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Fig. 1: Novel View Synthesis from Sparse and Noisy Views. TrackNeRF
achieves high-quality novel view synthesis through bundle adjusting feature tracks.

Abstract. Neural radiance fields (NeRFs) generally require many im-
ages with accurate poses for accurate novel view synthesis, which does not
reflect realistic setups where views can be sparse and poses can be noisy.
Previous solutions for learning NeRFs with sparse views and noisy poses
only consider local geometry consistency with pairs of views. Closely fol-
lowing bundle adjustment in Structure-from-Motion (SfM), we introduce
TrackNeRF for more globally consistent geometry reconstruction and
more accurate pose optimization. TrackNeRF introduces feature tracks,
i.e. connected pixel trajectories across all visible views that correspond
to the same 3D points. By enforcing reprojection consistency among
feature tracks, TrackNeRF encourages holistic 3D consistency explicitly.
Through extensive experiments, TrackNeRF sets a new benchmark in
noisy and sparse view reconstruction. In particular, TrackNeRF shows
significant improvements over the state-of-the-art BARF and SPARF by
∼ 8 and ∼ 1 in terms of PSNR on DTU under various sparse and noisy
view setups. The code is available at https://tracknerf.github.io/.
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1 Introduction

The pursuit of reconstructing and creating immersive virtual environments, such
as the metaverse, has accelerated significantly with the advent of 3D vision and
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Fig. 2: Illustration of Track Reprojection Loss. Left: Pairwise correspondence
objective employed by CorresNeRF [39] and SPARF [70]. Right: Feature tracks objec-
tive proposed by TrackNeRF. TrackNeRF minimizes the reprojection loss across all
visible views for feature tracks corresponding to the same landmarks.

AR/VR devices. Creating such realistic virtual environments typically requires
intricate manual design by artists. Concurrently, the evolution of novel-view
synthesis has been notably influenced by the emergence of Neural Radiance
Fields (NeRFs) [52]. NeRFs have revolutionized this domain by parameterizing
the volume of scenes through neural networks. They enable rendering novel views
of a scene with unparalleled precision and realism, thus emulating a virtual
environment. This foundational shift towards leveraging neural networks lays
the groundwork for the next generation of immersive digital experiences, driving
forward the boundaries of what is possible in virtual world creation.

Neural Radiance Fields and their derivatives, including prominent methods
like InstantNGP [53] and Plenoxels [19], along with recent advancements in
Gaussian Splatting [35], fundamentally rely on the availability of a substantial
corpus of posed multiview images to attain photorealistic renderings. This as-
sumption, however, starkly contrasts with the typical conditions encountered in
real-world scenarios. In most cases, available visual data is comprised of sparse
image collections or unposed videos with standard Structure-from-Motion (SfM)
tools such as COLMAP [49,62] employed to derive camera poses. Both scenarios
inevitably result in estimations tarnished by noise and inaccuracies. This discrep-
ancy between the ideal conditions presumed by NeRF-based methodologies and
the reality of data acquisition presents a significant challenge. Novel approaches
that efficiently work with less-than-ideal datasets are necessary to ensure robust
3D reconstruction and rendering without the luxury of extensive posed imagery.

Previous works [14, 30, 39, 55, 75, 76, 79, 83] have attempted to address this
more realistic setup. BARF [43] first proposes adopting coarse-to-fine frequency
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encoding to ease NeRF’s backward optimization for pose estimation. However,
BARF does not perform de facto “bundle adjustment” since it does not use any
multiview constraints. Other methods tackle noisy poses as well by assuming
dense views [43, 55, 75] or address the few-view limitation by assuming perfect
poses [76,83], but don’t tackle both issues jointly. Recently, SPARF [70] proposes
to tackle sparse views and noisy poses simultaneously, achieving a remarkable
milestone in the development of realistic setup novel views synthesis. However,
SPARF adopts two-view correspondence-based reprojection loss as the core of
optimization without considering long-term consistency.

To overcome the local consistency limitation of previous works, we propose
TrackNeRF. TrackNeRF is inspired by the fact that all views are taken from
a single holistic 3D scene, thus the corresponding pixels from all sparse views
rendered from NeRF should ideally be back-projected to the same 3D landmark.
Following this motivation, TrackNeRF extracts feature tracks for optimization,
i.e. connected pixel trajectories across all visible views corresponding to the
same 3D points. TrackNeRF enforces reprojection consistency among each track
and thus introduces a holistic geometry consistency into NeRF. As a result,
TrackNeRF achieves the most robust and highest reconstruction fidelity with
more precise camera poses among all sparse and noisy NeRF solutions. Fig. 1
illustrates the difference between TrackNeRF and the pioneering methods.
Contributions. We summarize our contributions as follows:
(i) We introduce TrackNeRF, which utilizes feature tracks that closely follow
the bundle adjustment literature. TrackNeRF can reconstruct a more geometry-
consistent volumetric representation and recover more accurate camera poses.
(ii) Our TrackNeRF achieves ∼ 1 PSNR boost against previous SOTA and
halves pose errors on the challenging DTU [33] dataset for all 3-view, 6-view,
and 9-view setups with noisy poses. Under 3 views with ground truth poses,
TrackNeRF also outperforms SOTA diffusion and regularization-based methods.
(iii) In practice, we demonstrate that TrackNeRF can tolerate greater pose
noise, perform faster pose optimization, and synthesize high-quality novel views
aligned with correct and smooth depth.

2 Related Work

Multi-View Reconstruction. The multi-view 3D reconstruction field is ded-
icated to the restoration of a scene’s three-dimensional structure from its two-
dimensional RGB images, obtained from various camera perspectives [1, 18].
Historically, these approaches have focused on generating a point cloud rep-
resentation of a scene’s geometry through the utilization of SIFT-based point
matching techniques [48, 62, 63]. Advances in this domain have seen a shift to-
wards the use of neural networks to improve feature extraction, as evidenced
by several studies (e.g . [25, 31, 46, 80, 81, 84]). The introduction of Neural Ra-
diance Fields (NeRF) [47, 52] has marked a significant transition toward the
volumetric radiance reconstruction of 3D spaces [67], facilitating the creation
of photorealistic novel views [2, 3, 71]. However, as a common constraint, all of
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these approaches assume sufficient overlapped views, typically around 100 im-
ages, with precise camera poses. In many real applications, the captured views
are sparse and noisy, consisting of only two to four views with inaccurate poses.
Our aim in this work is to robustly reconstruct 3D geometry from these sparse
and noisy poses.
Few-View Reconstruction. Further research has delved into optimizing NeRF
(e.g . [10,16,23,24,30,32,37,54,68,88]) and Gaussian Splatting (e.g . [11,26,35,40,
78, 89]) for scenarios with limited shots and even single-shot contexts (e.g . Pix-
elNeRF [83]), focusing on density fields without explicit 3D geometrical storage.
DS-NeRF [14] regulates the NeRF rendering with monocular depth estimation,
enhancing the quality and speed of few-view optimization. SfMNeRF [6] opti-
mizes the left-right reprojection loss in 3D and also applies the depth smooth-
ness term. FreeNeRF [79] regularizes the input frequency of the NeRFs and
the occluded regions to improve the performance at the few-views setup. The
evolution of zero-shot single-view 3D reconstruction has been significantly pro-
pelled by advances in multi-modal diffusion models and zero-shot 3D synthesis
technologies [4, 5, 42, 45, 50, 57, 58, 64, 66]. Recently, ReconFusion [76] and Zero-
MVS [60] utilized the 2D diffusion prior to greatly enhance the quality of novel
view synthesis with very few views, achieving state-of-the-art in this domain.
Our TrackNeRF does not use any generative priors to enhance the sparse view
reconstruction but rather relies on generic geometric cues and feature tracks
from the same scene that are more generalizable and tackle both sparse and
noisy poses.
NeRFs with no Pose Requirements. Many works [3, 7–9, 12, 13, 20, 21, 29,
34, 36, 41, 54, 55, 59, 65, 72, 90] have tried to optimize NeRF from noisy pose or
without pose. NeRF−− [75] is a pioneering work to investigate fitting a NeRF
jointly with the camera poses for novel view synthesis. BARF [43] adds frequency
modulation coordinate embedding in NeRF to greatly enhance the optimization
of the cameras in noisy pose cases. SPARF [70] introduces a pairwise corre-
spondence loss to the NeRF formulation and shows great performance in the
case of jointly noisy and sparse views, a combined setup that was not properly
performed previously. Our TrackNeRF is different because it assumes a global
geometry loss that constrains all the cameras jointly based on the feature tracks.

3 Preliminaries

NeRF. Given a set of sparse views and associated camera parameters, NeRF [52]
learns an implicit neural representation to represent the 3D scene. Let Ri ∈
SO(3) and ti ∈ R3 denote the rotation and translation of camera pose i, re-
spectively. The camera-to-world transformation of the i-th camera is denoted as
Pi = [Ri|ti] ∈ SE(3).

To render a pixel p ∈ R2 from a given camera with pose Pi, NeRF traces a
ray from the projection of the camera center ti along the direction defined by
di,p = RiK

−1
i p̄ in the world coordinate system where K ∈ R3×3 is the camera’s

intrinsic matrix and p̄ is homogeneous representation of p. We then discretely
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sample M points along the ray, bounded by the near and far planes, to predict
the color Îi,p of a pixel from the radiance field as:

Îi,p = Î(p; θ, Pi) =

M∑
m=1

αmcm , (1)

where Î is the RGB rendering function, {(cm, σm)}Mm=1 are the color and volume
density of sampled points predicted by a radiance field parameterized by θ. Let
ẑ(·) be the depth rendering functions and zm be the ray depth at sampled point
m. We approximately estimate the depth of the scene perceived from p as,

ẑi,p = ẑ(p; θ, Pi) =

M∑
m=1

αmzm . (2)

Photometric loss. NeRF approaches [13, 39, 43, 70, 75, 77] typically use a pho-
tometric loss to optimize radiance field parameters θ as well as camera poses P̂.
Let P̂i denote the pose estimate for the i-th training image. The photometric
loss is defined as follows:

LPhotometric(θ, P̂) =
1

n

n∑
i=1

∑
p

∥∥∥Ii(p)− Î(p; θ, P̂i)
∥∥∥2
2
. (3)

where n is the number of training images. Different from these approaches, we
propose a track reprojection loss that effectively reduces the negative effects of
noisy camera poses on NeRF results.

4 TrackNeRF

Given the fact that all sparse views are shot from a single holistic 3D scene,
corresponding points from all views rendered from the 3D model should ideally
be projected back to the same 3D landmark. Unfortunately, even the most recent
state-of-the-art methods SPARF [70] and CorresNeRF [30,39] only consider local
matching consistency from a pair of renderings to train NeRF from sparse and
noisy views. These works fail to exploit holistic consistency across all views.
Inspired by the bundle adjustment from Structure-from-Motion [44,62], our work
follows the track-wise objective of BA instead:

EBA =
∑
k

∑
(ui,vj)∈T(k)

∥h(ui)− vj∥ (4)

where (ui,vj) is a correspondence inside feature track Tk between pixels ui and
vj from views i and j respectively. The function h lifts a pixel onto its 3D loca-
tion and projects it to a different view. Note that Tk considers correspondences
between points across all visible views rather than pairs of views as in [39, 70].
This track-wise loss encourages all pixels in a feature track to correspond to the
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same 3D landmark and enforces holistic consistency. In our paper, we propose
to jointly optimize the matching correspondence for the whole feature track that
aligns with the concept of bundle adjustment (BA) in Eq. 4. This differs our
work from BARF [43], which only considers position encoding strategy without
multiview correspondences and objective of BA. We elaborate on the formal-
ization of this track-wise objective in the context of NeRF and details of our
method next.

4.1 Track Adjustment

Track Extraction. Given a set of images {I} of size N and a feature matcher [69]
F , we can extract feature correspondences for every image pair. If a correspon-
dence (u,v) between Ii and Ij is found, and there is also a correspondence (v,q)
between Ij and Ik, then it implies a transitive relationship that can be extended
to form a continuous feature track. By connecting all such correspondences, we
can get feature tracks {T }, with Tk = {u,v,q, ...}, where u,v,q are pixel co-
ordinates from different images corresponding to the same 3D point. Note that
although we are using a dense correspondence model [69], we adopt the term
“feature" in our paper to align with the concept of “track".
Track Keypoint Adjustment. Recent advances [44,86] in SfM [62] have shown
significant benefits by optimizing feature tracks before triangulation and bundle
adjustment. To obtain more accurate feature tracks, for each track Tk, we adhere
to PixSfM [44] by doing track-wise keypoint adjustment to encourage multiview
consistency:

Ek
TKA =

∑
(ui,vi)∈T(k)

wuivj
∥F(ui)− F(vj)∥ (5)

where F is the function that extracts pixel-wise features for keypoints, and wuivj

is the matching confidence from our matcher [69]. The objective of Eq. 5 will re-
fine the location of matched keypoints by minimizing the difference of pixel-wise
features through traceable numeric gradients. Since the refinement optimizes
the feature-metric consistency inside the whole feature track, we obtain more
accurate keypoints for the supervision of NeRF.

4.2 Track Reprojection Loss

Previous methods [6,30,39,70] only exploit optimizing NeRF with pairwise corre-
spondence from two views independently during each iteration. However, feature
extractors [15,48,69] working on single view are easily perturbed by appearance
variations [61] thus may introduce multiview inconsistency for matching and
reconstruction [17]. To alleviate this, we propose our track reprojection loss to
enforce global geometric consistency for the radiance field, where multiview ge-
ometry constraints for the feature tracks are optimized simultaneously.
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The track projection loss is based on the principle of bundle adjustment in
Eq. 4, i.e., all correspondences in a feature track Tk should correspond to the
same 3D landmark (see Fig. 2). In particular, let (ui,vj) be a pair of matching
pixels between image Ii and Ij sampled from a feature track Tk, where vj

is a pixel in Ij . For vi and its depth estimated by Eq. 2, we can obtain its
corresponding 3D point in the world coordinate system using camera projection
and camera-to-world transformation. We then reproject the corresponding 3D
point of vj to the image plane of image Ii. Since (ui,vj) corresponds to the same
3D point in the world coordinate system, the reprojection of vj should overlap
with pixel ui. Therefore, given the sampled feature track Tk optimized by Eq. 5
and consisting of all-to-all correspondences like (ui,vj), our track reprojection
loss minimizes the overall distance between all such ui and the reprojection of
vj inside Tk as follows:

LTrack =
∑
k

∑
(ui,vj)∈Tk

1

|Tk|
ρ
(
ui − π

(
P̂−1
i P̂j π−1(vj , ẑ(vj ; θ, P̂i) )

))
(6)

where ρ is the Huber loss function [27], π is the camera projection operator which
maps a 3D point in the camera coordinate system to the image plane, π−1 is the
backprojection operator which projects a pixel vj back to the camera coordinate
system using the pixel’s depth ẑ(vj ; θ, P̂i) estimated by Eq. 2, and P̂−1

i projects
a 3D point in the world coordinate system to the camera coordinate system of
image Ii.

4.3 Depth Regularization

NeRF [52] is trained only using photometric loss, so it suffers from poor geometry,
especially in sparse view settings. As reported by previous methods [54, 56, 79],
depth ambiguity results in many floaters in the trained NeRF and significantly
degrades the quality of novel view synthesis. To regularize the internal geometry
of the radiance field, we also introduce a depth regularization loss to encourage
depth gradients to align with rendered image gradients following the practice of
monocular depth estimation [22,28,82]:

LDepth =
Ψ∑
i,j

|∇xD
Ψ
ij |e−∥∇xI

Ψ
ij∥ + |∇yD

Ψ
ij |e−∥∇yI

Ψ
ij∥ (7)

where ∇ is the vector differential operator, D is the disparity map by taking
the reciprocal of Eq. 2, I is the RGB image, and Ψ represents the sampled image
patch for regularization.

4.4 NeRF training

Combining the L2 photometric loss, the depth regularization loss, and the pro-
posed track reprojection loss, we optimize our TrackNeRF from sparse views
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Fig. 3: Quanlitative Comparison on DTU [33] and LLFF [51]. We show views
from the test view split of both datasets to visually compare our TrackNeRF renderings
to the baselines. For DTU dataset where GT depth maps are available, we additionally
visualize the rendered depth by Eq. 2 to compare the learned geometry.

with possibly noisy poses as follows:

L = LPhotometric + λDepthLDepth + λTrackLTrack (8)

where λDepth and λTrack are weighting factors of LDepth and LTrack, respectively.

5 Experiments and Results

5.1 Experiment Setups

Datasets and Metrics. We extensively evaluate our proposed TrackNeRF on
DTU [33] and LLFF [51] datasets under various settings. DTU is a challenging
benchmark as there are usually wide baselines between different views. We follow
the split of PixelNeRF [83] to conduct our evaluation on the test split of 15
scenes, while we also report the results with masking background as done by [70,
76,79]. For the LLFF dataset, we select every 8th image for testing as NeRF [52].
Regarding the metrics, we adopt PSNR, SSIM [74], and LPIPS [38,85] following
the community standard. Since ground truth depth maps are available on DTU,
we also report the mean depth absolute error (DE) like SPARF [70].
Implementation details. We follow the training strategy of SPARF [70] for a
fair comparison, where we jointly optimize NeRF with poses at the first stage
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Table 1: DTU Evaluation (3, 6 & 9 Noisy Views). We evaluate methods for
unseen view rendering and camera extrinsic recovery on the DTU dataset [33], using
initial poses that are noisy and vary in terms of the number of input views (3, 6, or
9). We introduce noise to these poses by adding 15% Gaussian noise to the true poses.
The rotation errors are measured in degrees, while the translation errors are scaled by
a factor of 100. The results in parentheses (·) are obtained after applying a mask to
the background. Our TrackNeRF achieves the best performance in all setups.

Method Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓

3
in

p
u
t

vi
ew

s BARF [43] 10.33 51.5 10.71 (9.76) 0.43 (0.62) 0.59 (0.36) 1.90
RegBARF [43,54] 11.20 52.8 10.38 (9.20) 0.45 (0.62) 0.61 (0.38) 2.33
DistBARF [3,43] 11.69 55.7 9.50 (9.15) 0.34 (0.76) 0.67 (0.36) 1.90
SCNeRF [34] 3.44 16.4 12.04 (11.71) 0.45 (0.66) 0.52 (0.30) 0.85
SPARF [70] 1.81 5.0 17.74 (18.92) 0.71 (0.83) 0.26 (0.13) 0.12
TrackNeRF (Ours) 1.12 2.48 18.53 (19.65) 0.73 (0.83) 0.25 (0.13) 0.11

6
in

p
u
t

vi
ew

s BARF [43] 9.20 31.1 14.02 (14.22) 0.54 (0.69) 0.46 (0.27 ) 0.49
RegBARF [43,54] 9.19 26.63 14.59 (14.58) 0.57 (0.70) 0.44 (0.27) 0.32
DistBARF [3,43] 8.96 28.85 14.31 (14.60) 0.55 (0.70) 0.43 (0.26) 0.53
SCNeRF [34] 4.10 12.80 17.76 (18.16) 0.70 (0.80) 0.31 (0.18) 0.28
SPARF [70] 1.31 2.7 21.39 (22.01 ) 0.81 (0.88 ) 0.18 (0.10 ) 0.09
TrackNeRF (Ours) 0.24 0.65 22.78 (23.66) 0.84 (0.89) 0.14 (0.08) 0.06

9
in

p
u
t

vi
ew

s BARF [43] 8.34 26.72 16.20 (16.38) 0.60 (0.73) 0.38 (0.22) 0.35
RegBARF [43,54] 5.28 18.51 18.98 (19.08) 0.67 (0.77) 0.29 (0.18) 0.23
DistBARF [3,43] 7.00 26.42 16.18 (16.27) 0.58 (0.71) 0.37 (0.22) 0.29
SCNeRF [34] 4.76 16.25 18.19 (18.01) 0.69 (0.81) 0.31 (0.17) 0.31
SPARF [70] 1.15 2.55 24.69 (25.05 ) 0.88 (0.92 ) 0.12 (0.06 ) 0.06
TrackNeRF (Ours) 0.25 0.70 25.57 (26.03) 0.89 (0.92) 0.11 (0.06) 0.05

and then only finetune NeRF at the second stage. We also utilize the same
correspondence network, PDCNet++ [69], as SPARF for fairness. We adopt 6-
DoF camera pose representation in [87]. We sample random rays for photometric
loss, random feature tracks for track loss, and random pixel patches for depth
loss. The depth regularization loss is only enabled in the second stage after pose
optimization.

5.2 Main Results

DTU noisy 3 views. We keep the pose setting from previous methods [43,70]
by adding 15% additive gaussian noise to the groundtruth camera poses. As
shown in Tab. 1, TrackNeRF achieves state-of-the-art performance across all the
metrics. Specifically, for pose optimization, TrackNeRF nearly halves both the
rotation and translation errors. It also improves PSNR by a remarkable margin
of ∼ 0.8.
DTU noisy 6 views and 9 views. We extend similar settings to 6-view and 9-
view cases, the results of which are presented in Tab. 1. Surprisingly, the biggest
improvement is observed when there are moderate sparse views, where a 1.65
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Table 2: DTU Evaluation with Ground Truth Poses (3 Views). We show the
evaluation on DTU [33] with three input views and ground truth poses, where the first
column lists the schemes of methods and their architectures (VN: Vanilla NeRF , MN:
MipNeRF, PN: PixelNeRF , D: Diffusion).

Archit. Method Settings PSNR ↑ SSIM ↑ LPIPS ↓
(masked) (masked) (masked)

PN PixelNeRF [83] Trained 19.36 (18.00) 0.70 (0.77) 0.32 (0.23)
PN+D ReconFusion [76] on - (20.74) - (0.88) - (0.12)
D ZeroNVS [60] datasets - (16.71) - (0.72) - (0.22)

MN MipNeRF [2] - (16.11) - (0.40) - (0.46)
MN RegNeRF [54] - (18.84) - (0.57) - (0.36)
MN FreeNeRF [79] Optimized - (20.46) - (0.83) - (0.17)
VN DS-NeRF [14] per 16.52 (-) 0.54 (-) 0.48 (-)
VN CorresNeRF [39] scene 18.23 (20.58) 0.76 (0.77) 0.33 (0.13)
VN SPARF [70] 18.30 (21.01) 0.78 (0.87) 0.21 (0.10)
VN TrackNeRF (ours) 18.78 (21.45) 0.79 (0.88) 0.20 (0.10)

boost on PSNR and huge reduction of pose error can be observed in the 6-view
case. We believe such improvements benefit from multiview consistency from
longer feature tracks. When the views become denser, we can still achieve 1
PSNR boost and smaller pose drift in the 9-view case.
DTU 3 views with ground-truth (GT) poses. Many approaches [39,76,79]
assume precise GT camera poses available as the sparse view setup, although
popular SfM methods like COLMAP [62] often fail in sparse-view scenario [70,
73]. But we also compare our method with representative approaches using dif-
ferent backbone architecture and training settings, to show the effectiveness of
our method even using GT poses. To realize this setup, we fix camera poses
to be GT ones and train the NeRF with Eq. 8. As shown in Tab. 2, despite
vanilla NeRF being used, our method achieves the best performance in PSNR
and SSIM, compared with methods using vanilla NeRF or more advanced Mip-
NeRF. It is worth noting that our method also outperforms diffusion methods
like ReconFusion [76] and ZeroNVS [60] trained on large-scale scene data. These
results show TrackNeRF improves sparse view rendering quality besides camera
pose optimization.
LLFF 3 views without pose. For the forward-facing dataset LLFF, we start
optimization by identical camera poses. As we can see in Tab. 3, the improve-
ment is not that many compared to DTU, with a slightly better performance
on PSNR over SPARF [70]. We think that the reason is that LLFF is a simple
dataset without large camera translation and rotation, and thereby the improve-
ment from our feature track consistency and camera pose accuracy are somehow
saturated, as previous works [43,75] have shown pose recovery can be done solely
from the photometric loss. Therefore, we conduct our ablation studies mainly on
DTU dataset in the following.
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Table 3: LLFF Evaluation with No Poses (3 Views) We show the evaluation on
the forward-facing dataset LLFF [51] (3 views) with initial identity poses. Due to the
simple camera motion in this dataset, the usage of feature tracks in our method does
not lead to significant improvements over SPARF here.

Method Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓

BARF [43] 2.04 11.6 17.47 0.48 0.37
RegBARF [43,54] 1.52 5.0 18.57 0.52 0.36
DistBARF [3,43] 5.59 26.5 14.69 0.34 0.49
SCNeRF [34] 1.93 11.4 17.10 0.45 0.40
SPARF [70] 0.53 2.8 19.58 0.61 0.31
TrackNeRF (Ours) 0.77 2.8 19.60 0.59 0.35

Visualization. We visualize the test view renderings from these two datasets
to compare the quality of novel view synthesis in Fig. 3. For the DTU dataset
with large camera motions, NeRF [52,75] completely fails while BARF [43] can-
not recover reasonable poses. On the contrary, TrackNeRF can still preserve a
sharp and high-quality layout compared to SPARF and GT. Also, we can find
clear geometry structure from the rendered depth maps, which indicates that
the introduced track optimization effectively helps the radiance field to learn
multiview geometry consistency. Moreover, the floaters and artifacts near the
camera or background are also significantly reduced by the introduced depth
smoothness loss in Eq. 7. For the forward-facing LLFF dataset, NeRF [52, 75]
is still struggling, while BARF is unable to generate meaningful results. In con-
trast, TrackNeRF clearly outperforms these methods in generating views with
sharp details, especially in the regions we have highlighted.

6 Ablation Study and Analysis

6.1 Ablation on components

Starting from BARF [43]’s coarse-2-fine encoding inherited by other methods [70,
79], we ablate the effectiveness of the key components of our method in Tab. 4.
The proposed feature track reprojection loss increases the performance signifi-
cantly, especially on DTU dataset, where the camera motion is large and sparse
views are far away from each other with wide baselines. We achieve +8 PSNR
boost and also recover much more precise camera poses on DTU. Since LLFF is
a simple forward-facing scene without much camera motion, our improvement is
not that much, which aligns with our visual comparison in Fig. 3. Notably, track
keypoint adjustment and depth regularization introduced by us also improve the
performance further.

6.2 Ablation on robustness and effectiveness

Advantage on tolerance of noise level. We follow SPARF’s [70] settings to
certify the robustness of TrackNeRF on pose noise for fair comparison. As shown
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(a) DTU scan 21. An example of a successful case for the correspondence.

(b) DTU scan 30, The only failed case for the correspondence we find.

Fig. 4: Visualization of Feature Tracks. In almost all scenes, we can always find
dense enough and accurate correspondence like the one example from DTU scan 21
shown in Fig. 4a. We provide a rare case (scan 30) in Fig. 4b where the correspondence
network [69] fails to find enough reliable correspondences, in which cases we uses a
lower λTrack for better performance.

Table 4: Ablation Study on Proposed Components. We conduct our ablation
study on DTU and LLFF datasets for all scenes. I: Coarse to fine frequency encoding
introduced by BARF [43]; II: Track reprojection loss proposed by us in Eq. 6; III:
Track keypoints refinement in Eq. 5; IV: Depth regularization loss in Eq. 7.

Method I II III IV Rot. ↓ Trans. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE ↓
(masked) (masked) (masked)

D
T

U

BARF ✓ 10.33 51.5 10.70 (9.8) 0.43 (0.62) 0.59 (0.36) 1.9
Ours ✓ ✓ 1.40 2.61 18.07 (19.19) 0.72 (0.81) 0.27 (0.14) 0.11
Ours ✓ ✓ ✓ 1.12 2.48 18.39 (19.50) 0.73 (0.83) 0.25 (0.13) 0.11
Ours ✓ ✓ ✓ ✓ 1.12 2.48 18.53 (19.65) 0.73 (0.83) 0.25 (0.13) 0.11

L
L
F
F

BARF ✓ 2.04 11.6 17.47 0.48 0.37 -
Ours ✓ ✓ 0.80 2.96 19.34 0.58 0.36 -
Ours ✓ ✓ ✓ 0.77 2.80 19.51 0.58 0.35 -
Ours ✓ ✓ ✓ ✓ 0.77 2.80 19.60 0.59 0.35 -

in Tab. 5, impressively, TrackNeRF is able to converge under 35% of Gaussian
noise. While SPARF [70] reports failure on 20% noise, TrackNeRF shows stronger
robustness to pose noise. As standard benchmarks always adopt 15% noise as
the default scenario, our results show that exploring more challenging pose noise
with wider baselines could be more interesting in future directions.
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Table 5: Ablation study for noise level on DTU. We show an ablation study
on the noise level for novel view synthesis and camera pose estimation with 3 views
in DTU [33]. The initial rotation and translation error is obtained by multiplying the
noise level with random samples from N (0, I6) on se(3), and then transferring it back
to SE(3).

Noise Rot. ↓ Trans.↓ PSNR ↑ SSIM ↑ LPIPS ↓ DE↓

0.05 0.24 0.61 15.83 0.67 0.21 0.06
0.15 0.22 0.60 16.14 0.67 0.21 0.07
0.25 0.31 0.59 15.32 0.62 0.27 0.06
0.35 0.51 1.59 14.88 0.60 0.28 0.06
0.45 28.28 145.07 8.34 0.32 0.54 1.84

Advantage on convergence speed. As shown in Fig. 5, TrackNeRF (purple
curve) clearly converge faster than BARF and SPARF, especially under 6-view
and 9-view settings, where we have longer feature tracks to guide the pose and
underly geometry optimization. Note for a fair comparison, we force all three
methods to sample the same number of rays during each batch.

(a) DTU, scan 21

(b) LLFF, fortress scene

Fig. 5: Comparison on the Convergence of Pose Optimization. We show con-
vergence plots of BARF [43], SPARF [70] and our TrackNeRF on DTU and LLFF
datasets. For a fair comparison, we keep sampling the same number of rays for each
iteration as SPARF [70]. Plots with white background and gray background represent
rotation and translation errors, respectively. Our TrackNeRF converges faster and to
a lower loss than the state-of-the-art.
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6.3 Analysis of feature tracks adequacy

Due to the sparse view settings for NeRF optimization, concerns may arise re-
garding the adequacy of feature tracks, both in terms of track number and track
length. To address these potential concerns, we provide the track statistics as
depicted in Fig. 4. Considering the most extreme DTU 3-view case, without
generality, NeRF typically samples 2,048 rays per batch for an image with a
typical resolution of (300, 400). We find an average of ∼ 20k tracks of length 3.
Given these statistics, it is evident that the density of feature tracks is sufficient
to facilitate robust NeRF optimization without the risk of excessive sampling
redundancy. This surfeit of feature tracks ensures that the optimization pro-
cess is well-supported by adequate data, even in the most extreme sparse view
conditions.

7 Limitations

A noteworthy scenario arises when only two views are available. Under these
rather rare circumstances, our track loss reverts to an optimization based on
pairwise correspondences. However, we demonstrate the superiority of our pro-
posed track optimization approach, particularly within the context of a moderate
sparse setting, such as the case with six noisy views in Tab. 1. Another limitation
occurs when the matching network fails to get correct and sufficient correspon-
dence as shown in Fig. 4b, which is also shared by [39,70]. We believe this can
be addressed by leveraging more advanced feature matchers, which we leave for
future exploration.

8 Conclusions and Future Work

We propose TrackNeRF for novel view synthesis under sparse and noisy views.
Our method introduces feature track optimization for joint learning of camera
poses and neural radiance field. Our joint optmization seamlessly aligns with the
objective of bundle adjustment (BA) that has been widely adopted in SfM as
a golden practice for decades. TrackNeRF can tolerate greater pose noise and
converge faster, benefiting from global BA. We also show that TrackNeRF can
achieve higher rendering quality, restore more accurate poses, and even outper-
form advanced diffusion-based methods trained on large-scale datasets. Overall,
we show that multiview correspondence is critical in sparse view settings, espe-
cially with inaccurate or without poses. Moreover, our contribution is orthogonal
to those learning-based methods and can be easily integrated into them without
bells and whistles. We believe TrackNeRF can inspire future interesting research
and have further impacts on the community.
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