607 5.056 6.101 4.525 3.995 2.856
Seedformer [56] 2.902 1.716 4.049 3.392 3.151 3.226 3.603 2.803 1.679
ViPC [55] 3.308 1.760 4.558 3.183 2.476 2.867 4.481 4.990 2.197
CSDN [58] 2.570 1.251 3.670 2.977 2.835 2.554 3.240 2.575 1.742
XMFnet [1] 1.443 0.572 1.980 1.754 1.403 1.810 1.702 1.386 0.945
Ours 1.211 0.534 1.921 1.655 1.204 0.776 1.552 1.227 0.802

4.3 Ablation Studies

We first report the ablation on our model components. The object of ablation is
the shared structure, FT-Loss and SFTnet. Then we analysis about the efficiency
of image information.

Ablation on FT-Loss To verify the effectiveness of FT-Loss, we do not calcu-
late and supervise the loss during the process of training. Results are presented
in Table 3. It can be seen that removing FT-Loss will decline the model’s perfor-
mance, and the missing relationship can not be transferred to the image feature
without supervising the FT-Loss, as shown in Fig. 5.

Fig. 5: Image feature projection of our method with (b) and without (c) FT-loss. By
supervising the FT-Loss, information interaction can be explicitly guided so that the
image feature can figure out the most helpful information for point cloud completion.
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Table 2: Mean F-Score @ 0.001↑.

Methods Avg Airplane Cabinet Car Chair Lamp Sofa Table Watercraft
AtlasNet [14] 0.410 0.509 0.304 0.379 0.326 0.426 0.318 0.469 0.551
FoldingNet [47] 0.331 0.432 0.237 0.300 0.204 0.360 0.249 0.351 0.518
PCN [51] 0.407 0.578 0.270 0.331 0.323 0.456 0.293 0.431 0.577
TopNet [34] 0.467 0.593 0.358 0.405 0.388 0.491 0.361 0.528 0.615
PF-Net [21] 0.551 0.718 0.399 0.453 0.489 0.559 0.409 0.614 0.656
MSN [25] 0.578 0.798 0.378 0.380 0.562 0.652 0.410 0.615 0.708
GRNet [43] 0.601 0.767 0.426 0.446 0.575 0.694 0.450 0.639 0.704
PoinTr [49] 0.683 0.842 0.516 0.545 0.662 0.742 0.547 0.723 0.780
PointAttN [35] 0.662 0.841 0.483 0.515 0.638 0.729 0.512 0.699 0.774
SDT [53] 0.473 0.636 0.291 0.363 0.398 0.442 0.307 0.574 0.602
Seedformer [56] 0.688 0.835 0.551 0.544 0.668 0.777 0.555 0.716 0.786
ViPC [55] 0.591 0.803 0.451 0.512 0.529 0.706 0.434 0.594 0.730
CSDN [58] 0.695 0.862 0.548 0.560 0.669 0.761 0.557 0.729 0.782
XMFnet [1] 0.796 0.961 0.662 0.691 0.809 0.792 0.723 0.830 0.901
Ours 0.836 0.969 0.693 0.723 0.847 0.919 0.756 0.857 0.927

Ablation on shared structure To verify the effectiveness of the shared struc-
ture, we replicate the shared ViT [8] blocks, including SFE and SFTnet, and
pass the image and point cloud tokens through separate networks. Results are
presented in Table 3. The CD metric decreased significantly without the shared
structure, indicating that the modal alignment achieved by the shared structure
can promote subsequent interaction and fusion. Due to the limited parameters,
the full model performs slightly worse than the model without shared encoders
on some complex classes (less valid pixels). However, for most of the common
categories, the shared structure can effectively align different modalities with
fewer parameters.

Table 3: Results of ablation studies (CD × 103 ↓).
Methods Avg Airplane Cabinet Car Chair Lamp Sofa Table Watercraft
Ours 1.211 0.534 1.921 1.655 1.204 0.776 1.552 1.227 0.802
w/o sharing 1.429 0.631 2.027 2.112 1.701 0.711 2.031 1.440 0.783
w/o FT-Loss 1.354 0.580 2.137 1.911 1.288 0.824 1.732 1.484 0.875
w/o SFTnet 1.454 0.656 2.329 2.106 1.460 0.839 1.938 1.395 0.907
w/o image 1.383 0.583 2.110 1.953 1.343 0.860 1.830 1.510 0.874

Ablation on SFTnet In order to verify the necessity of separating the infor-
mation interaction process from the encoding process, we designed an ablation
experiment on STFnet. In this experiment, we remove SFTnet and calculate only
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the direct information loss of structural features shown as Formula 13. As shown
in Table 3, it is difficult to complete the feature extraction and information in-
teraction by relying only on SFE and simplified losses L′

transfer, especially on
some complex categories (lamp, watercraft, etc.). The reason behind this is that
SFTnet can provide a more effective interaction for completion.

L′
transfer =

(
G

(
F stc

img

)
−G

(
F str

pc

))2
N × C

(13)

Ablation of Input Modality To verify the effectiveness of input images, we
only use point cloud as input, thus verifying that our design is able to make the
information provided by the image positive. Results are presented in Table 3.

Efficiency of Image Information The projection of the cross-attention weight
map plot in Fig. 6 shows that the image features of different views are able to
focus on the geometer related to the missing part of the point cloud, thus proving
the effectiveness of information interaction.

Fig. 6: Cross-attention weight map projection of different views.

4.4 Generalization Ability Evaluation

Results on Unknown categories of ShapeNet-ViPC To verify the util-
ity of our method, we conducted a zero-shot test on unknown categories in
the ShapeNet-ViPC dataset. We used 8 known categories, including airplane,
cabinet, car, chair, lamp, sofa, table, and watercraft in the training stage, and
tested on 4 unknown categories, including bench, monitor, speaker, and cell-
phone. We compare the CD and F-score performance on 4 categories with other
method [21, 25, 35, 43, 49, 53] taken from [58] and we train XMFnet [1] on 8 cat-
egories as well. Quantitative comparisons are shown in table 4 and qualitative
comparisons are shown in Fig. 7.
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Table 4: Results on unknown categories (CD × 103 ↓, F-score @ 0.001↑).

Methods Avg Bench Monitor Speaker cellphone
CD F-score CD F-score CD F-score CD F-score CD F-score

PF-Net [21] 5.011 0.468 3.683 0.584 5.304 0.433 7.663 0.319 3.392 0.534
MSN [25] 4.684 0.533 2.613 0.706 4.818 0.527 8.259 0.291 3.047 0.607
GRNet [43] 4.096 0.548 2.367 0.711 4.102 0.537 6.493 0.376 3.422 0.569
PoinTr [49] 3.755 0.619 1.976 0.797 4.084 0.599 5.913 0.454 3.049 0.627
PointAttN [35] 3.674 0.605 2.135 0.764 3.741 0.591 5.973 0.428 2.848 0.637
SDT [53] 6.001 0.327 4.096 0.479 6.222 0.268 9.499 0.197 4.189 0.362
ViPC [55] 4.601 0.498 3.091 0.654 4.419 0.491 7.674 0.313 3.219 0.535
CSDN [58] 3.656 0.631 1.834 0.798 4.115 0.598 5.690 0.485 2.985 0.644
XMFnet [1] 2.671 0.710 1.278 0.862 2.806 0.677 4.823 0.556 1.779 0.748
Ours 2.354 0.750 1.047 0.902 2.513 0.716 4.282 0.591 1.575 0.792

Results on Real Scenes We also report qualitative results on KITTI [12] cars
extracted by [51]. Results about qualitative results can be found in supplemen-
tary materials.

Fig. 7: Qualitative results on unknown categories of ShapeNet-ViPC [55].

5 Conclusions

In this paper, we propose an explicitly guided information interaction strategy
supported by modal alignment for view-guided point cloud completion. This
explicit guidance can promote the network to learn structural relationships for
completion, thus leading to better utilization of the information provided by the
image. Our proposed methods achieve new SOTA results on the ShapeNet-ViPC
dataset [55]. In future work, we will continue to study this information fusion
approach and have the potential to extend it to other data modalities and tasks
to make it a new multi-modal learning paradigm.
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