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Abstract. Vision transformers have demonstrated promising results and
become core components in many tasks. Most existing works focus on
context feature extraction and incorporate spatial information through
additional positional embedding. However, they only consider the local
positional information within each image token and cannot effectively
model the global spatial relations of the underlying scene. To address
this challenge, we propose an efficient vision transformer architecture,
SpatialFormer, with explicit spatial understanding for generalizable im-
age representation learning. Specifically, we accompany the image to-
kens with adaptive spatial tokens to represent the context and spatial
information respectively. We initialize the spatial tokens with positional
encoding to introduce general spatial priors and augment them with
learnable embeddings to model adaptive spatial information. For bet-
ter generalization, we employ a decoder-only overall architecture and
propose a bilateral cross-attention block for efficient interactions be-
tween context and spatial tokens. SpatialFormer learns transferable im-
age representations with explicit scene understanding, where the out-
put spatial tokens can further serve as enhanced initial queries for task-
specific decoders for better adaptations to downstream tasks. Exten-
sive experiments on image classification, semantic segmentation, and
2D/3D object detection tasks demonstrate the efficiency and transfer-
ability of the proposed SpatialFormer architecture. Code is available at
https://github.com/Euphoria16/SpatialFormer.

1 Introduction

Feature extraction is at the core of computer vision and has been dominated by
convolutional neural networks (CNNs) since the deep learning era. The monopoly
has been broken by vision transformers (ViTs), which patchify each image into
a sequence of tokens and then process them using alternating self-attention and
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Fig. 1: Motivation of our SpatialFormer. (a) Conventional ViT encoder has limi-
tations in effectively modeling spatial scenes, relying on task-specific decoders to intro-
duce spatial priors for downstream tasks. (b) Our SpatialFormer learns spatial-aware
image representations through the incorporation of adaptive spatial tokens, which can
serve as enhanced initial queries for task-specific decoders.

multilayer perception (MLP) operations. ViTs are capable of modeling long-
range global dependencies among tokens with great flexibility and thus em-
power the state-of-the-art performance for various tasks, such as image classifica-
tion [30,42,43,51], object detection [4,66], and semantic segmentation [35,47,60].

Different from CNNs which implicitly encourage translation invariance by
using local receptive fields, ViTs introduce less inductive bias by leveraging the
self-attention mechanism to incorporate long-range relations between patch to-
kens. Recent methods improve the original ViT by designing various token inter-
action modules with better efficiency [9, 13, 30, 53], yet most of them still focus
on modeling the interactions between the image tokens, with little efforts on
the spatial information incorporation. While existing methods employ the posi-
tional embeddings added directly to each token or incorporated into attention
layers [15,30,43], these additional positional embeddings are designed primarily
to inject the knowledge of local position to each token. This design constrains
the modeling of the broader spatial scene, posing challenges in generalization
to downstream tasks. For instance, on tasks demanding fine-tuning on high-
resolution images, most ViTs require the upsampling of positional embeddings
through bicubic interpolation, resulting in significant information loss. Further-
more, when adapting to 3D tasks, the learned features only capture 2D context
information from the images, lacking the perceptual capacity for 3D scenes [62].
Although introducing spatial queries in task-specific decoders [5,25,46] can par-
tially alleviate this issue, the image encoder still falls short in learning meaningful
image features. This hampers task performance due to the restricted perception
of the spatial scene. In contrast, we primarily focus on designing an efficient
image backbone capable of directly learning spatial-aware image features that
facilitate transferability to downstream tasks.

In this paper, we propose SpatialFormer, a spatial-aware vision transformer
model as an effective solution, as shown in Figure 1. In addition to the im-
age tokens, we incorporate a set of spatial tokens to capture the spatial scene
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information. We initialize each spatial token with positional encoding to intro-
duce general spatial prior and further incorporate learnable embeddings to en-
code adaptive spatial information. These spatial tokens provide essential spatial
prior to guide the spatial-aware context feature learning from the images. Us-
ing the spatial tokens as queries, we perform cross-attention to transfer context
information to obtain enhanced spatial representation. We employ a decoder-
only architecture for more generalizable image backbones and propose bilateral
cross-attention to enable information flow between context and spatial tokens.
Notably, the adaptable representation of spatial tokens enables seamless transfer
to images of varying sizes or those augmented with 3D information. The updated
spatial tokens can also serve as enhanced initial queries for task-specific adapta-
tions, facilitating the transfer of knowledge acquired from image pre-training to
downstream tasks. Extensive experiments on ImageNet-1K [12] for image classi-
fication, MS-COCO [26] for 2D object detection, ADE20K [64] for 2D semantic
segmentation, and nuScenes [2] for 3D object detection verify the effectiveness,
efficiency, and generalization ability of the proposed SpatialFormer architecture.

2 Related Work

Vision Transformer. Since Vaswani et al. [41] first proposed the transformer
architecture for machine translation, it has conquered almost all NLP tasks and
become the new state-of-the-art model in the language domain. Inspired by its
great success, Dosovitskiy et al. [15] introduced the transformer to computer
vision by partitioning an image into a sequence of non-overlapping patches as
input. Further works then designed more efficient self-attention modules and
adopted a multi-stage pyramid architecture to gradually process tokens of lower
resolutions [9, 13, 30, 32, 53]. Despite many efforts being expended on process-
ing inputs of different formulations, there has been limited exploration into the
integration of spatial information. Most existing ViTs resort to additional posi-
tional embedding to inject the knowledge of local position into each image token.
Absolute positional embeddings are first introduced to be added into each to-
ken after the image patchfication step [15, 41]. Relative positional embeddings
are further proposed to directly incorporate relative positional information into
the attention matrix [16, 28, 30]. However, the acquired positional bias proves
insufficient in modeling the broader spatial scene, thereby posing challenges in
generalizing to downstream tasks with varying image resolutions and 3D spatial
information. Differently, the proposed SpatialFormer adopts a decoder-only ar-
chitecture to efficiently perform interactions between image tokens and spatial
tokens to obtain spatial-aware image representations.

Learning Spatial Information from Images. Learning spatial informa-
tion from images is a long-standing problem in computer vision, particularly
crucial for 3D perception tasks. Equipped with large pretrained image models,
vision-based methods have achieved comparable performance to LiDAR-based
methods in various 3D perception tasks such as 3D object detection [25,29,55,57]
and 3D occupancy prediction [20,22,38,48,59,61,68]. With cameras being much
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cheaper than 3D sensors like LiDAR, vision-based scene perception has attracted
intense attention and is increasingly important in real-world applications in-
cluding autonomous driving [25,57,58,63]. Existing works follow a conventional
paradigm, which first uses image backbones to extract 2D image features and
then incorporate the spatial information to lift the 2D feature into the 3D space.
DETR3D [46] employs 3D object queries and performs cross-attention to it-
eratively refine them to decode 3D object information. BEVFormer [25] and
TPVFormer [21] further improved it using deformable cross-attention to obtain
bird’s eye view and tri-perspective view representations, respectively, to model
the 3D scene. Different from vision-based scene perception, our objective is to
design an efficient image backbone that directly learns spatial-aware image fea-
tures encoding the 3D scene information when adapting to 3D perception tasks.

3 Proposed Approach

3.1 Learning Spatial-aware Image Representation

Vision transformers (ViTs) process image patches as input, capturing their long-
range relationships within the context feature space. While most ViTs incorpo-
rate additional positional embeddings to impart local positional awareness to
each image token, this approach only captures limited positional information of
the input 2D pixels during pre-training. As depicted in Fig. 1, it falls short of
effectively modeling the spatial information inherent in the underlying scene, re-
lying on task-specific decoders to introduce spatial priors for downstream tasks.

To address this, we propose SpatialFormer, an efficient architecture with
adaptive spatial tokens to directly model the underlying 2D/3D scene from im-
ages. We leverage a set of adaptive spatial tokens to represent the spatial scene
and decode the spatial information through interactions between spatial tokens
and image tokens. To facilitate efficient interactions, we modify conventional vi-
sion transformer decoder blocks into bilateral cross-attention (BCA) blocks, as
depicted in Fig. 2. By introducing this novel design of adaptive spatial tokens
and a decoder-only architecture with BCA blocks, we enhance the ability to
learn generalizable representations of the 2D/3D underlying scene from images.

Adaptive Spatial Tokens. To incorporate the 2D/3D spatial scene infor-
mation, we introduce a set of adaptive spatial tokens capable of generalizing to
various types of input images. Specifically, for a given input image, we initiate
the position of spatial tokens by sampling a grid of N×N spatial points, denoted
as P = {pi ∈ Rm, i = 1, 2, ..., N2}.

For a common single-view image, we simply employ the pixel coordinate:

pi = (u, v)T ∈ R2. (1)

For multi-view images, we generate 3D coordinates pi = (x, y, z)T ∈ R3 within
the real-world scene. The process involves lifting the 2D pixel to a 3D spatial
point by introducing a depth dimension orthogonal to the image plane. By dis-
cretizing the camera frustum space and sampling candidate depth values along
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Fig. 2: Illustration of the bilateral cross-attention (BCA) block. We simul-
taneously perform image-to-spatial and spatial-to-image cross-attention, along with
self-attention among spatial tokens in parallel to achieve low latency.

the axis, we obtain corresponding 3D points as {(u× dj , v× dj , dj)
T }Dj=1, where

{dj}Dj=1 represents the set of candidate depth values. Subsequently, these pixel
coordinates are transformed into 3D world coordinates using the corresponding
camera intrinsic matrix K and extrinsic matrix E:

pi = (x, y, z)T = EK{(u× dj , v × dj , dj)
T }Dj=1. (2)

We then employ the mapping function γ to transform the points coordinates
into high-dimensional fourier features γ(p) ∈ RN2×C following [37]:

γ(P ) = {[cos(2πSp′i), sin(2πSp′i)]T , i = 1, 2, ..., N2}, (3)

where p′i ∈ Rm denotes the normalized coordinate in the [−1, 1] of the spatial
points (with m = 2 for 2D pixels and m = 3 for 3D points, respectively). Each
entry in S ∈ RC/2×m is sampled from a Gaussian distribution N (0, σ2).

Subsequently, we utilize the obtained positional encodings, summed with
learnable embeddings, to initialize the corresponding spatial tokens:

Z0
S = γ(P ) +Qp, (4)

where Qp is the learnable embedding designed to enhance the representation
capacity of the spatial tokens. By adopting the positional encoding format, our
spatial tokens can effectively represent both 2D and 3D spatial scenes. This
facilitates a versatile interaction with the image tokens in the subsequent blocks.

Bilateral Cross-Attention Block. To enable the efficient interaction be-
tween the spatial tokens and image tokens, we customize the conventional vision
transformer decoder layers into Bilateral Cross-Attention (BCA) blocks. In the
proposed BCA block, spatial tokens are first enhanced through cross-attention
with the context feature from the image tokens. This mechanism enables the
guidance of spatial tokens by context features, facilitating the acquisition of
meaningful representations. We then perform self-attention among the spatial
tokens to capture the spatial clues within the underlying spatial scene, followed
by LayerNorm (LN) and feed-forward networks to generate the updated spatial
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tokens. For the l-th decoder block, we update the spatial scene representation
by the spatial tokens ZS using both cross-attention and self-attention:

Ẑl
S = CA(Ql

S,K
l
I,V

l
I) + Zl

S,

Ẑl
S
′ = SA(Ql

S,K
l
S,V

l
S) + Ẑl

S,

Zl+1
S = FFN(LN(Ẑl

S
′)) + Ẑl

S
′,

(5)

where Kl
I,V

l
I,K

l
S,V

l
S denote the keys and values obtained from the image tokens

Zl
I and input spatial tokens Zl

S .
The updated spatial tokens encode the spatial prior essential for the context

feature extraction. Therefore, we introduce another cross-attention that utilizes
the spatial prior provided by the spatial tokens to update the image tokens.
Specifically, given the input image tokens Zl

I in the l-th decoder block, we update
them through cross-attention with the spatial tokens:

Ẑl
I = CA(Ql

I,K
l
S,V

l
S) + Zl

I, Zl+1
I = FFN(LN(Ẑl

I)) + Ẑl
I. (6)

By introducing the learnable spatial tokens, our approach can produce spatial-
aware features from images in an efficient manner. This approach enables us to
obtain comprehensive scene representations directly from images, facilitating the
downstream 2D and 3D visual perception task. The updated spatial tokens can
function as initial queries for task-specific decoders, transferring the spatial per-
ception capacity acquired from image pre-training to downstream tasks. Further
details about task-specific adaptations are elaborated in Section 3.3.

3.2 SpatialFormer

We propose a decoder-only vision backbone, SpatialFormer, which leverages the
Bilateral Cross-Attention (BCA) block as the fundamental building block for
learning spatial-aware image representation efficiently, as shown in Fig. 3. In-
spired by the recent state-of-the-art architectures [9, 30], we design our models
with a four-stage pyramid structure, ensuring that the tiny, small, and base
models have comparable parameters and FLOPs to existing ones. We provide
the detailed architectures of our SpatialFormer in the supplementary.

In the initial stage, we employ non-overlapping convolutional layers to extract
patch embeddings from the input image. In the subsequent stages, we utilize the
patch merging module to reduce spatial resolution while simultaneously increas-
ing the dimensions of image features. As for the spatial tokens, the number can
be adjusted flexibly according to the target tasks and datasets regardless of the
input resolutions. Within the first two stages, we stack the proposed BCA block,
which facilitates both self-attention and cross-attention to update the spatial to-
kens, while only applying cross-attention to the image tokens. In the third and
fourth stages, we introduce additional self-attention to the image tokens. We im-
plement the Self-Attention (SA) block, where we concatenate the spatial tokens
and image tokens and apply self-attention to them.
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Fig. 3: Illustration of our SpatialFormer architecture. We adopt a four-stage
pyramid structure and employ the bilateral attention block in the first two stages. With
fewer image tokens in the latter stages, we add self-attention between image tokens to
improve the performance without introducing too much computation load.

Our SpatialFormer achieves a favorable trade-off between accuracy and com-
putational complexity with the BCA block and SA block. This allows for effective
information exchange and integration between the 3D scene tokens and 2D image
representations, enhancing the overall understanding of the 3D scene.

3.3 Adaptation to Downstream Tasks

In contrast to traditional vision transformer backbones, our SpatialFormer demon-
strates remarkable adaptability for downstream tasks by incorporating spatial
tokens to integrate spatial scene information. For instance, in the context of 3D
perception tasks, we seamlessly integrate 3D scene knowledge into the backbone
model by utilizing 3D positional encodings. Furthermore, the spatial tokens up-
dated by our decoder-only architecture can be directly utilized by task-specific
heads as initial queries to acquire dense predictions, enhancing spatial under-
standing capacities for tasks such as detection and segmentation.

Image Classification. We employ a classification head consisting of a fully
connected layer to process the output tokens. The default token number is set to
8× 8 to balance accuracy and computational complexity. Adjusting the number
of spatial tokens allows for tailoring to specific needs, enabling improvements in
accuracy for higher-resolution fine-tuning or reducing computational complexity.

2D Detection and Segmentation. Our SpatialFormer is a general vision
backbone compatible with widely used frameworks like Mask-RCNN and also
generalizes to multi-scale training by reconfiguring the initial positions of spatial
tokens. Moreover, the generated spatial tokens can serve as initial object queries,
feeding into multiple transformer decoder layers, thereby directly contributing
to the acquisition of dense prediction results.

3D Perception. Traditional vision transformers are typically pretrained on
2D single-view images, resulting in feature extraction that lacks 3D knowledge.
In contrast, our SpatialFormer processes multi-view images and encodes 3D scene
representation directly by utilizing camera parameters to derive 3D positional
encodings, initializing the spatial tokens for enhanced 3D perception capabilities.
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4 Experiments

In this section, we conduct extensive experiments to evaluate our SpatialFormer.
We provide more dataset and implementation details in the supplementary.

4.1 ImageNet Classification

Experimental Settings. We first evaluate our SpatialFormer on ImageNet [34],
which is a widely used benchmark for image classification. ImageNet consists
of around 1.2M training images and 50K validation images from 1K different
categories. For a fair comparison, we follow the same training recipe as the DeiT
model [39]. Specifically, we train the models from scratch for 300 epochs with an
input size of 224×224. We use the default data augmentation and regularization
strategy. Additionally, we finetune the SpatialFormer backbones at a resolution
of 384× 384 for 30 epochs following previous settings [31].

Results. Table 1 shows that our SpatialFormer outperforms state-of-the-art
methods in terms of accuracy and computation efficiency across different model
sizes. Specifically, our SpatialFormer-T achieves a top-1 accuracy of 81.5%, out-
performing PVTv2-b1 [44] and Shunted-T [33] by 2.8% and 1.7%, respectively.
Our small model SpatialFormer-S achieves a competitive result of 83.8% with
only 4.8G FLOPs, demonstrating the best trade-offs between computational cost
and accuracy among models of similar size. Our largest model, SpatialFormer-
B, achieves 84.5% top-1 accuracy with only 50M parameters and 9.8G FLOPs,
surpassing models with much higher FLOPs, such as Swin-B [30], ConvNeXt-
B [31], and CSWin-B [13]. Furthermore, our SpatialFormer shows promising
performance potential when fine-tuned at higher resolution. The performance
of SpatialFormer-S and SpatialFormer-B can be further boosted to 84.7% and
85.3%, respectively, outperforming existing architectures with fewer FLOPs.

4.2 Object Detection and Instance Segmentation

Experimental Settings. To evaluate SpatialFormer on downstream dense pre-
diction tasks, we conduct experiments on object detection and instance seg-
mentation using the COCO 2017 dataset [26]. We use the SpatialFormer-S and
SpatialFormer-B models pretrained on ImageNet as the backbones using Mask-
RCNN with a 1x training schedule and Cascade Mask-RCNN [3] with a 3x
training schedule and multi-scale training for further validation. Moreover, our
SpatialFormer can utilize spatial tokens as initial object queries to build a trans-
former decoder-based detection framework. We duplicate the 8×8 spatial tokens,
select the top 150 queries, and stack 6 deformable DETR decoder layers to obtain
detection results. The model is trained using a 1x training schedule.

Results. We report the performance on COCO object detection and instance
segmentation in Table 2. Our SpatialFormer outperforms all the other vision
backbones under different model sizes. For Mask-RCNN, SpatialFormer-S out-
performs UniFormer-S by 2.2 while SpatialFormer-B outperforms UniFormer-B
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Table 1: Comparisons on ImageNet classification. We compare the parameters,
FLOPs, and accuracy of our SpatialFormer with other state-of-the-art architectures.

Model Image Size Params FLOPs Top-1 Acc (%) Top-5 Acc(%)

ResNet-18 [19] 2242 11.7M 1.8G 69.8 89.1
DeiT-T [39] 2242 5.7M 1.6G 72.2 91.3
PVT-T [43] 2242 13.2M 1.9G 75.1 92.4
PVTv2-b1 [44] 2242 13.1M 3.1G 78.7 -
Shunted-T [33] 2242 11.5M 2.1G 79.8 -
SpatialFormer-T 2242 11.6M 2.4G 81.5 95.8

ResNet-50 [19] 2242 26M 4.1G 78.3 94.3
DeiT-S [39] 2242 22M 4.6G 79.9 95.0
Swin-T [30] 2242 29M 4.5G 81.2 95.5
PVT-S [43] 2242 25M 3.8G 79.8 95.0
CrossFormer-S [45] 2242 31M 4.9G 82.5 -
RegionViT-S [6] 2242 31M 5.3G 82.6 96.1
CSWin-T [13] 2242 23M 4.3G 82.7 -
UniFormer-S [23] 2242 24M 4.2G 82.9 96.2
PaCa-Small [17] 2242 21M 5.4G 83.2 -
CMT-S [18] 2242 25M 4.0G 83.5 96.6
SpatialFormer-S 2242 25M 4.8G 83.8 96.4

CvT-13 [49] 3842 20M 16.3G 83.0 -
CaiT-XS24 [40] 3842 27M 19.3G 84.1 96.9
CSWin-T [13] 3842 23M 14.0G 84.3 -
SpatialFormer-S 3842 25M 12.8G 84.7 97.1

ResNet-152 [19] 2242 60M 11.6G 81.3 95.5
DeiT-B [39] 2242 86 M 17.5G 81.8 95.6
Swin-B [30] 2242 88M 15.4G 83.5 96.5
ConvNeXt-B [31] 2242 89M 15.4G 83.8 -
CSWin-B [14] 2242 78M 15.0G 84.2 -
DAT-B [50] 2242 88M 15.8G 84.0 96.7
UniFormer-B [23] 2242 50M 8.3G 83.9 96.7
RegionViT-B [6] 2242 74M 13.6G 83.8 96.1
QFormer-B [56] 2242 90M 15.7G 84.1 96.8
SpatialFormer-B 2242 50M 9.8G 84.5 96.8

Swin-B [30] 3842 88M 47.0G 84.5 97.0
DAT-B [50] 3842 88M 49.8G 84.8 97.0
CaiT-S24 [40] 3842 47M 32.2G 85.1 97.4
SpatialFormer-B 3842 50M 23.5G 85.3 97.5

by 1.8 in terms of AP b, verifying the advantages of spatial-aware image represen-
tation learning. For Cascade Mask-RCNN, SpatialFormer surpasses models with
much higher parameters and FLOPs such as Swin-S and DAT-S. Moreover, we
observe a significant performance improvement (1.2 of AP b) for SpatialFormer-S
compared to the most competitive transformer decoder-based frameworks. No-
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Table 2: Results on COCO for object detection and instance segmentation.
The FLOPs are measured on input sizes of 1280× 800.

(a) Mask-RCNN Object Detection and Instance Segmentation
Backbone Params FLOPs Schedule AP b AP b

50 AP b
75 APm APm

50 APm
75

PVT-S [43] 44M 245G 1x 40.4 62.9 43.8 37.8 60.1 40.3
Swin-T [30] 48M 267G 1x 42.2 64.6 46.2 39.1 61.6 42.0
CrossFormer-S [45] 50M 301G 1x 45.4 68.0 49.7 41.4 64.8 44.6
UniFormer-S [23] 41M 269G 1x 45.6 68.1 49.7 41.6 64.8 45.0
SpatialFormer-S 42M 255G 1x 47.8 70.1 52.5 42.5 66.6 45.8

Swin-S [30] 69M 354G 1x 44.8 66.6 48.9 40.9 63.4 44.2
DAT-S [50] 69M 378G 1x 47.1 69.9 51.5 42.5 66.7 45.4
CrossFormer-B [45] 72M 408G 1x 47.2 69.9 51.8 42.7 66.6 46.2
UniFormer-B [23] 69M 399G 1x 47.4 69.7 52.1 43.1 66.0 46.5
SpatialFormer-B 59M 316G 1x 49.2 71.1 54.4 43.7 67.7 47.1

(b) Cascade Mask-RCNN Object Detection and Instance Segmentation
Backbone Params FLOPs Schedule AP b AP b

50 AP b
75 APm APm

50 APm
75

Swin-T [30] 86 M 745G 3x 48.1 67.1 52.2 41.7 64.4 45.0
DAT-T [50] 86 M 750G 3x 49.1 68.2 52.9 42.5 65.4 45.8
Swin-S [30] 107 M 838G 3x 50.4 69.2 54.7 43.7 66.6 47.3
DAT-S [50] 107 M 857G 3x 51.3 70.1 55.8 44.5 67.5 48.1
SpatialFormer-S 82 M 734G 3x 52.2 70.8 56.6 45.2 68.3 49.0

Swin-S [30] 86 M 745G 3x 48.1 67.1 52.2 41.7 64.4 45.0
DAT-S [50] 86 M 750G 3x 49.1 68.2 52.9 42.5 65.4 45.8
Swin-S [30] 107 M 838G 3x 50.4 69.2 54.7 43.7 66.6 47.3
DAT-S [50] 107 M 857G 3x 51.3 70.1 55.8 44.5 67.5 48.1
SpatialFormer-B 98M 812G 3x 52.9 71.357.4 45.9 68.9 49.9

(c) Transformer Decoder-Based Object Detection
Framework Backbone Two-Stage Epoch AP b AP b

50 AP b
75 AP b

S AP b
M AP b

L

DETR [5] ResNet-50 × 12 15.5 29.4 14.5 4.3 15.1 26.7
DAB-DETR [27] ResNet-50 × 12 38.0 60.3 39.8 19.2 40.9 55.4
Dynamic DETR [11] ResNet-50 × 12 42.9 61.0 46.3 24.6 44.9 54.4
Deformable DETR [67] ResNet-50 × 12 37.2 55.5 40.5 21.1 40.7 50.5
Deformable DETR [67] ResNet-50 ✓ 12 43.7 62.9 47.2 26.7 46.9 57.2
Deformable DETR [67] Swin-T × 12 41.9 59.0 44.5 26.4 41.3 45.9
Deformable DETR [67] Swin-T ✓ 12 45.3 64.8 49.0 27.8 48.5 60.6
SpatialFormer Ours-Small × 12 43.5 61.8 47.0 27.3 46.3 58.2
SpatialFormer Ours-Small ✓ 12 46.5 64.9 50.5 29.3 49.5 61.0

tably, SpatialFormer surpasses Deformable DETR with ResNet50 and Swin-T in
the one-stage setting (43.5% vs 37.2% vs 41.9% in terms of mAP), even without
spatial tokens as initialization. This results from the ability of SpatialFormer to
capture spatial scene information, providing additional information about the
object details. By encoding such spatial information, our model can effectively
handle challenging scenarios in object detection.
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Table 3: Results on ADE20K for semantic segmentation. The FLOPs are
measured at the input resolution of 512× 2048.

(a) UpperNet Semantic Segmentation
Backbone Params FLOPs mIoU mIoU (MS) mAcc

Swin-T [30] 60M 945G 44.4 45.8 55.6
DAT-T [50] 60M 957G 45.5 46.4 58.0
CrossFormer-S [45] 62M 980G 47.6 48.4 -
SpatialFormer-S 52M 935G 48.1 49.2 59.4

Swin-B [30] 121M 1188G 48.1 49.7 59.1
DAT-B [50] 121M 1212G 49.4 50.5 61.8
CrossFormer-B [45] 84M 1079G 49.2 50.1 -
SpatialFormer-B 73M 1028G 50.3 51.2 61.8

(b) Transformer Decoder-Based Semantic Segmentation
Framework Backbone Iterations mIoU mIoU (MS) mAcc

MaskFormer [8] Swin-T 160k 46.7 48.8 -
Mask2Former [7] Swin-T 160k 47.7 49.6 -
kMaX-DeepLab [54] ConvNeXt-T 100k 48.3 - -
SpatialFormer Ours-Small 160k 50.0 52.8 63.1

4.3 Semantic Segmentation

Experimental Settings. We further evaluate the performance of our Spa-
tialFormer on the ADE20K dataset [65] for semantic segmentation. We first
adopt the UpperNet [52] framework with the integration of our SpatialFormer
backbone. Additionally, we employ the generated spatial tokens as initial object
queries to derive segmentation masks using the Mask2Former [7] decoder layers.
For all the models, we train them using the AdamW optimizer for 160k itera-
tions, with a batch size of 16 and input image cropped to 512× 512. We follow
the settings of Swin Transformer [30] and Mask2Former [7] for fair comparison.

Results. We present results using the UpperNet semantic segmentation
framework on the ADE20K [65] dataset in Table 3. Our SpatialFormer-S outper-
forms CrossFormer-S by 0.5 mIoU and our SpatialFormer-B can attain 2.2 higher
mIoU than Swin-B, which has much higher FLOPs. Furthermore, SpatialFormer
surpasses other decoder-based segmentation frameworks by incorporating spa-
tial tokens. Unlike conventional backbones relying on context feature extraction,
SpatialFormer excels in capturing fine-grained spatial information and exhibits
strong transferability to transformer-based segmentation architectures.

4.4 3D Object Detection on nuScenes

Experimental Settings. To evaluate the generalization of SpatialFormer for
3D perception tasks, we applied SpatialFormer with to BEVFormer [25] to per-
form 3D object detection tasks on nuScenes. To verify the effectiveness of 3D
scene information incorporation, we experiment with both 2D and 3D types of
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Table 4: 3D object detection results on nuScenes.

Framework Backbone Epochs NDS↑mAP↑mATE↓mASE↓mAOE↓mAVE↓mAAE↓

BEVDepth [24] ResNet-50 24 0.367 0.315 0.702 0.271 0.621 1.042 0.315
BEVDepth [24] ResNet-101 24 0.381 0.320 0.682 0.272 0.562 0.997 0.284
BEVFormer [25] ResNet-50 24 0.354 0.252 0.900 0.294 0.655 0.657 0.216
BEVFormer [25] Swin-T 24 0.369 0.265 0.898 0.284 0.631 0.594 0.224
SpatialFormer(2D) Ours-Small 24 0.389 0.290 0.856 0.287 0.582 0.611 0.221
SpatialFormer(3D) Ours-Small 24 0.392 0.297 0.848 0.285 0.610 0.608 0.217

Table 5: Ablation on the number of
spatial tokens under various input
resolutions of SpatialFormer-S.

#Token Size Params FLOPs Acc (%)

None 2242 24M 4.0G 81.3
16 2242 24M 4.3G 83.0
64 2242 25M 4.8G 83.8
64 3842 25M 12.8G 84.7
256 2242 25M 7.0G 84.1
256 3842 25M 15.0G 85.0

Table 6: Ablation on different ar-
chitecture designs of patialFormer-S.
BCA-BCA-SA-SA represents using the Bi-
lateral Cross-Attention block at the first
two stages and the Self-Attention block at
the following two stages.

Stages Params FLOPs Acc(%)

BCA-BCA-SA-SA 25M 4.8G 83.8
BCA-BCA-BCA-SA 31M 5.2G 84.0

BCA-BCA-BCA-BCA 37M 5.4G 84.1

positional encoding to initialize the spatial tokens. We train the models for 24
epochs, following the other hyperparameter settings of BEVFormer [25].

Results. Table 4 summarizes the detailed comparison results. Our Spatial-
Former notably improves the NDS scores of baseline BEVFormer with Swin-T
backbone from 0.369 to 0.389 on nuScenes val. This improvement underscores the
effectiveness of the proposed spatial tokens in refining the localization accuracy
of 3D object detection predictions. Furthermore, we observe our SpatialFormer
can further boost the performance to 0.392 when adopting the 3D type of spatial
tokens. These experimental results demonstrate the superior capabilities of our
SpatialFormer for 3D scene understanding based on multi-view images.

4.5 Quantitive Analysis

Incorporation of Spatial Tokens. To investigate the impact of spatial tokens,
we remove the positional encoding from the bilateral decoder layer and explore
various numbers of spatial tokens across different input resolutions, as shown in
Table 5. Without positional encoding, the spatial tokens devolve into random-
initialized queries, lacking any spatial priors and resulting in performance drops.
Decreasing the number of spatial tokens to 4 × 4 yields lower accuracy but
reduces FLOPs. Conversely, increasing to 16 × 16 improves accuracy by incor-
porating more fine-grained spatial information, albeit at the cost of increased
computational complexity. To achieve the best trade-off between performance
and computation, we use 8× 8 spatial tokens in our experiments as default.
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Table 7: Comparisons with conventional
positional embeddings/encodings.

Method Params FLOPs Acc (%)

Baseline 24M 4.0G 81.3
Absolute PE [15] 24M 4.0G 81.7 (+0.4)
Relative PE [30] 25M 4.2G 82.0 (+0.7)

Conditional PE [10] 25M 4.7G 82.1 (+0.8)
Rotary PE [36] 24M 4.5G 81.8 (+0.5)

Dynamic Conv. [1] 25M 4.3G 81.7 (+0.4)
SpatialFormer-S 25M 4.8G 83.8 (+2.5)

Resolution

To
p-

1 
Ac

cu
ra

cy

Fig. 4: Effect of different embedding sizes.

Architecture Design. We further investigate the impact of different archi-
tectural designs of our SpatialFormer. We replace the Self-Attention block with
our proposed Bilateral Cross-Attention (BCA) block in the third and fourth
stages. Results in Table 6 demonstrate that increasing the number of BCA blocks
improves performance. This highlights the effectiveness of incorporating more
BCA blocks in learning the underlying 3D scene from images. However, it is less
efficient compared to the SA block in the last two stages. Hence, we choose to
use BCA blocks in the first two stages and SA blocks for the remaining stages.

4.6 Qualitative Analysis

Attention maps for a certain spatial token. To better illustrate the inter-
actions between image tokens and spatial tokens, we provide visualizations of at-
tention maps generated from a spatial token in Fig. 5. The Cross-Attention maps
showcase interactions between spatial and image tokens, emphasizing the focus
on context features. Meanwhile, the Self-Attention maps illustrate dependencies
among spatial tokens, revealing a concentration on location-related information.
These visualizations demonstrate the ability of learned spatial tokens to discern
context and location details through cross and self-attention computations.

Attention maps for multi-view images. To better understand the spa-
tial token, we further provide visualizations of attention maps for multi-view
images from nuScenes [2]. As depicted in Fig. 6, the spatial token tends to pay
attention to the same object, even in different views. This shows that spatial
tokens encoding 3D information establish position correlations between different
views and can enhance spatial reasoning capabilities.

Comparisons with other positional embeddings. We provide compar-
isons with existing positional embedding/encoding (PE) methods in Table 7,
including absolute positional embedding [15], relative positional embedding [30],
conditional position encoding [10] , rotary position embedding [36], and position
encoding generated by dynamic convolution layers [1]. We establish a baseline
model without spatial tokens, using only learnable embeddings to perform bi-
lateral cross attentions with image tokens. In this configuration, the original
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Input Image Cross Attention Map Self-Attention Map

Input Image Cross Attention Map Self-Attention Map

Fig. 5: Visualization of attention maps gen-
erated from a fixed spatial token.

CAM_FRONT_RIGHT CAM_FRONT_RIGHT CAM_BACK_RIGHT CAM_BACK_RIGHT

CAM_FRONT_RIGHT CAM_FRONT_RIGHT CAM_BACK_RIGHT CAM_BACK_RIGHT

Fig. 6: Visualization of attention maps on
multi-view images.

spatial tokens degenerate into image feature queries, while maintaining the pri-
mary model architectures. We see that our method outperforms existing PEs by
a large margin. While some methods explore input-relevant positional informa-
tion, they only add positional embedding to individual image patches at early
stages. SpatialFormer enables a more spatial-aware representation by updating
adaptive spatial tokens through bilateral cross-attention with image tokens.

Generalization ability without fine-tuning. To further verify the gen-
eralization ability of our model, we evaluate the transferring ability without
fine-tuning. Specifically, we transfer models trained on 2242 images directly to
images of different resolutions without fine-tuning. We see that DeiT suffers sig-
nificant performance drops on other resolutions while our method can directly
generalize to larger image sizes without additional fine-tuning, as demonstrated
in Fig. 4. This is because conventional positional embeddings defined on lo-
cal image patches are inherently task-agnostic and may not effectively leverage
spatial information during fine-tuning, resulting in inferior generalization. This
motivates the use of adaptive spatial tokens for enhanced generalizability across
various downstream tasks, as also demonstrated in Sections 4.2, 4.3, and 4.4.

5 Conclusion

In this paper, we have introduced a SpatialFormer model to enhance spatial-
aware image feature learning and improve generalization to downstream tasks.
By incorporating adaptive spatial tokens alongside image tokens, SpatialFormer
efficiently captures spatial scene information, effectively addressing limitations
in conventional transformers that rely solely on local positional embeddings. Our
approach, employing a decoder-only architecture, facilitates efficient interaction
between image and spatial tokens, resulting in enhanced spatial representation.
The proposed model not only advances standard image classification tasks but
also exhibits promising performance across diverse downstream applications, in-
cluding 2D dense prediction and 3D perception tasks. We hope our work can
inspire future research to develop more spatial-aware image backbones.
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