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Abstract. Due to the lack of space in the main paper, we provide more
details in the supplementary materials. In Sec. A, we cover additional
experimental results not addressed in the main paper. In Sec. B, we
provide more detailed information about the RELED dataset. In Sec. C,
we provide more visual results and video demos.

A Additional experimental results

A.1 implementation details

We implement our framework using PyTorch [8]. For training, we utilized the
Adam [7] optimizer with momentum term of (0.9, 0,999) to optimize networks
with initial learning rate 1× 10−4. We utilized the charbonnier [3] loss function
to supervise the multi-scale outputs. We use batch size of 8 with four RTX 3090
GPUs for training. We empirically set multi-scale weight λs = {1, 0.5, 0.25} for
each scale. We set the standard deviation σ to 7 in Eq. 3 of the main paper. We
set the event voxel grid size to 16 for all experiments. For data augmentation, we
perform random crop at the same positions for both low-light blurred videos and
event voxel data, resulting in cropped blurred patch and voxel bin of size 256×
256. To train our networks, we utilized our training split of the RELED dataset
and conduct training for 200 epochs. Regarding other methods, we performed
retraining on the RELED dataset for the same number of epochs to conduct
quantitative and qualitative comparisons. For quantitative comparison, we used
widely-used metrics such as PSNR and SSIM [14].

A.2 Qualitative results on the real-world low-light blurred videos.

To assess the generalization ability of the model trained on the RELED dataset
in real-world scenarios, we captured actual low-light videos, including nighttime
conditions, by removing ND filters. During this process, we varied the settings
such as gain, exposure time, and utilized different cameras not present in the
dataset to ensure a diverse range of testing conditions. Visual comparison be-
tween UEVD [6] and ours are presented in Fig. A1. It is evident that ours consis-
tently delivers superior detail restoration, even when confronted with real-world
low-light data.
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Table A1: Comparison with other temporal alignment modules.
Methods PSNRs SSIMs Params(MB)
Baseline 29.59 0.902 1.8

Baseline + PCD [13] 30.05 0.907 5.3
Baseline + (SpyNet [9]+ Resblock) 29.30 0.899 5.6

Baseline + RNN-MBP [2] 30.14 0.908 5.0
Baseline + ED-TFA(Ours) 30.78 0.916 5.0

Table A2: Computational complexity and performance analysis on the RELED
dataset. Runtimes are measured using an RTX-3090 GPU on 1024× 768 size inputs.

Methods MPRNet [17] LLFormer [12] SNRNet [16] Retinexformer [1] MIMOUNet+ [5] RNN-MBP [2]
PSNR 26.89 26.62 26.47 26.66 26.52 29.52

Params(MB) 20.13 13.15 40.08 1.61 16.11 14.16
Runtime(s) 1.179 0.716 0.080 0.240 0.246 1.288
Methods REDNet [15] GEM [18] UEVD [6] EFNet [10] REFID [11] Ours
PSNR 29.19 26.04 29.93 29.85 30.1 31.3

Params(MB) 9.7 2.36 27.88 8.47 15.9 12.8
Runtime(s) 0.256 0.072 0.636 0.234 1.183 0.718

A.3 Qualitative ablations

In the main paper, we confirmed the extent of performance improvement for
each component through an ablation study. Moreover, to delve into a qualita-
tive analysis of the impact of each component, we have visualized the results in
Fig. A2. In the figure, (a) corresponds to a low-light blurry image, (b) represents
low-light events, (c) corresponds to Ver.1 (baseline) of Tab. 3 in the main pa-
per, (d) corresponds to the Ver.2 (baseline with the ED-TFA module), and (e)
corresponds to Ver.4 of Tab. 3 in the main paper, which represents the Ours-
full model, respectively. As observed in the results in the Fig. A2, our model
demonstrates progressive improvement in qualitative results as each module is
inserted. An important point to highlight is that, consistent with the motivation
behind the SFCM-FE module mentioned in the main paper, its incorporation
results in a more effective restoration of the main structural information within
the scene.

A.4 Comparisons on the frame-based alignment methods.

We have recorded the comparison results of various other temporal feature align-
ment methods in Tab. A1. For comparative analysis, we incorporated other tem-
poral feature alignment modules (PCD [13] alignment, spynet [9], RNN-MBP [2]
module) into our network baseline (Ver.1 of the ablation study Tab. 3 of the main
paper) to assess the extent of performance improvement. We noticed a decline
in performance with spynet [9], which can be attributed to inaccurate visual
correspondence (optical flows) between adjacent video frames caused by factors
such as low visibility and severe motion blur. In the case of RNN-MBP [2] and
PCD [13] alignment modules, performance improvement was observed. However,
relying solely on frame information without the aid of events leads to sub-optimal
results. Due to the high dynamic range and high temporal resolution properties
of events, our ED-TFA module can accurately estimate temporal correspondence
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even in situations of low visibility and motion blur. This results in superior tem-
poral alignment performance compared to other alignment modules.

A.5 Runtime/Params and performance comparisons.

In Tab. A2, we present a comparative analysis of parameters, runtime, and per-
formance results for recent methods on the RELED dataset. As shown in the
results, we achieve superior performance at reasonable computational costs.

A.6 Loss function

As in last line of Sec. 4.1 in the main paper(L.256-258), our decoder outputs
normal-light sharp images at multiple visual scales. We utilized the charbon-
nier [3] loss function to supervise these multi-scale outputs.

Ltotal =

2∑
s=0

λs

√
∥St

s −Gt
s∥2 + ϵ2 (1)

where St
s represents the estimated normal-light sharp image at scale s, and Gt

s

represents the ground-truth normal-light sharp image at scale s, respectively.
We empirically set ϵ to 10−3 for all experiments.

B RELED dataset

B.1 More information about the dataset.

The RELED dataset contains 6,258 pairs of images, encompassing both low-light
blurry images and normal-light sharp images, alongside event stream data that
correlates with the exposure time of blurred images. To select a beam-splitter,
we opt for Edmund Optics 50mm VIS, 50R/50T, Non-Polarizing Cube Beam-
splitter over the plate-based alternative to mitigate beam-shifting problems. For
the RGB cameras, we’ve chosen two FLIR BFS-U3-16S2C-CS RGB cameras,
capable of recording videos at a resolution of 1440 × 1080, while also offering
support for an external trigger interface. Alongside RGB cameras, we’ve also
selected the EVK4 HD Prohesee Gen4.1 HD event camera, which can capture
events at a resolution of 1280× 720. To achieve temporal synchronization across
multiple devices, we employ an ATmega328 microcontroller as an external trig-
ger. With this external trigger, the cameras are synchronized at the hardware
level, ensuring that the RGB camera starts exposure at a rising edge signal and
ends exposure at a falling edge signal. Moreover, the event camera captures data
from the rising edge to the falling edge signal, corresponding to the exposure
time of blurry images. Finally, considering the field of view for both the event
camera and each RGB camera, we adjusted the resolution of the images from
the two RGB cameras and the events to a size of 1024× 768. We have depicted
the samples of the dataset in the Fig. A3.



4 Kim et al.

C Visual results

C.1 More visual results

In Fig. A4, A5, A6, we show more qualitative results on the RELED dataset. In
the figure, we compare our method with state-of-the-art frame-based LLE meth-
ods LLFormer [12], SNRNet [16], frame-based deblurring methods NAFNet [4],
and event-guided deblurring methods GEM [18] and UEVD [6]. As evident from
the figure, our method consistently achieves superior qualitative restoration re-
sults in terms of scene details, such as letters, compared to other methods.

C.2 Video demos

We produced demo videos on the RELED datasets. These videos, labeled as
Video_demo.mp4, demonstrate a comparison of qualitative video demos between
our methods and other methods.
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Fig.A1: Qualitative results on the real-world low-light blurred videos. From left to
right: input, UEVD [6], Ours. Zoom in for better view.
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(a) Low-light blur images (b) Low-light events (c) Ours(Baseline)

(e) Ours(Baseline+ED-TFA+SFCM-FE) (f) GT(d) Ours(Baseline+ED-TFA)

(a) Low-light blur images (b) Low-light events (c) Ours(Baseline)

(e) Ours(Baseline+ED-TFA+SFCM-FE) (f) GT(d) Ours(Baseline+ED-TFA)

Fig.A2: Qualitative ablations results. Each subfigure represents: (a) low-light blurry
image input, (b) low-light event input, (c) the baseline network, (d) the model with the
addition of the ED-TFA module to the baseline, and (e) the model with the addition of
both the ED-TFA module and the SFCM-FE module to the baseline. We can observe
a gradual improvement in qualitative results from (c) to (e).
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(a) Low-light blur image (b) Low-light events (c) GT

Fig.A3: The examples of our RELED dataset. Our dataset contains diverse scenes
and motion, which consists of low-light blurry frames and normal-light sharp images
and synchronized event streams.



8 Kim et al.

(g) UEVD (I) GT(h) Ours

(e) NAFNet (f) GEM

(a) Low-light blur image (b) Low-light events (c) LLFormer

(d) SNRNet

Fig.A4: Visual comparisons of different methods on the RELED datasets. In the
Fig, restoration results from (c) to (I) are as follows: LLformer [12], SNRNet [16],
NAFNet [4], GEM [18], UEVD [6], Ours, GT.
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(e) NAFNet (f) GEM

(a) Low-light blur image (b) Low-light events (c) LLFormer

(d) SNRNet

(g) UEVD (I) GT(h) Ours

Fig.A5: Visual comparisons of different methods on the RELED datasets. In the
Fig, restoration results from (c) to (I) are as follows: LLformer [12], SNRNet [16],
NAFNet [4], GEM [18], UEVD [6], Ours, GT.
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(g) UEVD (I) GT(h) Ours

(e) NAFNet (f) GEM

(a) Low-light blur image (b) Low-light events (c) LLFormer

(d) SNRNet

Fig.A6: Visual comparisons of different methods on the RELED datasets. In the
Fig, restoration results from (c) to (I) are as follows: LLformer [12], SNRNet [16],
NAFNet [4], GEM [18], UEVD [6], Ours, GT.
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