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Abstract. In low-light conditions, capturing videos with frame-based
cameras often requires long exposure times, resulting in motion blur and
reduced visibility. While frame-based motion deblurring and low-light en-
hancement have been studied, they still pose significant challenges. Event
cameras have emerged as a promising solution for improving image qual-
ity in low-light environments and addressing motion blur. They provide
two key advantages: capturing scene details well even in low light due to
their high dynamic range, and effectively capturing motion information
during long exposures due to their high temporal resolution. Despite ef-
forts to tackle low-light enhancement and motion deblurring using event
cameras separately, previous work has not addressed both simultane-
ously. To explore the joint task, we first establish real-world datasets for
event-guided low-light enhancement and deblurring using a hybrid cam-
era system based on beam splitters. Subsequently, we introduce an end-
to-end framework to effectively handle these tasks. Our framework incor-
porates a module to efficiently leverage temporal information from events
and frames. Furthermore, we propose a module to utilize cross-modal fea-
ture information to employ a low-pass filter for noise suppression while
enhancing the main structural information. Our proposed method signif-
icantly outperforms existing approaches in addressing the joint task. Our
project pages are available at https://github.com/intelpro/ELEDNet.

Keywords: Low-light enhancement · Motion Deblurring · Event cam-
eras

1 Introduction

When capturing videos in low-light conditions, the low levels of environmental
illumination causes reduced visibility. Typically, under such low-light conditions,
cameras resort to using a longer exposure time to compensate for the lack of
brightness in the image. Due to the long exposure time, captured images may
exhibit undesired blurring artifacts caused by dynamic objects or abrupt camera
motion. As such, images taken under low-light environments commonly show
both reduced visibility due to diminished illumination and blurring artifacts
from dynamic motion simultaneously. Accordingly, it is imperative to jointly
address the problem involving both blurring and low-light illumination effects.
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(a) Low-light blur image

(b) Event

(c) LEDNet

(d) LLformer

(e) UEVD

(f) Ours

Fig. 1: Qualitative comparison with SoTA methods on the real-world low-light blurred
images.(Best viewed when zoom in.) In figures (c) through (f), visual results are shown
for (c) the recent image-based low-light image enhancement and deblurring networks
LEDNet [58]; (d) the recent low-light enhancement network LLFormer [40]; (e) event-
guided video deblurring networks UEVD [13]; and (f)Ours, respectively.

Numerous endeavors have explored low-light enhancement [1,20,38,47], aimed
at restoring low-light images to a more natural appearance akin to those cap-
tured under normal lighting conditions, and motion deblurring [7, 13, 25, 50, 51]
, focused on eliminating motion blur artifacts from blurred images, as distinct
and independent tasks. Consequently, these works propose solutions specifically
tailored for their respective tasks. Though the two tasks, motion deblurring and
low-light enhancement, can be performed in a cascaded manner, conducting cor-
related tasks in a such manner often yields sub-optimal results. As a result, it is
essential to address the problem in a joint manner that considers both the oc-
currence of motion blur and the low-illumination scenario simultaneously rather
than dealing with them as isolated issues. To address these limitations, we need
to first tackle the joint problem of low-light enhancement and motion deblur-
ring in a unified single network. This task becomes extremely challenging when
relying solely on frame information, particularly as the intensity of motion blur
increases or in severe low-light conditions where visibility is significantly reduced.
In such scenarios, it becomes difficult to restore a normal light sharp image.

The event camera [9], renowned for its high temporal resolution and unique
functionality, has spurred significant research in low-level vision. Its asynchronous
capture of luminance changes offers benefits such as high dynamic range, low la-
tency, and low power consumption. The high temporal resolution events capture
detailed motion information, aiding in motion deblurring and revealing struc-
tural details even in low-light conditions.

Since event cameras excel in event-guided motion deblurring and low-light
enhancement individually, they can be offered as practical solutions for jointly
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addressing both challenges. Hence, we propose a novel task aiming to solve two
tasks simultaneously in low-illumination environments utilizing events. However,
acquiring real-world datasets for this task is highly challenging. Though recent
works have introduced synthetic dataset [58] for low-light scenarios, these meth-
ods struggle to restore real-motion blur, limiting their generalizability to real
world scenarios. To address these limitations, we build the Real-world Event-
guided Low-light Video Enhancement and Deblurring(RELED) dataset, which
provides real-world synchronized low-light blur, normal-light sharp images, and
low-light event streams, without relying on synthetic data generation methods.

In addition to the dataset contribution part, we propose a unified end-to-end
framework for event-guided low-light video enhancement and deblurring. We
introduce an Event-guided Deformable Temporal Feature Alignment(ED-TFA)
module guided by events. While temporal alignment tasks have been applied
in various low-level vision tasks, performing temporal alignment solely using
multiple video frames in degraded conditions poses a highly ill-posed problem.
Due to low visibility and blur, finding temporal correspondence among frames
becomes challenging. However, event data retains high dynamic range and tem-
poral resolution, aiding in finding temporal correspondence. Hence, we propose
the ED-TFA module, effectively utilizing event information to incorporate tem-
poral information across multiple visual scales.

Secondly, we propose a novel Spectral Filtering-based Cross-Modal Feature
Enhancement(SFCM-FE) module. Several studies in event-guided low-level vi-
sion [32, 33, 53] have explored cross-modal feature enhancement. However, in
low-illumination situations, both events and blurred images are affected by noise,
posing challenges in restoring main structural details. To more effectively capture
main structures from cross-modality features, we introduce the SFCM-FE mod-
ule, which utilizes low-frequency information. This module aims to enhance the
extraction of structural details from low-frequency features while simultaneously
reducing noise induced by low-light conditions.

To summarize, our contributions are four-folds: (1) Our works marks the
first attempt to simultaneously address event-guided low-light enhancement and
deblurring problem. (II) To address this new challenge, we developed a novel
hybrid-camera system and collected a distinctive real-world dataset: the RELED
dataset. (III) Finally, we introduce an end-to-end framework designed to effec-
tively tackle the joint task. Specifically, our framework consists of two modules:
the Event-guided Deformable Temporal Feature Alignment (ED-TFA) module
and the Spectral Filtering-based Cross-Modal Feature Enhancement (SFCM-
FE) module. (IV) We achieve state-of-the-art performance when compared to
other networks, showcasing the effectiveness of our frameworks in this novel task.

2 Related works

2.1 Frame-based and Event-guided Motion Deblurring

From the advancements in deep learning, there have been significant develop-
ments in motion deblurring research. Early research(e.g ., [31]) focused on esti-
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mating the blur kernel to derive a non-blind motion deblurring model. After the
emergence of datasets for motion deblurring(e.g ., GoPro [24]), research on vari-
ous network architectures for motion deblurring gained momentum. For example,
[7,24] proposed architectures based on multi-scale to increase the receptive field
of CNNs. Subsequently, [34,51,52] utilized network architectures based on multi-
patch to enhance performance. Following this, thanks to advancements in the
transformer architecture [36], research on image deblurring utilizing transformer-
based approaches such as restormer [50] and stripformer [35] has been proposed.
Recently, some works [8, 14, 23] have also been introduced in deblurring that
leverage the advantages in the frequency domain.

However, motion deblurring remains a challenging task due to the degrada-
tion of motion information caused by motion blur, rendering it highly ill-posed.
Despite this challenge, event cameras offer a promising solution with their low-
latency feature, enabling them to capture dense motion information within the
exposure time of frame-based cameras. Pan et al . [26, 27] proposed the event-
based double integral model (EDI) for event-guided motion deblurring, but it
often yields suboptimal results due to event camera noise. Subsequent stud-
ies aimed to improve event-guided deblurring, with approaches including recur-
rent networks [12], physical model-based networks [17], and cross-modal atten-
tion [32, 33], unknown exposure time videos [13], non-coaxial settings [6], spike
streams [4]. Unlike these works, we aim to address joint low-light enhancement
and motion deblurring using event cameras.

2.2 Frame-based and Event-guided Low-light Enhancement

Since the emergence of deep learning, significant progress has been made in Low
Light Enhancements(LLE) [15]. Initially, Lore et al . [21] proposed a method
using a sparse denoising auto-encoder to convert low-light images to normal
light ones. Subsequently, Wei et al . [43] introduced the LOL dataset, the first
dataset comprising pairs of normal-light and low-light images. As real-world low-
light enhancement datasets were lacking, supervised learning became feasible for
training low-light enhancement methods. Wang et al . [39] enhanced low-light
images by estimating intermediate illumination maps instead of using direct end-
to-end network mapping. Wu et al . [45] improved efficiency by employing deep
unfolding networks based on the retinex theory. Xu et al . [47] proposed a network
architecture that simultaneously utilizes transformer and CNN structures by
incorporating the Signal-to-Noise Ratio(SNR). Recently, there has been a surge
in research on LLE, exploring techniques such as gamma correction [41], retinex-
based transformers [1], implicit neural representations [48], diffusion models [42,
49], among others [20,54].

Recent research has explored low-light enhancement using event cameras,
leveraging their high temporal resolution and dynamic range. Liu et al . [18] pro-
posed a framework that generates synthetic events from multiple frames and
utilizes event information for low-light enhancement. Liang et al . [16] further
extended this by incorporating event information alongside frames through mul-
timodal coherence modeling and temporal coherence propagation.
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Fig. 2: In the Figure, (a),(b) and (c) respectively represents the schematic diagram of
our hybrid camera system. the exposure time scheme of color cameras and samples of
our datasets. In (c), from top to bottom, each represents low-light blurry image, event
stream, and normal light sharp image, respectively.

3 RELED Dataset

3.1 Limitation of Other LLE and Deblurring datasets.

Low-light Enhancement(LLE) Previous LLE methods [21, 22] use gamma
correction to simulate low-light images from normal-light ones, but these dif-
fer from real low-light images. Network-based methods (e.g . [10]) aim to bridge
this gap. Recent approaches use the HDR advantage of event cameras for event-
guided LLE, simulating both low-light images and corresponding events. How-
ever, methods [16, 18] relying on synthetic generation [11, 28] struggle to model
real-world low-light scenarios.
Motion Deblurring Researchers often use synthesized blur images from high
frame rate videos like GoPro [24] or DVD datasets [30] to train and evaluate
frame-based motion deblurring methods. These images are averages of consec-
utive frames and do not account for photometric effects like saturation, noise,
and dynamic ranges. Event cameras, with their high temporal resolution, are also
used in motion deblurring. Unlike synthetic methods, the REBlur dataset [32]
captures real-world blur but is limited in capturing dynamic scenes and suffers
from low resolution. To improve event-guided motion deblurring, higher resolu-
tion and real-world datasets are needed. In summary, the main challenges with
existing event-guided motion deblurring and the LLE dataset are the lack of
real-world datasets, including real events, and the low resolution of cameras,
such as DAVIS cameras.

3.2 RELED dataset acquisition

While some datasets have been proposed for event-based low-level vision [32,33],
there have been no attempts to jointly address event-guided LLE and motion
deblurring. To perform this new event-guided low-light video enhancement and
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Table 1: Comparison of RELED datasets with publicly available datasets. [58]

Datasets Image resolution color Real event(resolution) Low-light type Blur type
LoL-Blur [58] 1120×640 Yes Not provide Synthetic low-light Synthetic blur
RELED(Ours) 1024×768 Yes Yes(1024×768) Real low-light Real blur

deblurring task, we need to simultaneously acquire synchronized low-light blur
images, normal-light sharp images, and the corresponding event stream. Several
studies have proposed various datasets using different camera systems [29,55,56]
to capture real world datasets . However, obtaining pairs of low-light blurry im-
ages and normal sharp images, along with synchronized event streams simulta-
neously, remains a challenging problem. Prior works [58] utilize data synthesis
methods, such as ZeroDCE [10] or gamma correction, to model low-light settings,
however, there still exist limitations when generalizing to real-world low-light
conditions.

To this end, we build the RELED (Real-world Event-guided Low-light video
Enhancement and Deblurring) dataset without relying on synthetic generation
of low-light images and events. To simultaneously capture normal-light images,
low-light images, and the corresponding event stream, we designed a triple-axis
beam-splitter-based camera system, as shown in Fig. 2. This system comprises
two high-resolution RGB cameras and one event camera. One RGB camera
captures sharp images under normal-light conditions, while the other captures
blurred images in low-light conditions. In our camera setup, each beam splitter
splits the incoming light in half, with the camera attached to the first beam
splitter receiving half of the original intensity, and the cameras attached to the
second beam splitter receiving one-fourth of the original intensity.

To make the best use of our configuration, the color camera at the first
beam splitter captures normal-light sharp images employing a short exposure
time(2ms), while the color camera at the second beam splitter captures blurred
images through long exposure times(16ms). Though the intensity at the second
camera is half the intensity of the first camera, the longer exposure time causes
the second camera to capture more light rays. As such, additional ND filters are
added to limit the light intensity to induce low-light conditions. With a 1/32 ND
filter, the resulting incident intensity at the event camera and the second color
camera is 1/128 of the original intensity. Taking into consideration the exposure
time, the beam splitter, and the ND filters, the radiant exposure at the second
color camera is 1/8 the radiant exposure at the first camera.

We achieve hardware-level synchronization of multiple devices using a micro-
controller. The beam splitter aligns all cameras mechanically, but minor mis-
alignments require additional calibration via a homography matrix. This results
in the RELED dataset, featuring low-light blur images, normal-light sharp im-
ages, and low-light event streams. We captured 42 urban scenes, including cam-
era movement and moving objects. The dataset, sized at 1024× 768, is the first
to offer high-resolution images with real-world low-light blur and normal-light
sharp images, and we believe it will be valuable for the research community.
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Fig. 3: Overall framework of the proposed methods. In the figure, the subscript num-
bers below each feature represent scale factor, while the superscript indicates the times-
tamp index.

4 Proposed Methods

4.1 Overall framework

The overall framework of the proposed method is illustrated in Fig. 3. We convert
the event stream into voxel grid representation [60] due to its superior spatio-
temporal preservation ability. We represent event voxel grid as Ek ∈ RB×H×W

at timestamps index k with voxel bin size B. Our networks utilize three sequen-
tial blur frames {Bt−1, Bt, Bt+1} and sequential event voxels {Et−1, Et, Et+1}.
Utilizing these two modality inputs, we first extract temporal event features
{K(E)k} and blur features {K(B)k} for each timestamp k through several con-
volution layer where k ∈ {t − 1, t, t + 1}. Our proposed framework consists of
two major modules in total.

The first module, Event-guided Deformable Temporal Feature Alignment
(ED-TFA) module generates temporally aligned features. To this end, we first
extract features from blur features {K(Bk)} and event features {K(Ek)} using a
transposed attention [51]-based transformer encoder. This produces blur feature
pyramid {F(Bk)s} and event feature pyramid {F(Ek)s}. These features from
the two modality feature pyramids are passed into ED-TFA of various scales,
with intermediary upscaled offset information sequentially passed between ED-
TFA modules of different scales. Finally, the ED-TFA module at the original
scale (s = 0) generates aligned feature F(A)s=0 with scale factor s of 0.

The second module, the Spectral Filtering-based Cross-Modal Frequency Fea-
ture Enhancement(SFCM-FE) module, involves encoding the aligned feature
F(A)ts=0 and K(E)ts=0, which yields the event feature pyramid {G(E)ts} and
aligned feature pyramid {G(A)ts} through a CNN-based encoder [51]. The goal
of the SFCM-FE module is to efficiently utilize the cross-modality feature pyra-
mid by capitalizing on the benefits of the spectral filtering process. It generates
G(X)ts using the aligned feature G(A)ts and event feature G(E)ts and the upsam-
pled output of SFCM-FE module estimated at previous scale Ĝ(X)ts+1. After
the SFCM-FE module, the generated enhanced cross-modality feature pyramids,
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Fig. 4: The overall structure of proposed ED-TFA module.

denoted as {G(X)ts}, are then passed to the UNet-based decoder, ultimately re-
sulting in the generation of multi-scale outputs {St

s} where s ∈ {0, 1, 2}.

4.2 Event-guided Deformable Temporal Feature Alignment(ED-
TFA) Module.

Temporal alignment is the process of extracting valuable information from mul-
tiple video frames. Alignment methods have been proven effective in fields such
as video deblurring [2, 25, 55, 59] and LLE [38] works. In situations where mo-
tion blur and low-light conditions coexist, as in our task, temporal alignment
becomes even more challenging: the significant amount of noise in the frames
as well as motion blur make finding dense correspondence between frames ex-
tremely difficult.

In low-light conditions, events can capture dense motion information with
high temporal resolution, thanks to their high dynamic range characteristics,
greatly aiding in temporal feature alignment. While several event-guided video
deblurring methods [13,33] have employed multiple video frames, these methods
typically involve concatenating multiple video frames for the encoding phase.
However, concatenating multiple video frames often leads to sub-optimal tem-
poral alignment. To address this, we propose the ED-TFA module, which uses
event guidance for deformable temporal alignment. Initially, event and frame fea-
tures are extracted using a transposed attention [50]-based transformer encoder
known for better capturing non-local context information and computational ef-
ficiency at high resolution. The features are aligned in a coarse-to-fine manner
across various scales of ED-TFA module. At lower resolutions, sub-pixel mis-
alignment is minimal, but it increases with higher resolutions. The multi-scale
ED-TFA modules continuously transmit intermediary information to make on-
going adjustments, leading to more robust alignment. While we conduct both
forward and backward alignment, as depicted in Fig. 4, we explain only one as
both steps are identical and only differ in input.
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To perform backward alignment on the t frame, we first synthesize template
features used as input for alignment. These features are generated using both
the future frame feature, F(B)t+1

s , and the current frame features F(B)ts, along
with the current and future event features F(E)ts and F(E)t+1

s , respectively.
Finally, all concatenated features pass through the convolution layer to generate
the template feature F(T )

t+1→t
s . For deformable alignment, we first estimate the

feature F(O)
t+1→t
s to determine the offset and modulation masks. Then, we uti-

lize the previously estimated offset feature information F(O)
t+1→t
s+1 by applying

transposed convolution to upsample the feature, resulting in F̂(O)
t+1→t

s+1 ; here
the hat(F̂) symbol represents features that have been upsampled using trans-
posed convolution. Subsequently, we concatenate these two features and estimate
the modulation masks Mt+1→t

s and offsets Ot+1→t
s for deformable convolution

(DCN) [61]. The application of DCN D is as follows:

F(T )
t+1→t
s = D(F(T )

t+1→t
s ,Ot+1→t

s ,Mt+1→t
s ) (1)

where D denotes a deformable convolution. In a similar fashion, we apply de-
formable alignment to obtain forward aligned features F(T )

t−1→t
s as in the Fig.4.

Ultimately, we estimate the residual of the upsampled temporally aligned fea-
ture F̂(A)

t

s by concatenating forward-aligned features F(T )
t−1→t
s and backward-

aligned features F(T )
t+1→t, and applying a convolutional layer. The aligned

feature F(A)
t
s, with the backward offset feature F(O)

t+1→t
s and forward offset

feature F(O)
t−1→t
s , serve as inputs for the ED-TFA module as shown in Fig.3.

4.3 Spectral Filtering-based Cross-Modal Feature
Enhancement(SFCM-FE) Module.

Several event-guided low-level vision works [4,32,33] have explored cross-modality
feature fusion to leverage the complementary strengths of event and image
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modalities. Images typically provide detailed semantic information and struc-
tural insights, while event data offer high temporal resolution motion informa-
tion and rich high-frequency components of images. To effectively exploit the
complementary advantages of event and image information, various approaches
have been proposed for cross-modality feature fusion.

However, integrating these feature fusion methods into our network may
not lead to performance improvement in scenarios where motion blur and low-
illumination conditions coexist, as in our task. This is because, in low-illumination
conditions where motion blur is present, a low signal-to-noise ratio (SNR) re-
sults in significant noise generation in the blurred images, making it extremely
challenging to restore global structural information. Additionally, events, with
their abundant high dynamic range properties, effectively capture scene details
in low-illumination situations. However, as the illumination level of the scene
decreases, events also tend to generate a significant amount of noise. Therefore,
it is necessary to develop a cross-modality feature enhancement method capable
of effectively reducing such high levels of noise and accurately restoring the main
structural information of the scene. To address these challenges, we propose a
novel Spectral Filtering-based Cross-Modal Feature Enhancement (SFCM-FE)
module. As depicted in Fig. 5, we leverage the advantages of a coarse-to-fine ap-
proach by first performing upsampling on the feature processed by the SFCM-FE
module at the previous scale (s+ 1).

Ĝ(X)ts+1 = DConv4×4(G(X)ts+1) (2)

where G(X)ts+1 denotes the enhanced feature at the previous scale (s+ 1), and
Dconv4×4 denotes a 4× 4 deconvolution layer, respectively.

After this step, it generates the upsampled feature Ĝ(X)ts. Subsequently, the
event feature G(E)ts, the aligned frame feature G(A)ts, and the upsampled fea-
ture G(X)ts+1 are concatenated and passed through a convolution layer and a
LeakyReLU layer to generate G(X̃) (omitting temporal index t and scale fac-
tor s for brevity). Now that the feature G(X̃) containing all information has
been generated, we pass it through convolution layers to divide it into two
branches: One feature G(X̃)(a) is used for enhancing low-frequency information
and suppressing noise through a low-pass filter branch, and the other feature
G(X̃)(b) passes through a different branch. To pass through the low-frequency
branch, we perform frequency domain filtering using a low-pass filter. First, we
apply the Fast Fourier Transforms (FFT) to the feature G(X̃)(a), denoted as
G(X̃)(a) = FFT(G(X̃)(a)). Next, we apply a Gaussian low-pass filter [19] to
extract low-frequency information. The Gaussian filter is defined as follows:

P(x, y, σ) = exp(− (x− xc)
2 + (y − yc)

2

2σ2
) (3)

where xc and yc represent the center point in the spectral domain along the x
and y axes, respectively, and σ represents the standard deviation. The gaussian
filter, with a value of 1 at the center and decreasing values as it moves away from
the center, can be applied as a low-pass filter. We apply low-pass filter P(x, y, σ)
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to the feature G(X̃)
(a)

as follows:

G(X̂)
(a)

L = P(x, y, σ)⊙G(X̃)(a) (4)

where ⊙ denote element-wise multiplication. After low-pass filtering, we pass
through an FFC [5](Fast Fourier Convolution) block to perform additional fre-
quency selection in the spectral domain(Conv1x1+ReLU+Conv1x1). Finally, we
apply inverse-FFT to inverse the transformation, making the frequency-filtered
feature. We then produce G(X̂)

(a)
L through a residual connection with the orig-

inal feature G(X)(a). The features G(X̂)
(a)
L emphasized by low-frequency infor-

mation typically correspond to spatially variant main structural information. To
better enhance spatially variant main structure of the scenes, we apply pixel-
wise spatial dynamic filters [25, 57] to the feature GL(X̂)(a). To achieve this,
we utilize the pixel-wise dynamic filter block Fs to estimate pixel-wise spatial
dynamic filter K(x, y) with filter size (fk × fk).

GL(X̄)(a) = K(x, y)⊗GL(X̂)(a) (5)

where ⊗ and GL(X̄)(a) denote dynamic convolution operation and output filtered
feature, respectively. Through this step, we have generated features capable of
enhancing the structural information of low frequencies and removing noise in-
formation associated with low illumination. Finally, we perform feature fusion
between the information containing the original features without frequency filter-
ing and the residual learning-based information. During feature fusion, we apply
spatial attention [44] to each feature to remove irrelevant spatial information as
follows:

G(X)(c) = G(X̄)
(a)
L ⊙ σ(Conv3×3(G(X̄)

(a)
L )) + G(X̃)(b) ⊙ σ(Conv3×3(G(X̃)(b)))

(6)
where σ denotes sigmoid function. Lastly, G(X)(c) is fed into multiple Channel
Attention Blocks(CAB) [51], resulting in the generation of the enhanced feature
representation, denoted as G(X)s. This feature, which has passed through the
SFCM-FE module, is used as the input for the next scale SFCM-FE module and
simultaneously serves as input for the decoder, as shown in Fig. 3.

5 Experiments

5.1 Datasets and baseline methods

Since there was no dataset available containing synchronized events along with
normal light sharp ground truth and low-light blur inputs, we conducted all ex-
periments using the RELED dataset. The RELED dataset comprises 29 training
scenes and 13 test scenes, providing low-light blurred input paired directly with
normal light sharp ground truth. Consequently, we trained all baseline methods
end-to-end. For benchmarking against the open-source LLE network, we utilized
state-of-the-art image-based methods such as Retinexformer [1], LLFormer [40],
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(a) (b) (c) (d) (e) (f)

Fig. 6: Visual comparisons on the RELED datasets. In the figures, (a) to (f) depict the
following: (a) input low-light blurry images, (b) low-light events, (c) LLFormer [40],
(d) EFNet [32], (e) Ours, and (f) GT normal-light sharp image.

SNRNet [47], and the video-based method SDSDNet [38]. For motion deblurring
networks, we utilized image-based deblurring networks including MPRNet [51],
MIMONet+ [7], and NAFNet [3], along with video-based methods RNN-MBP [2]
and DSTNet [25]. As a joint method, we conducted comparisons with the only
existing work, LEDNet [58]. Finally, we compared with event-guided image-
deblurring methods such as e-SLNet [37], REDNet [46], EFNet [32], and event-
guided video deblurring methods such as REFID [33] and UEVD [13].

5.2 Experimental results on the RELED Datasets

For a fair comparison, all networks were trained and tested using the splits of the
RELED dataset, with training conducted for a total of 200 epochs. The quan-
titative comparison results on the RELED dataset are presented in Tab. 2 with
the table divided into frame-based LLE methods, frame-based motion deblur-
ring methods, frame-based joint methods, and event-based deblurring methods.
In conditions where both motion blur and low illumination are prevalent si-
multaneously, frame-based methods did not achieve satisfactory performance.
Compared to frame-based LLE methods, we observed a PSNR performance gap
ranging from 2.83 dB to 4.83 dB. Similarly, compared to frame-based deblur-
ring methods, we achieved significant performance improvements, with PSNR
improvements ranging from 1.17 dB to 4.78 dB. Additionally, compared to the
joint LLE and deblurring method, LEDNet [58], we observed a significant gain of
4.83 dB. While event-guided methods generally outperform frame-based meth-
ods due to advantages of events to capture scene structures effectively even in
low-light conditions and provide high-temporal resolution motion information,
our method still achieved performance improvements ranging from 11.85 dB to
1.20 dB in terms of PSNR compared to event-guided methods. This improvement
can be attributed to our task-oriented network design. Moreover, our lightweight
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Table 2: Quantitative evaluation on the RELED dataset. † denotes the event-guided
method. The Bold and underline denote the best and the second-best performance.

Methods PSNR SSIM Params(MB)
SNRNet [47] 26.47 0.851 40.08
SDSDNet [38] 28.47 0.887 4.43
LLFormer [40] 26.62 0.862 13.15

RetinexFormer [1] 26.66 0.865 1.61
MPRNet [51] 26.89 0.867 20.13

MIMOUNet+ [7] 26.52 0.866 16.11
NAFNet [3] 26.77 0.862 67.91

RNN-MBP [2] 29.52 0.902 14.16
DSTNet [25] 29.59 0.903 7.53
LEDNet [58] 26.47 0.856 7.41
e-SLNet† [37] 19.45 0.663 0.17
REDNet† [46] 29.19 0.903 9.7
EFNet† [32] 29.85 0.905 8.47
UEVD† [13] 29.93 0.905 27.88
GEM† [53] 26.04 0.810 2.36

REFID† [33] 30.10 0.913 15.9
Ours-s† 30.98 0.919 5.3
Ours† 31.30 0.925 12.8

model, ours-s, outperformed other networks while using only a relatively small
number of parameters (5.3MB). Qualitative comparisons depicted in Fig. 1 and 6
consistently demonstrate superior performance of our network, even in challeng-
ing scenarios such as low-light conditions with significant noise in both frames
and events, as well as severe motion blur situations.

5.3 Model Analysis

To analyze the network components of our method, we conducted an ablation
study for each module. All ablation experiments were conducted on the RELED
dataset, training different versions of each network for a total of 200 epochs. We
reported the ablation results of each module in Tab. 3. In the baseline model, blur
feature F(B)ts=0 is directly passed instead of F(A)ts=0 to our UNet architecture
while SFCM-FE modules are replaced with Conv 1×1 layers.
ED-TFA module. We compared the performance of the baseline network with
and without the ED-TFA module. This comparison showed a significant perfor-
mance gain of +1.19 dB in terms of PSNR. Furthermore, when comparing the
network version (Ver.3) with the SFCM-FE module inserted into the baseline
to the full model (Ver.4), we observed a performance improvement of +0.90 dB.
These results highlight the significance of our ED-TFA module.
SFCM-FE module. We evaluated the impact of the SFCM-FE module on per-
formance by comparing the baseline network (Ver.1) with network (Ver.3), which
integrates the SFCM-FE module. This analysis showed a significant performance
improvement of +0.81 dB. Additionally, when comparing network Ver.2 and
Ver.4, both with the ED-TFA module, we observed a significant performance
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Table 3: Ablation study of the network components on the RELED datasets

Methods Baseline ED-TFA SFCM-FE PSNRs #Params(MB)
Ver.1 ✓ ✗ ✗ 29.59 1.8
Ver.2 ✓ ✓ ✗ 30.78(+1.19↑) 5.0
Ver.3 ✓ ✗ ✓ 30.40(+0.81↑) 9.7
Ver.4 ✓ ✓ ✓ 31.30(+1.71↑) 12.8

Table 4: An ablation study was conducted on the components of the SFCM-FE mod-
ule. The LPF branch, representing the Low Pass Filter branch, corresponds to the
feature modulation branch marked with superscript (a) in Fig. 5.

Methods CABs SA LPF branch PSNRs
Ver.1 ✗ ✗ ✗ 30.78
Ver.2 ✓ ✗ ✗ 30.81(+0.03↑)
Ver.3 ✓ ✓ ✗ 30.79(+0.01↑)
Ver.4 ✗ ✓ ✓ 31.22(+0.44↑)
Ver.5 ✓ ✓ ✓ 31.30(+0.52↑)

Table 5: Comparisons on the event-image cross-modality feature fusion module.

Methods w/o Fusion w/ EFNet [32] Fusion w/ REFID [33] Fusion SFCM-FE(Ours)
PSNRs 30.78 30.55(-0.23↓) 30.86(+0.08↑) 31.3(+0.52↑)

improvement of +0.52 dB.
In-depth analysis of the SFCM-FE module. In the ablation study of
the SFCM-FE module, reported in Tab.4, inclusion of either CABs [51] or SA
(Eq. 6) showed negligible performance improvement (+0.03dB/+0.01dB). How-
ever, the addition of network blocks for low-frequency modulation and spatial
attention (Ver.4) to evaluate the performance enhancement of Low-Pass Fil-
ter(LPF) branch resulted in a significant improvement of +0.44 dB. Further
enhancement was observed when including CAB block (Ver.5), resulting in an
additional improvement of +0.08 dB compared to Ver.4.
Comparison of the feature fusion module. We evaluated alternative event-
image feature fusion modules like EFNet [32] and REFID [33] in place of the
SFCM-FE module, as shown in Tab. 5. However, this replacement resulted in
minimal performance changes, highlighting our SFCM-FE module.

6 Conclusion

This paper addresses the novel research problem of event-guided low-light video
enhancement and deblurring. To achieve this, we designed a hybrid camera sys-
tem using beam splitters and constructed the RELED dataset containing low-
light blurry images, normal sharp images, and event streams. Subsequently, we
developed a tailored framework for the task and validated its effectiveness. Fi-
nally, we achieved significant performance improvement on the proposed dataset,
surpassing both event-guided and frame-based methods.
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