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Overview
Below is a summary of the contents in each section of this supplemental

material:

• Sec. 1: Details of our dataset collection method.
• Sec. 2: Details of building layout quantization, including graph-based Block-

level Variational AutoEncoder (BVAE), and different quantization approaches.
We also provide additional evaluation in real units (e.g. m, m2).

• Sec. 3: City-scale controllable generation examples for 17 cities. And some
complementary comments on other alternative approaches.

• Sec. 4: Semantic manipulations between different building layout styles.
• Sec. 5: GMAE-based Socio-Economic Metric Prediction
• Sec. 6: Estimation of running time and model parameter sizes.

1 Dataset Collection

Data Resources. We selected all US cities with more than 100K population
(i.e., 330 cities) as our building layout dataset. The city list is based on [2].
For each city, we define a rectangular bounding box containing most of the
metropolitan area. This geo-registered bounding box is used to extract data from
OpenStreetMap (OSM) [11], Microsoft Building Footprints (MSF) [7], and Topo-
logically Integrated Geographic Encoding and Referencing (TIGER) dataset [4].
The TIGER dataset provides the city block contour and corresponding social
economic metrics (e.g. population, income level, etc.).

MSF and OSM provide the building layout polygons with corresponding
height values. We define heuristics to composite both data resources. Specifi-
cally, MSF is the result of deep-learning-based building segmentation from high-
resolution satellite images ( 0.5m). However, fine details and closely located
buildings are challenging for that methodology. Such a situation is very common
in big cities like New York (i.e., a big city block appears to have one large build-
ing but in reality there are many adjacent buildings). In contrast, the building
layouts from OSM are manually crafted or adopted from governmental/open-
source datasets. Buildings are vector-based polygons regardless of adjacency.
Unfortunately, the data coverage of OSM, especially for building height values,
varies significnantly, while satellite-resourced MSF overcomes this shortage. We
merge the information from the two sources as described in the following section.
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Data Composition. For each single city block, we evaluate and composite
the building layouts extracted from both MSF and OSM by several rules: (1)
we keep buildings from both resources that only appear once with no mutual
overlapping; (2) for the regions that building layouts from both resources are
highly overlapped, we keep the ones with more building numbers; and (3) we
mainly take building height values from MSF. If height values are only available
for some buildings in a city block, then we take the average height augmented
with small random offsets and assign those heights to the rest of the buildings.
Further, the connectivity between city blocks is captured as a graph adjacency
matrix for our graph canonical representation as specified in the main paper.
Each city is encoded as a single graph. Thus our dataset contains 330 graph
structures. It includes 833,473 city blocks and 17,663,607 buildings, all with
building heights assigned. As we claimed in the main paper, we will release the
dataset upon the acceptance of our paper.

2 Building Layout Quantization

The main goal of building layout quantization is to define a compact and scal-
able representation (e.g., a small codebook) that keeps as much of the original
building layout features as possible. In the following, we report our various ex-
periments until arriving at the solution we ultimately used.

2.1 Block-level Variational AutoEncoder (BVAE)

To represent individual city blocks, we use a variational autoencoder. In this, all
building layout features (e.g., building size, height, position) within a city block
are represented as a canonical graph. This graph-representation is utilized in self-
supervised training with both reconstruction loss and KL divergence loss terms.
Our block representation is based on the canonical spatial transformation and
graph-based representation described in GlobalMapper [6] (official repository:
GlobalMapper).

Our BVAE uses GAT [14] as the backbone. The encoder stacks three GAT
layers and the same structure for the decoder. Specifically, we select the multi-
head number for GAT as 12, the internal feature dimension of GAT layers as 256,
and the bottleneck latent dimension as 512. We found the aforementioned hyper-
parameters are key to the reconstruction performance of BVAE. Reducing these
parameter values hurts performance, and further increasing has no net benefit.
Batch normalization is added to each layer for stable convergence. Our code will
be released upon the acceptance of our paper.

2.2 Quantization Approaches

Trainable Vector Quantization. We experimented with the trainable vector
quantization method described in VQGAN [5] by adapting their official imple-
mentation VQGAN to our BVAE. After performing a round of hyperparameter
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tuning experiments, we did not converge to a trained result that adequately
reconstructs the original building layouts. In particular, the network struggles
to keep stability between the BVAE latent space and the trained codebook –
e.g., when inspecting latent space values near a codebook entry, unstable block
structures are created. A predefined codebook size may not be able to adapt
to the heterogeneity of many city block and graph feature values which, unlike
pixel values in ∈[0, 255], are not constrained by a given range. Moreover, our
hyperparameter search indicates performance is even harder to be improved by
increasing codebook size and feature dimensions.

Latent Vector Clustering. Given the trained BVAE encoder, one straightfor-
ward methodology is to use its encoded latent vectors as building layout features
Q for our subsequent GMAE training. We tried the simple approach of directly
using the latent veectors but GMAE training convergence was not possible. In-
stead, we used K-means clustering to group latent space vectors into a set of
classes. Thus, each city block will essentially be classified into one of a set of cat-
egorical labels. We tested using from 5 to 1000 clusters. However, this approach
brought unacceptable reconstruction loss likely due to the heterogeneity of city
blocks. We list the best performance of both K-means quantization, and train-
able vector quantization in the Tab.2 (Quantization Table) in the main paper.
Both are not comparable to the dimensional quantization as described in the
main paper Sec. 3.1.

Dimensional Quantization. The key idea for our dimensional quantization
is to use a small codebook (e.g. L = 20) for each dimension of the latent space
vector. Specifically, the BVAE Encoder outputs a 512-d vector of µ and another
512-d σ for variational sampling of the network bottleneck. We find that the basic
styles (e.g., building number, positions) of building layouts decoded by trained
BVAE Decoder is generally deterministic to µ, while σ provides reasonable ran-
domness. Thus we directly sample from the full distribution of σ from training
dataset, and only consider the prediction of the µ (i.e., the 512 dimensions of
qi). A similar trade-off is also introduced in diffusion model training (e.g., [8]).

Our dimensional quantization is driven by the observation that the distri-
bution in each dimension of µ is nearly normal. Moreover, the trained BVAE
Decoder is robust to values near the normal distribution’s mean. This enables
quantization of each dimension with good stability and a low reconstruction loss
(e.g., a slight change of values does not affect the decoded building layouts sig-
nificantly). We choose L = 20 based on the ablations in Tab. 2 (Quantization
Table) in the main paper.

2.3 Additional Real-World Units Evaluation

We evaluate the 2.5D building geometry as per-block percentage of "GEOM-E",
and "Pos-E" in the Tab. 2 of the main paper. Here we provide a conversion to
real-world units for better understanding. The row "BVAE∗" in Tab.2 (Encode
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Model Table) writes 1.00% Pos-E, and 0.71% Geom-E. This corresponds to each
reconstructed building having an average height error of 0.10m, size error of
16.97m2, and position error of 4.07m. The row "DIM-Q∗ (L = 20)" in Tab. 2
writes 3.50% Pos-E, and 0.89% Geom-E. This corresponds to each single building
having a height error of 0.27m, size error of 27.52m2, and position error of 8.07m.

The increasing errors of position and 2.5D geometry are mainly due to the
numerical quantization in each µ dimension and the randomly sampled σ, as
described in above sections.

3 City-Scale Controllable Generation

In Fig. 1 and its zoom-in in Fig. 2, we present a city-scale generation given
only road networks and 10 representative city blocks as small controlling priors
(i.e., < 1%). Our method is able to generate realistic 2.5D urban layouts from
road networks with plausible context harmonization from community-scale to
city-scale.

Moreover, in Fig. 3, we provide cropped generated examples for another 16
major cities across the U.S. It proves the robustness and generalization of our
methods among heterogeneous city context styles.

Comments on alternative approaches. For all the comparisons in Sec. 4.2 of
the main paper, we generate the result of each approach without post-processing
or human-in-the-loop refinement. However, for some evaluation metrics, the met-
ric value depends on the particular instance that was generated. Our method
generates its output using our priority-based scheduling in T iterations, with
T = 12 being a reasonable number. Hence, for fairness we also select the best
results from T independent generations for each alternative method.

Further, we tested other pixel-based approaches (e.g. [10]) apart from SDXL [12]
(see Tab.1 and Fig.5 in the main paper). But none of them provide comparable
results. Poor generation quality by InfinityGAN [10] is also observed by [15].

4 Semantic Manipulation

Using the trained GMAE, semantic manipulation can be implemented by adding
super nodes with desired building layout styles to the original city graph. The
added super nodes have a dense connectivity to neighboring communities and
will influence the generation pattern of GMAE to produce a fused style. The
semantic manipulation extent can be tuned by modifying connection degrees or
edge distances attributes of the added super nodes. The users may customize
their manipulations for broad "what-if" scenarios for urban planning, meteorol-
ogy simulation, and game design applications.

In Fig. 4, we manipulate generated New Orleans with either dense urban
priors from New York City or sparse urban priors from Norfolk. Our GMAE
generates "fused" urban layouts guided by given priors. Meanwhile, the realism
and diversity are kept.
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Fig. 1: City-Scale Map. We use the road networks from New Orleans to provide a
city-scale generation using our method.
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Fig. 2: Zoom-in Map. Zoom-in map of the upper right corner in Fig. 1.
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Los Angeles Miami Minneapolis Milwaukee

Norfolk New York City Pittsburgh Portland

Providence San Jose San Diego Seattle

Fig. 3: Example Generations across the U.S. Given arbitrary road networks
across 16 diverse cities, our method generates realistic urban layouts with plausible
context harmonization.

5 GMAE-based Socio-economic Metric Prediction

We find that the 2.5D geometry of building layouts in a given city block cor-
relates well with social, economic, and climate metrics of the same block. In
particular, the encoder of our trained GMAE may act as a feature extractor
for a binary classification of city blocks as advantaged or disadvantaged groups.
Hence, we can also use the GMAE for socio-economic metric estimation without
requiring tedious customized surveys, and potentially leading to broader social
applications for policy making. This prediction is analogous to the "linear probe"
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Fig. 4: City-scale Semantic Manipulation. We use super nodes to influence the
generation of a New Orleans layout by using either dense building layout style from
New York City or sparse urban style from Norfolk. See text for details.

in the representation learning community (e.g. CLIP [13]). The image/text fea-
tures extracted by a pretrained encoder (weights frozen) are directly fed into a
trainable linear MLP adapting downstream tasks (e.g. classification).

We make use of the social-economic metric dataset from the Climate and
Economic Justice Screening Tool (CEJST) [1]. This dataset provides census-
tract-level data for more than 100 metrics. We calculate the values of those
metrics for each city block, and label the city blocks in the lower 1st percentile
as the disadvantaged group, and those in the higher 99th percentile as the ad-
vantaged group.

In this study, we utilize the extracted node features F (see Fig.3 in main pa-
per) to train a machine learning classifier. The classifier is trained to distinguish
the aforementioned advantaged and disadvantaged groups. The performance of
this binary classification, using SVM and XGBoost, is showed in Tab. 1. We
report the diverse set of 11 metrics with higher than 75% accuracy.
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Table 1: GMAE-based Prediction. Our GMAE combined with a conventional clas-
sifier (e.g. SVM or XGBoost) can be used to predict whether a set of city blocks cor-
responds to an advantaged and disadvantaged economic/social/environmental group.

Abbrv. Metric Full Name Best Acc. %

DSF_PFS Diesel particulate matter exposure (percentile) 89.76
EBF_PFS Energy burden (percentile) 84.26
LMI_PFS Low median household income as a percent of area median income (percentile) 83.62
LLEF_PFS Low life expectancy (percentile) 80.30
EBLR_PFS Expected building loss rate (Natural Hazards Risk Index) (percentile) 80.13
LPF_PFS Percent pre-1960s housing (lead paint indicator) (percentile) 79.83
HBF_PFS Housing burden (percent) (percentile) 76.82
EPLR_PFS Expected population loss rate (Natural Hazards Risk Index) (percentile) 75.82
P100_PFS Percent of individuals < 100% Federal Poverty Line (percentile) 75.46
FLD_PFS Share of properties at risk of flood in 30 years (percentile) 75.46
TF_PFS Traffic proximity and volume (percentile) 75.15

6 Running time and model parameters

Under the same settings as main paper, below we report model parameter size
and average inference time per city block by a single RTX A5000. The only
exception is for SDXL [12] where the time is for generating one 1024 × 1024
resolution image by 20 sampling steps (typically covering dozens of blocks). Our
method uses 12-iteration sampling. VTN [3] and SDXL (even if normalized to
single block inference time) are quite slow. LayoutDM [9] (sampled by default
100 steps) is slower than our method, and GlobalMapper is slightly faster. How-
ever, our method outperforms others (main paper Tab.1 and Fig.5). Our model
parameter size is much smaller than SDXL, and is only marginally larger than
the largest of others.

Method Inference Time↓ (ms) Parameters

⋆SDXL [12] 5938.85 2.6B
VTN [3] 3428.32 45.49M
LayoutDM [9] 20.24 12.41M
GlobalMapper [6] 5.62 76.48M

Ours 7.94 89.87M
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