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In this appendix, we report additional details on AMEGO, the Active Memo-
ries Benchmark, additional results and visualisations. In Sec. 1, we include more
visualisations of both queries and qualitative results across the complete range
of questions in Active Memories Benchmark (AMB). We further detail AMB
in Sec. 2. We then give more information on how we query AMEGO to obtain
the answers required for the set of questions in AMB (Sec. 3). Next, in Sec. 4,
we present additional ablations for AMEGO. Finally, in Sec. 5, we report the
pseudocode version of the pipeline adopted in AMEGO.

1 Qualitative results

In Fig. 1 we show additional examples of sequencing questions, with all possible
alternatives. AMEGO is able to correctly answer them, showcasing its sequencing
capabilities.

On the project webpage we include videos depicting AMEGO representa-
tion on EPIC-KITCHENS videos. Similar to Fig. 1 in the main paper each row
shows a different location spotted with our method. The white bar represents
the temporal position of the frame depicted.

2 Active Memories Benchmark

2.1 Ground Truth

We combine annotations from EPIC-KITCHENS [1], VISOR [2], and EPIC
Fields [3] to extract the ground truth used for creating our queries.

To obtain ground truths for locations, we filter out all frames with a high
optical flow norm as these correspond to segments of video where the camera
wearer is moving between locations. We then compute the intersection between
the rays tracing from the camera through 5 pixels representing a crop of the
image (four corners and centre pixel) and the mesh of the scene. For a frame size
of 480 × 854, we selected the following pixels : (213, 240) as central-left, (640,
240) as central-right, (427, 120) as central-top, (427, 360) as central-bottom, and
(427, 240) as the central frame. We then average the 3D points obtained, repre-
senting the locations where the subject focused for a period of time, indicating
a potential interaction. The average is employed to reduce errors arising from
noisy automatically extracted meshes.
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Q1: “What is the correct sequence of objects I have interacted with?”

fridge

kale

packaging

knife

fridge

kale

packaging

knife

packaging

knife

kale

sharpener:knife

knife

kale

packaging

fridge

sharpener:knife

kale

packaging

knife

LLM risponde 3
AMEGO 2 (corretto)

Q2: “After      at time 00:39, with which objects   
         has the subject interacted using the left hand?”

blueberry fridge saucepan honey spoon

powder

LLM answes 2 -> Q2_002968

Q3: “Before      at time 01:14, with which objects has the subject interacted using 
the right hand?”

salt pan plate scissors sieve

bag:rice

LLM answes 3 -> Q3_001133

Q4: “What is the last location where the subject interacted with     ?

bottle:cooking:wine

LLM answers 4 –> Q4_001313

Fig. 1: Examples of Q1-Q4. In green the right answer, correctly selected by AMEGO.
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We then use hierarchical density-based clustering to obtain rough spatial
clusters of the scene using the L2 distance among 3D locations as metric. Sub-
sequently, we manually refined the clustering results to segment the videos into
different functional activity-centric zones. For example, we differentiating a cook-
top from the kitchen counter immediately adjacent to it, as they naturally afford
different actions. We then find temporal segments corresponding to each loca-
tion cluster. This approach enabled us to establish ground truths for temporal
segments of locations.

To accurately capture object interactions’ ground truths, we use action seg-
ments from EPIC-KITCHENS where brief interactions with the same object
occurred. For example, we identify paired actions: ‘open fridge’ - ‘close fridge’ as
well as ‘pick plate’ - ‘put down plate’. By connecting these actions and finding
the temporal extent between them, we can define the full interaction with ob-
jects. This approach allowed us to obtain the complete interaction interval, even
when the camera wearer moved objects around the scene. We filtered out cases
where different instances of the same objects appeared multiple times within a
single video. Finally, we adopted VISOR masks to extract the visual queries for
AMB.

2.2 Query creation

The Active Memories Benchmark is a visual-only QA benchmark focused on the
subject’s interactions during long egocentric videos. One of the challenges is to
select a visual representation for objects to form our visual query [VQ]. To ad-
dress strong occlusion typical in egocentric vision, caused by the camera wearer’s
hands or other objects, we selected up to 3 different image patches for each ob-
ject to form the query. These patches should be temporally distinct, to showcase
different poses – we use a minimum of 0.5s between patches. Additionally, we
select patches with minimal spatial overlap with bounding boxes of other active
objects/hands in the same frame, to minimise occlusion. Similarly, for location
images, we extracted frames with the lowest spatial overlap with active objects,
so the location is present without many moving objects. For locations, we use
location images with a minimum of 1s differences.

To create the Active Memories Benchmark we randomly sample 100 EPIC-
KITCHENS [1] videos among the ones with both VISOR [2] masks and EPIC
Fields [3] camera poses. We use the list of nouns from the narrations available
in EPIC-KITCHENS, as an initial set of possible objects. We then filter out
objects without corresponding VISOR masks, as we use these for spatial ground
truth. We then generate the queries for all annotated objects/locations starting
from the templates in Table 1 of the main paper. The alternative answers for
each query have been generated using a rationale in a semi-automated process
to increase the complexity of the benchmark.
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(a) Distribution of queries by type (b) Distribution of queries by reasoning level

(c) Distribution of queries by video duration for
each reasoning level

(d) Average number of queries per video by du-
ration for each reasoning level

(e) Queries of type Q7 by duration (f) Queries of type Q8 by duration

(g) Distribution of crop sizes of objects (h) Wordcloud of most frequent queried objects

Fig. 2: Statistics of the Active Memories Benchmark questions
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2.3 Statistics

In Figure 2, various statistics regarding the Active Memories Benchmark are
presented. Specifically, the distribution per query type (Figure 2a), per reason-
ing level (Figure 2b), per video duration (Figures 2c and 2d), the interaction
duration for queries of type Q7 (Figure 2e) and Q8 (Figure 2f), the distribution
of crop sizes of the objects (relative to the frame dimension) in our benchmark
(Figure 2g), and the frequency of queried nouns as a WordCloud (Figure 2h). No-
tably, sequencing queries constitute nearly two-thirds of the entire benchmark,
reflecting their importance in understanding the temporal flow of object inter-
actions in long videos, which is essential for higher-level understanding such as
causal inference. Moreover, the number of questions increases with longer video
durations (Fig. 2d), resulting in a benchmark tailored towards longer videos
(the main focus of our work, see Fig. 2c). The duration of interactions exhibits
a long-tailed distribution due to the fine-grained nature of queried objects and
locations (Fig. 2e) and (Fig. 2f). Naturally, the most frequent objects in the
dataset are also prominent in our questions (Fig. 2h). Smaller object crops are
more frequently involved in our queries (Fig. 2g).

2.4 Benchmark comparison

Compared to other egocentric QA benchmarks, presented in Table 1, Active
Memories Benchmark stands out due to its unique characteristics. It primarily
emphasizes long egocentric videos, evident from the substantial average length of
queried recordings. Similar to ReST [4], Active Memories Benchmark maintains
a strong focus on vision, thereby mitigating potential language biases. However,
unlike ReST, Active Memories Benchmark also incorporates the location dimen-
sion into its framework.

Table 1: Comparison of Active Memories Benchmark with other egocentric video QA
datasets

Benchmarks #Queries (K) Avg. length (s) Total hours Vision focused

EgoVQA 0.5 2.2 0.3
EgoSchema 5 180 253
QAEgo4D 14.5 495 182
ReST - ADL 185.7 1631 9 ✓(Activity, Object, Time)
ReST - Ego4D 303.3 1104 92 ✓(Activity, Object, Time)

AMB 20.5 1207 22.7 ✓(Location, Object, Time)

3 Answering questions using AMEGO

Given the memory E, our representation of the long egocentric video, query-
ing it provides various ways to answer questions regarding interacting objects
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and locations. Initially, we retrieve the closest representation of the query ob-
ject/location, then apply the obvious logic to address various questions in the
Active Memories Benchmark. Specifically:

– Q1: we match all objects in the sequences associated with each answer, as-
signing each image patch to an object ID qid, among those in O. Subsequently,
we select the answer with the longest common subsequence calculated be-
tween the complete sequence of O and any of the answers;

– Q2-3: we match the query object with the track in O based on three criteria:
(i) temporal proximity to t, (ii) containing the hand side specified in the
question, and (iii) achieving a minimum similarity of 0.6. Once the matching
track is identified, we simply extract the track after (Q2) or before (Q3) with
the query hand side in it and search among the answers for the one with the
highest similarity;

– Q4: we match the query object with the tracks in O and extract the cor-
responding object ID qid. Using this ID, we identify the first/last location
segment where it appeared in E and compare it with the answers. We select
the answer with the highest similarity;

– Q5: we match the query object with the tracks in O and extract the corre-
sponding object ID, qid. Similarly, we match each image patch in the answers
and extract the corresponding object IDs. Finally, we select the answer with
the highest number of object IDs that are concurrent with qid (i.e., overlap-
ping temporal segments) in E;

– Q6: similar to Q5, we match the query object with the tracks in O and extract
the corresponding object ID, qid. Then, we match each location patch in the
answers and extract the corresponding location IDs. Finally, we select the
answer with the highest number of location IDs that are concurrent with qid
(i.e., overlapping temporal segments) in E;

– Q7-8: we match the query object or location to the tracks in O or L re-
spectively. Then, we extract the corresponding instance and retrieve from E

all temporal intervals where the instance was active. Finally, we select the
answer with the highest average temporal Intersection over Union (IoU);

For each of the cases above, if two or more answers were found to be matching the
representation, we select the answer randomly. Similarly, if no answer is found,
a random answer is selected. We employ straightforward approaches to maintain
focus on the strength of the representation rather than the querying method. The
potential information extracted from E is solely constrained by the representation
itself, and similar querying techniques can be readily implemented to address
diverse, fine-grained questions about interactions in the long egocentric video V.

4 Additional ablations

We present here additional ablation results on the clustering threshold to per-
form the assignment step for both objects (θ) and locations (τ) and for the IoU
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Table 2: Ablation on IoU value

IoU AIoU P ↑ AIoU GT ↑ ∆N→ 0

0.3 0.19 0.37 226
0.5 0.20 0.41 210
0.7 0.18 0.32 168

0.4 0.6 0.8
0.38

0.4

0.42

0.44

θ

ID
-s

w
it

ch

Fig. 3: Ablation on θ
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Fig. 4: Ablation on τ

threshold value adopted for spatial matching of HOI tracklets O with object de-
tections Bo. We performed the ablations on the two manually annotated videos
described in Sec. 5.2 of the main paper. As it is important to evaluate cluster-
ing performance to ablate on θ and τ , we adopt another metric, ID-switch. It
computes the average number of times a predicted segment changes its instance
consecutively when it should not, i.e. when the ground truth object remains
the same. Consequently, we want it to be as low as possible. Fig. 3 and Fig. 4
show the effect of the clustering threshold on ID-switch. Although clustering
demonstrates stability across various thresholds, our selected threshold proves
to be optimal for the two manually annotated videos. Similar deductions can be
made from Tab. 2, where it is possible to notice that results do not change much
depending on the IoU threshold chosen.

5 AMEGO pseudocode

For the sake of clarity we report here the pseudocode depicting the algorithms
to build out interacting objects (Algorithm 1) and locations (Algorithm 2) rep-
resentation.
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Algorithm 1 Object interactions pipeline
1: Input:
2: Frames {Vt}
3: HOI detector D

4: SOT tracker T

5: Similarity threshold θ

6: Output:
7: Set of hand-object interaction tracklets O

8: for each frame Vt do
9: Bo

t ,B
h
t ← D(Vt) {Detect hands and objects}

10: for each detection (bo, bh) ∈ (Bo
t ,B

h
t ) do

11: if new hand-object interaction (i.e. so detections in the last ws frames) then
12: Create new tracklet oi
13: Start SOT Toi for oi
14: end if
15: end for
16: for each tracklet oi do
17: Update the detections with Toi

18: if ∄bo ∈ Bo
t matching with oi in the last eo frames and |Bh

t | > 0 then
19: Mark oi as complete
20: end if
21: end for
22: for each completed tracklet oi do
23: Compute visual features f(oi) (Eqn. 1)
24: Compute similarity s(oi, idj) with existing instances in O (Eqn. 2)
25: if maximum similarity > θ then
26: Assign oi to best matching instance idj
27: else
28: Create new instance for oi
29: end if
30: Store oi in O

31: end for
32: end for

33: return O
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Algorithm 2 Location Segment pipeline
1: Input:
2: Frames {Vt}
3: HOI detector D

4: Similarity threshold τ

5: Output: Set of location segments L

6: for each frame Vt do
7: Bo

t ,B
h
t ← D(Vt) {Detect hands and objects}

8: Compute optical flow OpticalFlow(Vt−1,Vt)
9: if location segment lj is active then

10: if high |OpticalFlow(Vt−1,Vt)| or |Bh
t | = 0 for el consecutive frames then

11: Mark lj as complete
12: else
13: Continue lj
14: end if
15: else
16: if low |OpticalFlow(Vt−1,Vt)| and |Bh

t | > 0 for sl consecutive frames then
17: Subject is interacting, start active location segment lj
18: end if
19: end if
20: for each completed segment lj do
21: Compute visual features g(lj)
22: Compute similarity s(lj , idi) with existing instances in L

23: if maximum similarity > τ then
24: Assign lj to best matching instance idi
25: else
26: Create new instance for lj
27: end if
28: Store lj in L

29: end for
30: end for

31: return L
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