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1 More Details about Mobile-Spec Dataset

1.1 Mobile-Spec Dataset Overview

In Figure [1] we present a diverse collection of representative samples from the
Mobile-Spec dataset. It can be found that the Mobile-Spec dataset comprises two
parts. The first encompasses images captured by the smartphone and hyperspec-
tral camera, while the second comprises images related to shading, reflectance,
and material segmentation. The 16-bit input paired with corresponding 8-bit
target images are constructed for the task of tone enhancement, predominantly
featuring outdoor scenes with high dynamic range. It should be noted that both
16-bit input and 8-bit target images are in the sSRGB color space, and we focus on
the tone enhancement task rather than learning the whole pipeline from raw data
to final output. The hyperspectral images, obtained using the GaiaSky-mini2 [1],
are intended to overcome the limitations in the spectral imaging capabilities of
mobile devices. On the right side of Figure [I] we showcase shading, reflectance,
and material segmentation images for each sample. The shading and material
segmentation images serve as targets for the prediction of the joint RGB-Spectral
decomposition model. Notably, the shading images are averages of the 850-1000
nm bands in hyperspectral images. It reveals that the near-infrared bands can
approximately delineate the distribution of shadows and illumination in out-
door environments. The material segmentation images, on the other hand, are
meticulously labeled by human annotators. Our Mobile-Spec dataset aims to
establish a high-quality foundation, offering insights and laying the groundwork
for further exploration of spectral information in mobile photography.

1.2 Alignment of Dual-Camera System

Dual Camera System. Figure [2(a) showcases our dual-camera setup, fea-
turing the high-end commercial smartphone and the GaiaSky-mini2 hyperspec-
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tral camera [1], which operates on a scanning-based imaging principle to guar-
antee the quality of the captured hyperspectral images. The two cameras are
positioned in close proximity to each other to minimize differences in viewing
angles as much as possible. During the capture of each scene, both cameras are
set to their default shooting settings and operate synchronously.

Image Matching. As observed in Figure b)7 the RGB images captured by
the smartphone own a larger field of view and higher spatial resolution (4096 x
3072 x 3), compared to the hyperspectral images, which feature a smaller field of
view and resolution (1057 x 960 x 176). To facilitate the study of tone enhance-
ment tasks, we align the RGB images to the hyperspectral images. Specifically,
we first convert the hyperspectral images into the pseudo-RGB format. Then, us-
ing the SIFT algorithm |14], we calculate feature points between the smartphone-
captured RGB images and the pseudo-RGB images from the hyperspectral data.
The feature points are matched to compute the transformation homography ma-
trix between the two images. Finally, using the homography matrix, we perform
an affine transformation on the smartphone-captured RGB images, resulting in
aligned pairs of RGB and hyperspectral images, as illustrated in Figure [2[c).

Filtering of Mismatched Samples. Due to factors such as depth of field
and errors in feature point matching, there can be pixel alignment errors between
RGB and hyperspectral image pairs. We filter out samples with significant regis-
tration errors. To visually assess the alignment of each sample, we substitute the
R channel in the smartphone-captured RGB image with the shading image from
the hyperspectral data. This method allows for a visual evaluation of the image
registration quality. As shown in Figure (b), samples that exhibit artifacts and
misalignments are excluded. Conversely, samples from our Mobile-Spec dataset
demonstrate high alignment accuracy, as displayed in Figure a).

Compared to the RGB images (1057 x 960 x 3), the Lr-MSI possesses a
markedly limited spatial resolution (16 x 16 x 10). Given that the spatial res-
olution setting for Lr-MSI is very small, the alignment errors can be negligible
in the JDM-HDRNet. We believe that high-precision RGB-hyperspectral image
pairs are meaningful for many other tasks, such as joint RGB-spectral pansharp-
ening [13], reconstruction [6], segmentation [10], and illumination estimation [15].
Therefore, we ensure that the Mobile-Spec dataset maintains minimal alignment
errors.

1.3 Material Segmentation

Figure [ showcases material segmentation images from our dataset, wherein the
segmentation categories have been designated as plant, trunk, building, road,
sky, and others, reflecting the most commonly encountered subjects in outdoor
scenes. It is evident that our semantic segmentation annotations are of excep-
tionally high granularity, particularly notable in the detailing of individual leaves
within the plant area. Our Mobile-Spec dataset is also expected to advance re-
search in the joint analysis of RGB and spectral images for material segmenta-
tion.
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1.4 The Approximated Shading Prior

Since shading GT of complex outdoor scenes is difficult to obtain, the near-
infrared images serve as the guide map to approximate shading instead of real
shading GT. We consider four methods for approximating shading: (a) Intrinsic
decomposition of hyperspectral images [5]: This method fails to handle com-
plex outdoor scenes. (b) Implicit learning (e.g., Retinexformer [3]): This method
produces results more like the grey image instead of shading. (c¢) Intrinsic de-
composition of RGB images: PIE-Net [9] relies heavily on training data and lacks
interpretability, which is unstable and may produce artifacts and over smooth-
ness. (d) Near-infrared images [7]: Figure [5 shows near-infrared images stands
out as reliable guide map for approximating shading, since they are less sensi-
tive to reflectance variations |7]. So we adopt near-infrared images for shading
estimation as a simple yet effective way.

Figure [0 delineates the spectral reflectance values sampled across 24 col-
orants on a color checker. The spectral curves exhibit a trend towards flattening
and convergence with increasing wavelengths, suggesting the near-infrared spec-
trum’s viability as a proxy for shading [7]. It is pertinent to note that the precise
estimation of shading is not the focal point of this paper; rather, our objective
is to harness the shading prior approximated by near-infrared bands to enhance
the image quality in tone enhancement tasks.

As illustrated in Figure [§ the spectral curves of sunlight and LED light
source are captured by our hyperspectral camera with the white board. The
sunlight encompasses a broad and continuous spectrum across the visible range,
extending into the ultraviolet (UV) and infrared (IR) regions, with its intensity
being relatively uniform across the visible spectrum, albeit with minor varia-
tions. Conversely, the spectrum of the LED light source is characterized by a
pronounced peak in the blue region, with its intensity swiftly diminishing at
near-infrared wavelengths.

Furthermore, we have drawn spectral curves of 24 distinct colors on a color
checker using our hyperspectral camera under two light sources. As evident from
Figure @(a), for the illumination of sunlight within the visible light spectrum
(400-750nm), different colors display unique spectral curve characteristics. How-
ever, in the near-infrared spectrum (850-1000nm), the spectral curves of different
colors tend to converge, aligning with the conclusion drawn in Figure [} How-
ever, under LED illumination, various colors demonstrate no significant response
within the near-infrared spectrum. Given that most indoor lighting sources are
LED lights, the assumption of using the near-infrared spectrum as a proxy for
shading does not hold indoors. Consequently, the samples in our Mobile-Spec
dataset are exclusively captured in outdoor settings. As shown in Figure [7] un-
der the single outdoor illumination of sunlight, the spectral curve variations
of different materials in the near-infrared spectrum (850-1000nm) tend to be
consistent. Notably, the divergence in spectral response, both among various
materials and across distinct pixels of the same material, is more pronounced in
terms of intensity variation. This suggests the near-infrared band may serve as
an approximation for the shading prior in the outdoor environment.
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Table 1: Objective quality assessment of tone-mapped images across four represen-
tative datasets. Our Mobile-Spec dataset achieves comparable structural fidelity with
PPRI10K [12| and MIT FiveK [2].

HDR+ [11] FiveK [2] PPRIOK [12]| | Mobile-Spec

Structural Fidelity? [17]

0.130

0.150

0.193

0.176

Table 2: Comparisons with previous hyperspectral datasets.

Harvard [4] CAVE [8] KAIST [16] PaviaU | Mobile-Spec
scenes 75 32 30 1 200
spatial (x-y) | 1392x1040 512x512 2704x3376 610x340 | 1057x960
spectral (A,nm) 420-720 400-700 400-700 430-860 400-1000
channels 30 31 31 103 176
segmentation X X X v v
aligned RGB X X X X v

1.5 8-bit Target Image

Since tone-mapped targets are highly subjective, as different individuals have
varying aesthetic preferences, we employ a commercial privacy model to gen-
erate targets of Mobile-Spec dataset that integrate the aesthetics of multiple
experts. This model is trained by a large-scale and high-quality commercial
dataset, which is elaborately adjusted by professional photographers and artists.
Then we meticulously filter the target images through subjective assessments,
considering factors such as chromatic aberration, sharpness, noise and artifacts.
Samples that do not meet the criteria are excluded. We adopt the structural
fidelity term in TMQI [17] to evaluate the objective quality of the Mobile-Spec
dataset. It should be noted that we only reserve the structural fidelity term and
the statistical naturalness term is removed, since the tone enhancement images
in Mobile-Spec are high dynamic range scenes, which do not comply with sta-
tistical naturalness of common pictures. Table [I] shows the Mobile-Spec dataset
achieves comparable structural fidelity with PPR10K [12] and MIT FiveK [2],
highlighting its potential as a solid foundation for exploring the role of Lr-MSI
in the tone enhancement task.

1.6 Comparisons with Previous Hyperspectral Datasets

From Table [2}, it can be seen that our Mobile-Spec dataset encompasses more
diverse scenes and a broader spectral range compared to previous hyperspectral
datasets. Additionally, the Mobile-Spec dataset owns high resolutions in both
spatial and spectral dimensions. We provide aligned RGB images captured by
smartphones and meticulously labeled segmentation maps. Consequently, the
Mobile-Spec dataset is anticipated to contribute to related fields such as hyper-
spectral reconstruction, segmentation, and pansharpening.
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2 Qualitative Comparisons

2.1 Test Set of Mobile-Spec

Figure [I0] presents additional comparative visualization of the results between
JDM-HDRNet and other methods. From these samples, we can draw the fol-
lowing conclusions: (1) In areas with drastic local brightness variations, such as
sunlight-dappled foliage exhibiting diverse light and shadow distributions, JDM-
HDRNet adaptively accommodates high-dynamic-range scene tone adjustments
by isolating the shading component. (2) Incorporating the reflectance prior of
Lr-MSI with an expanded color channel, and designing a specialized grid ex-
pert for each material enable JDM-HDRNet to produce tone-enhanced outcomes
with minimal color deviation. For instance, the exterior walls of the building in
the fifth sample and the red wall in the third sample. Given that the Mobile-
Spec dataset predominantly features sky and plant, cooler tones like blue and
green dominate most colors, leading to inadequate learning for mapping warmer
tones such as red. Introducing additional Lr-MSI can mitigate the imbalance
in learning across different colors to some extent. JDM-HDRNet achieves more
accurate and aesthetically pleasing colors compared to the competitive meth-
ods. The qualitative comparison underscores the efficacy of decomposing Lr-MSI
into three components: shading, reflectance, and material semantic priors. This
framework offers explicit guidance for tone enhancement and overcomes the in-
trinsic complexity of spectral images. Through the exploration of Lr-MSI in the
tone enhancement task, we aim to lay the foundation for the broader application
of spectral information in mobile photography.

2.2 Unseen Samples

To validate the generalization, we capture extra unseen test samples from en-
tirely new locations, which contain scenes outside of Mobile-Spec (e.g., pool,
yellow leaves). Qualitative results in Figure show JDM-HDRNet generates
more vivid images with a natural appearance than HDRNet. The benefits of Lr-
MSI lie in the following aspects: (a) Enhanced dynamic range with S: Shading
prior enhances adaptability in dealing with localized brightness variations. (b)
More accurate color with R: JDM-HDRNet generates more realistic color than
HDRNet on unseen images. (¢) Context consistency with M: Introducing M
prior reduces color inconsistency within the same context region. Explicit priors
help constrain JDM-HDRNet outputs, enhancing generalization and robustness
on unseen images.
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16-bit Input 8-bit Target Shading Reflectance Material

Fig. 1: More visualized samples of the Mobile-Spec dataset. The 16-bit RGB images
are linear tone-mapped for visualization.
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Fig. 2: (a) The dual camera system which consists of the high-end commercia smart-
phone and the GaiaSky-mini2 hyperspectral camera . (b) Image Matching: the over-
lapping region is detected by the SIFT descriptor 7 then the affine transformation
is performed on the smartphone-captured RGB image to align with the pseudo-RGB
image from the hyperspectral data. (c) The aligned pair of RGB and hyperspectral
images, the hyperspectral image is transformed into the pseudo-RGB image.

Fig. 3: We substitute the R channel in the smartphone-captured RGB image with the
shading image, which allows for a visual evaluation of the image registration quality.
In each sample, the first column is the smartphone-captured RGB image, the second
column is the pseudo-RGB image from the hyperspectral data, the third column is the
fused image which replaces the R channel with the shading image. (a) Samples in our
Mobile-Spec dataset demonstrate high alignment accuracy. (b) Samples that exhibit
artifacts and misalignments are discarded in the dataset filtering procedure.
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- Plant

Fig. 4: The Mobile-Spec dataset is meticulously labeled by human annotators. The
segmentation categories are the sky, plant, road, trunk, building, and others, which
reflect the most commonly encountered subjects in outdoor scenes.

Fig. 5: Since it is difficult to obtain the shading GT for outdoor scenes, we consider four
ways to approximate the shading term: (a) Intrinsic decomposition of hyperspectral
images [5]. (b) Implicit learning [3]. (c) Intrinsic decomposition of RGB images [9]. (d)
Near-infrared images E[] The near-infrared images serves as a reliable guide map to
estimate shading.
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Fig. 6: The reflectance versus wavelength curves for 24 colourants on a colour checker.
Different colors exhibit a trend towards flattening and convergence with increasing
wavelengths in the near-infrared band. This figure is from ‘
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Fig. 7: Under the single outdoor illumination of sunlight, the spectral curve trends of
different materials in the near-infrared spectrum (850-1000nm) tend to be consistent.
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Fig. 8: (a) Sunlight. (b) LED light source. The spectral curves of sunlight and LED
light source are captured by our hyperspectral camera with the white board. The spec-
trum intensity of LED light source swiftly diminishing at near-infrared wavelengths.
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Fig.9: (a) Sunlight. (b) LED light source. The spectral curves of 24 distinct colors
on a standard color checker under illuminations of sunlight and LED light source are

(b)

captured by our hyperspectral camera.
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Fig. 10: More qualitative comparisons on the Mobile-Spec dataset.
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Fig. 11: Evaluations on unseen samples captured from new locations, which contain
scenes out of the Mobile-Spec dataset (e.g., pool, yellow leaves). Benefits of Lr-MSI: (a)
S: enhanced dynamic range; (b) R: more accurate color; (¢) M: context consistency.
Explicit priors help constrain JDM-HDRNet outputs, enhancing generalization and
robustness on unseen images.
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