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Abstract. Egocentric videos provide a unique perspective into individ-
uals’ daily experiences, yet their unstructured nature presents challenges
for perception. In this paper, we introduce AMEGO, a novel approach
aimed at enhancing the comprehension of very-long egocentric videos.
Inspired by the human’s ability to maintain information from a single
watching, AMEGO focuses on constructing a self-contained represen-
tations from one egocentric video, capturing key locations and object
interactions. This representation is semantic-free and facilitates multiple
queries without the need to reprocess the entire visual content. Addition-
ally, to evaluate our understanding of very-long egocentric videos, we in-
troduce the new Active Memories Benchmark (AMB), composed of more
than 20K of highly challenging visual queries from EPIC-KITCHENS.
These queries cover different levels of video reasoning (sequencing, con-
currency and temporal grounding) to assess detailed video understanding
capabilities. We showcase improved performance of AMEGO on AMB,
surpassing other video QA baselines by a substantial margin.

Keywords: Long video understanding · Egocentric vision

1 Introduction
Episodic memory is a fundamental aspect of human cognition, which allows us
to remember and recall our unique personal experiences [52]. Recently, there has
been growing interest in leveraging first-person or egocentric videos to develop
artificial episodic memory systems [11] that identify temporal segments from the
video that contain answers to questions [38] or occurrences of objects [28,61] and
activities [30,69].

Critically, these approaches build representations of long videos from uni-
formly sampled frame or clip features, and then train a model to retrieve salient
moments from the video using them. This has three drawbacks: (1) they are
human activity agnostic — the simplistic uniform sampling of frames is done
without an understanding of where the camera-wearer is, when object interac-
tions occur, or what hand the camera-wearer uses, which are key parameters of
human activity, (2) they rely on semantically labelled training data — explicitly
training encoders to relate the query to the input video representations, and
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Fig. 1: AMEGO captures key locations and object interactions in a structured rep-
resentation. In the each frame on top, the external border colour refers to a specific
location in AMEGO while colours of objects define specific instances. AMEGO unlocks
fine-grained long video understanding allowing multiple queries, such as the one de-
picted at the bottom of the figure, without reprocessing the long input video.

(3) they are difficult to interpret — the implicit representations do not directly
reveal human activity leaving such approaches largely as black boxes.

To address these issues, we present AMEGO, an Active Memory of the EGO-
centric video, which serves as an explicit, structured representation that captures
both objects interacted with, locations visited, and the interplay between the two
(see Fig. 1). Specifically, AMEGO is composed of (i) a collection of hand-object
interaction (HOI) tracklets, which contain consistent interactions between the
camera wearer and objects, and (ii) location segments, representing temporal
intervals during which the camera wearer engages in activities within specific
locations. Importantly, the tracklets and segments are built using visual per-
ception models of human activity and motion rather than a naive sampling of
frames. Such models capture information like “has an object-interaction begun
or ended?”, “is an interaction ongoing, despite hands not visible?”, and so on,
leading to representations that are directly tied to activities.

We populate our AMEGO memory following a three-step process: first, we
identify the onset of object interactions; second, we detect the conclusion of on-
going interactions; and finally, we match concluded interactions to previously
observed object or location instances. This online pipeline is preferred for effi-
ciently storing and preserving only the relevant information, mirroring the way
humans build episodic memories in everyday activities [51]. Each step uses off-
the-shelf visual perception models, resulting in a training-free approach.

Noticeably, the resulting tracklets and segments are not associated with any
fixed taxonomy of objects or locations, resulting in a semantic-free, queryable
memory that can be used to answer questions about the video. By simply pro-
viding an image of an object or a location of interest, it is possible to access the
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related information using feature matching. Thanks to its ability to use visual
features in a semantic-free manner, AMEGO is more adept at distinguishing
objects with subtle differences. This enhances its robustness and flexibility in
capturing a wide range of interactions.

To evaluate AMEGO, we propose the Active Memories Benchmark (AMB)
– composed of more than 20K visual question-answer pairs covering active ob-
jects, locations, and their interplay. We center the questions around 3 levels of
reasoning, i.e. sequencing, concurrency, and temporal grounding. Notably, our
benchmark is the first to tackle simultaneously interacting objects and loca-
tions. AMEGO achieves state of the art results on AMB, surpassing other com-
mon Video QA baselines by 12.7%. This performance underlines its capabilities
across the three reasoning levels.

2 Related Works

Long video understanding. Long videos have gained significant interest re-
cently, largely due to the emergence of large-scale egocentric datasets [5,11,12].
The task involves understanding videos lasting for minutes or even hours, leading
to the creation of specialised models [14,58]. Several question-answering bench-
marks have been introduced to evaluate models’ proficiency in understanding
long videos [8,10,19,22,39,48,53,63,66]. Among these, the widely adopted bench-
mark EgoSchema [29] focuses on videos of up to 3 minutes in duration. Another
benchmark, ReST [65], shares similarities with ours as it focuses on visual queries
over long egocentric videos. However, it does not target locations and only em-
phasises object interactions. Different approaches have tackled long video under-
standing: some treat it as a natural language question answering task by first
captioning the video and then using LLMs to answer queries [26,34,54,56,57,68].
Others integrate LLMs with a video encoder, leveraging the powerful comprehen-
sion and generation capabilities of LLMs [21,36,40,45]. Our approach is similar
to [9], proposing a structured representation of the video, but we specifically
focus on interactions rather than indiscriminately memorising all the objects in
the video.
Structured video representations. Various studies have explored methods
for enhancing video representations by incorporating structured information.
Contextual relationships have been a key focus, with numerous works investi-
gating relationships between objects and actors [1,2,4,15,17,25,46,55], as well as
among actions [3,14] using graph-based models. In the realm of egocentric vision,
efforts have been made to construct structured representations of videos. For in-
stance, [35] proposes grouping clips by activity threads, while [42] introduces
egocentric scene graphs to capture interactions of the camera wearer. [32] fo-
cuses on constructing a human-centric representation of scenes by capturing the
spatial locations of interactions, while [7] builds an allocentric top-down semantic
scene representations, grounding the position of objects, from a video capturing
a tour of the environment. Despite addressing various aspects of activities, these
approaches do not capture the multiple dimensions inherent in egocentric videos
— namely, object interactions, key locations, and their interplay.
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Video summarisation. Another related task is video summarisation [27, 31,
41, 72] whose aim is to generate a shorter version of the video in the form of
key frames or key shots. Egocentric summarisation approaches consider impor-
tant people and objects [18], essential events [24] or aesthetic characteristics of
key frames [59]. Some works have also proposed generating the summaries in
an online fashion [23, 70] but do not target a structured representation of the
video. [62] proposes a generic object finder, which automatically detects and
clusters manipulated objects generating a timeline of the interactions. However,
they do not exploit the temporal dimension proposing a system which is affected
by noise coming from the detector. Another work which is related to ours is [60].
The method introduces a storyline representation for egocentric videos, sum-
marising them based on actors, events, locations, and objects. It allows querying
across dimensions using boolean operators. However, it mainly detects prede-
fined attractions and supporting objects, which are visually distinct. Our work
focuses on finer activities in cluttered scenes.

3 Method - AMEGO

Given a long and untrimmed egocentric video, we aim to capture the knowledge
of active objects, key locations and their interplay using a unified structured
representation. Such a representation must be self-contained — providing a full
description of the camera-wearer’s interactions with objects and locations — and
queryable — as it should help retrieve temporal segments in the video indicating
when an object was used, when a location was visited and their intersection (i.e.
when an object was used in a specific location). In short, it is an Active Memory
of the EGOcentric video, named hereinafter AMEGO.

We decompose the long egocentric video V into a set of hand-object inter-
action (HOI) tracklets (O) and location segments (L). Each HOI tracklet is a
spatio-temporal representation of an object consistently interacting with at least
one hand of the subject. It is characterised by spatio-temporal bounding boxes
and their appearence features. Each location segment corresponds to the win-
dow of time where the camera-wearer visits a location to perform interactions,
i.e we are interested in activity-centric zones or hot-spots for interactions.

Put together, the HOI tracklets and location segments form a memory of
what objects the camera-wearer interacts with over time, in which locations,
and how those objects are moved around the scene. This memory E = {O,L}
is built online, eliminating the need for reprocessing past visual information,
and then queried to answer a variety of questions about objects, locations and
their interplay, as our experiments will show. Critically, our representations are
semantic-free — they represent instances of objects and locations but are not
tied to a fixed taxonomy of labels or a known vocabulary. They are tied to the
visuals of objects and not to discrete categories, allowing a more fine-grained
distinction.

In the following sections, we describe our pipeline to characterise and store
object interactions (Sec. 3.1), to identify location segments (Sec. 3.2), and then
to put them together to form our AMEGO representation. Finally, we describe
how to query it to answer various questions (Sec. 3.3).
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Fig. 2: We build O in an online manner, performing the 3 steps depicted at each frame
of our video. (i) Initialisation We use consistent active object detections to generate
new HOI tracklets. We thus discard noise resulting in sparse detections. (ii) Updating
Once a new tracklet is initialised, we use a SOT tracker (Toi) to update its detections
even when hands go out of the field of view. We end the tracklet when there are
eo consecutive frames with a free hand or a distinctive new object interaction. (iii)
Assignment Once a tracklet terminates, we assign it an object instance based on the
similarity between its visual features wrt those in memory O.

3.1 Object Interactions

We begin by characterising object interactions as HOI tracklets O. Each tracklet
oi ∈ O is a tuple (ts, te, bt, h, id) where (ts, te) are the start and end frames of
the interaction, bt is the sequence of bounding boxes representing the object in
each frame, h is the hand side that performs the interaction (i.e., left or right),
and id is the object instance associated to the tracklet.

We iteratively build O. At each frame Vt we perform 3 main steps: (1) ini-
tialise possible new candidate HOI tracklets, (2) update the HOI tracklets that
are active (i.e. corresponding to ongoing interactions), and (3) store the ones
that terminate in the memory E, and assign their corresponding object instance.

Initialisation We use a class-agnostic hand-object interaction detector [43],
which provides a set of active object and hand bounding boxes denoted as Bo

t

and Bh
t respectively. We initiate a new HOI tracklet oi for each new hand-

object interaction, defined as a tubelet comprising at least so bounding boxes
exhibiting strong spatial overlap within a temporal window of ws frames (Fig. 2,
top-left). This spatio-temporal filtering allows us to account for noise as the result
of hand-object detectors applied independently over frames. By leveraging the
duration of natural hand-object interactions, we can reliably identify new active
HOI tracklets, ensuring spatio-temporal consistency in the detections. The HOI
tracklet oi is now considered active and is added to O.
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For all subsequent frames, we calculate the intersection over union (IoU) for
each object interacting with the same hand side. Matching bounding boxes over
a threshold, θ, are assigned to the tracklet oi. When bounding boxes cannot be
assigned to the tracklet, it is considered complete.
Updating Next, we need to capture the entire duration of the interaction, and
concurrently, capture all spatial occurrences of the object, performing interaction-
aware tracking. While the frame-level HOI detectors are sufficient to identify new
interactions, they are unable to reliably extend tracks over time where hands or
objects exit the egocentric field of view. Instead, we use an off-the-shelf single-
object tracker (SOT) [47] which can reliably track the object across the whole
interaction. (Fig. 2, bottom-left).

Specifically, for each active object track oi we initialise a SOT. We consider
the track oi completed if there are no associated detections Bo for eo consecutive
frames, while the hand h remains visible. This is because when the hand is out of
view, it is likely to still be holding the object. This results in a spatio-temporal
track Toi which tracks the object’s position, but lacks information about the
interaction itself.

At this point, oi contains information about its temporal duration (start and
end time) and spatial bounding boxes corresponding to the active object, by
combining the strengths of frame-based HOI detection and the SOT.
Assignment and storing Finally, we match oi to already seen object instances
in our memory. Specifically, given the set of stored HOI tracklets Ot observed so
far, and the set of running SOT tracks Tt, we check whether oi can be matched
to an existing object instance or if we need to start a new one. To do this, we
first compute the visual features of oi:

f(oi) =
1

|Voi |
∑

k∈Voi

γ(k, bok) (1)

where Voi is the set of frames associated with oi, bok is the detection for frame k
and γ is a visual feature extractor (in our experiments, DINOv2 [33]). To match
oi with instances in Ot, we use an online clustering approach based on f(oi). The
similarity between oi and a specific object instance idj is computed as follows:

s(oi, idj) =
1

|Ot ∈ idj |
∑

Ot∈idj

< fOt
, foi > (2)

where Ot ∈ idj are the HOI tracklets belonging to instance idj and < . >
measures the cosine similarity. We assign oi to the object instance id∗j that
maximizes Eqn. 2, and is above a specified threshold, θ. Note that if any tracker
in Tt overlaps significantly with oi, and the tracker confidence is higher than
the maximum similarity above, then it is assigned to the tracker’s instance.
Otherwise, oi is assigned to the corresponding instance id∗j . If the maximum
similarity is below the threshold, a new instance is created for oi (Fig. 2, bottom).

At the end of this stage we associate f(oi) and the assigned instance to oi,
and store it into E. We will refer to this confirmed tracklet as Oi. It becomes
part of AMEGO and can be consequently used in the querying process.
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3.2 Location segments

We define the set of location segments L as the temporal segments when the
subject is carrying out interactions at different activity-centric zones. As a sub-
ject may interact with multiple objects simultaneously but can only be present
in one hot-spot at a time, each location segment li ∈ L is modelled as a tem-
poral interval corresponding to the start and end of an interaction. Like object
interactions, L is populated online, and in two steps as follows.
Temporal segmentation Given the egocentric frame Vt and the hand detec-
tions Bh

t , to understand whether the hand is interacting with an object while
being in a location, we compute the optical flow between Vt−1 and Vt and check
hand presence via |Bh

t | > 0. We consider the subject carrying out a task if both
optical flow has low norm and there is at least one detected hand. We used the
criteria discussed above as proxies to determine whether the subject has paused
(through low optical flow) and is actively interacting with the scene (through a
detected hand). Similar to the process for determining HOI tracklets, we adopt
temporal filtering and consider a location segment, lj , to be active only if these
two conditions are verified for a consecutive number of frames, sl. Similarly, we
terminate lj when we observe a consecutive number of frames, el, with either
optical flow norm above the threshold or absent of hand detections.

At the end of this stage, we have temporally defined lj but we still need to
match it to previous location segments at the same hot-spot.
Assignment and storing We utilise a visual feature extractor σ for locations,
to compute average features for the location segment denoted as g(lj). Next, we
calculate similarity scores between the stored location instances and lj by com-
puting the average cosine similarity. We assign lj to the instance that maximizes
the similarity beyond a specified threshold, τ . If the threshold is not met, a new
instance is created. Finally, we pair g(lj) and the assigned instance to lj , and
store it into E. We will refer to this confirmed location segment as Lj .

3.3 Querying AMEGO representations

After processing the whole video we obtain our AMEGO : a complete set of HOI
tracklets O and Location segments L (see Fig. 3). Utilising AMEGO, we can
determine whether any object has been in use and if the person has interacted
at any locations. We achieve this in a semantic-free retrieval manner. Given an
object image, qo, we first extract its visual features, f(qo), using γ. Subsequently,
we assign it an object instance, qid, based on the similarity between its visual
features and those in O. With the obtained qid, we can query E to retrieve
information about its interactions. For instance, by searching for all tracklets in
O ∈ qid, and their interaction intervals (ts, te), we can identify all the temporal
segments when qid has been used.

Similarly, using σ, we can match any input location image to L in an identi-
cal manner. Consequently, leveraging the common temporal dimension, we can
understand where query objects have been used or what objects have been used
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Fig. 3: An example of AMEGO on a long egocentric video depicting objects interacting
with the left and right hand of the subject and the visited locations.

at the query location. This process allows us to answer any set of queries in-
volving objects and locations without reprocessing the entire video. Inside E, we
encapsulate all the information about what occurred in the video. This trans-
forms AMEGO into an active memory of the video that, regardless of queries,
is aware of what interactions took place at any point in the video.

4 Active Memories Benchmark

We propose the Active Memories Benchmark (AMB) — a comprehensive frame-
work to study the interaction between active objects, locations, and their inter-
play in long egocentric videos, which form key components of daily human activ-
ity. The benchmark consists of 20.5k queries covering various levels of reasoning.
The queries take the form of multiple-choice questions ranging from simple ques-
tions about object use (e.g., What did I use with [VQ]? where [VQ] is a visual
crop of an object). Given a set of [VA] visual answers, the task is to select the
correct representation of an object that has been used at the same time as the
object represented in [VQ]. Similarly, questions can be answered on the interplay
between locations and objects, e.g. What locations did I use [VQ] in? The answer
here would be a set of correct location representations [{LA, ...}]. Critically, each
visual query of an object [VQ], visual object answer [VA], location query [LQ]
or location answer [LA] are parameterised as visual crops [11,65,67] to mitigate
the need for a fixed vocabulary or taxonomy resulting in biases associated with
language. Forming a language-free benchmark avoids models that neglect visual
data when answering the questions [16,29,64]. See Fig. 4 for a visual example.

4.1 Query Criteria

To construct our benchmark, we build a set of visual query templates that in-
volve objects, locations, and their natural interplay (See Tab. 1). We structure
our benchmark evaluation around three main reasoning levels, which serve as
essential building blocks to enable higher-level activity understanding.
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Temporal grounding
Q7 “When did I use        ?”  [5-10]s

Q8 “When did I visit        ?” [15-30]s

Q5 “What did I use with           ?”  A:

Q6 “Where did I use         ?” A:

Concurrency

Sequencing
 

   Q4 “Where did I leave            ?”

  

“What is the correct 
     sequence of objects I 
     have interacted with?” 3

 
   Q1

1 2

Fig. 4: Examples queries of Active Memories Benchmark on an egocentric video (in
the middle). We build our benchmark around 3 different levels of reasoning, i.e. Se-
quencing, Concurrency and Temporal grounding.

Table 1: The question templates proposed in our benchmark, along with the corre-
sponding required reasoning, dimensions, types of answers, and number of questions
in Active Memories Benchmark. SQ, CO, and TG represent sequencing, concurrency,
and temporal grounding respectively. [VQ] and [LQ] represent object and location
crops, while O and L stand for object and location.

Reasoning Query Template Dim. Answer Qs

SQ

Q1 What is the correct sequence of objects I have interacted with? O Obj. seqs 4464
Q2 What did I use with the left/right hand after [VQ]? O Obj. 3466
Q3 What did I use with the left/right hand before [VQ]? O Obj. 3466
Q4 Where did I take/leave [VQ]? O, L Loc. 1266

CO Q5 What did I use with [VQ]? O Obj. sets 2105
Q6 Where did I use [VQ]? O, L Loc. sets 2320

TG Q7 When did I use [VQ]? O Intervals 2614
Q8 When did I visit [LQ]? L Intervals 809

Sequencing (SQ) questions assess the ability to discriminate the temporal or-
der of events. For example, can the model order interactions in time and identify
which object the subject used before or after using another object? These are
captured by templates Q1-4.
Concurrency (CO) questions assess the ability to capture multiple interactions
happening at the same time. For example, can the model reason about whether
different objects have been used together (i.e. object-object concurrency), as well
as whether an object interaction took place in a specific location (i.e. object-
location concurrency)? These are captured by Q5-6.
Temporal grounding (TG) questions assess the model’s ability to retrieve
all intervals of interactions with an active object or a location within the long
video. For example, can the model identify when a given object was used or a
location was visited (i.e. the start and end time). These are captured by Q7-8.

These three aspects provide a holistic view of information stored in the active
memory when observing the long video, serving as the foundational elements for
task understanding and causal inference within procedural egocentric videos.



10 G. Goletto et al.

4.2 Benchmark Construction

We build our queries adopting the templates listed in Tab. 1 and express them
as multiple-choice questions.
Egocentric Videos We construct our benchmark using 100 videos sourced
from the EPIC-KITCHENS dataset [5]. This dataset is composed of long, un-
scripted egocentric recordings of participants performing daily living activities
in a kitchen environment. On average, the selected videos are 14 minutes long.
More specifically, 18 videos are shorter than 3 minutes, 35 videos are of medium
length (between 3 and 10 minutes), 35 videos are long (10-30 minutes) and 12 are
very long (> 30 minutes). To define our ground truth, we leverage the publicly
available dense camera poses from EPIC Fields [50] and active object masks
from VISOR [6]. We segmented videos into activity-centric zones by leverag-
ing camera positions from EPIC Fields to track the subject’s attention on the
scene. We merged EPIC-KITCHENS actions involving prolonged object usage
and aligned VISOR masks with class semantics to obtain object bounding boxes.
It is important to note that while we utilised these annotations for benchmark
construction, our focus was solely on their application in evaluation. Additional
details can be found in Supp.
Query generation We generate queries in a semi-automatic manner from our
templates. AMB consists of 20.5K multiple choice question answer pairs. Each
question consists of five possible options which are extracted semi-automatically
from ground truths, to increase the challenge of these questions. In particular,
we select candidate answers differently according to the type of question. For in-
stance, for question Q6, options include locations visited immediately after the
subject interacted with a specific object. Similarly, for questions Q3-4, options
might include objects used with the opposite hand. This design makes AMB
particularly challenging, demanding a detailed understanding of the events in
the long video. Similarly for Q2-3, the query time t is set such that [VQ] is
yet to be used – requiring the search for the interaction with [VQ] first be-
fore finding interactions before/after [VQ]. This systematic approach enabled us
to create over 20,500 questions, of which 61.7% are sequencing questions, 21.6%
concurrency questions, and 16.7% temporal grounding questions, see Tab. 1. Our
dataset comprises 2614 object instances across videos and 809 activity-centric
locations. On average, short videos (< 3 mins) contain 62 questions, medium-
length videos (3-10 mins) contain 134 questions, and long videos (> 10 mins)
have 313 questions.

5 Experiments

5.1 Experimental setup

Implementation details We use the hand-object interaction detector from [43]
for identifying object-hand interactions at the frame level. Visual features of
objects are extracted using the DINO-v2 pre-trained model [33] (γ), with resizing
to 224×224 and evaluation on ViT-S and ViT-L versions. Object tracking during
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interactions employ the EgoSTARK tracker [47] and we set θ = 0.6, ws = 30,
so = 20, and eo = 20.

For locations we use SWAG [44], σ, as the visual feature extractor, trained for
image classification using weak supervision of hashtags. This model is currently
state of the art in scene classification on Places-365 [71]. We evaluate on ViT-B
and ViT-L versions with frames resized to 384×384 and 512×512. We estimate
optical flow with the Flowformer model [13], and use a threshold of 2000 for the
optical flow L2 norm. We set sl = el = 5 and τ = 0.5.
Baselines Our approach is the first able to create a complete representation
of the long video which captures multifaced interacting elements. Prior works
in this direction focused just on one specific dimension (e.g. locations [32] or
activities [35]). SOT trackers would be able to track the object in the video
but this would happen regardless of whether the object was interacted with.
Consequently, we compare AMEGO against common baselines adopted for video
QA on the proposed Active Memories Benchmark:

• Semantic-free QA (SF-QA) uses vision-language models, i.e. CLIP [37],
to map the query, the video, and the answers into the same embedding space.
This process involves extracting visual features from frames of the long video,
query patches, and answers, while textual features are obtained from the ques-
tion. The query embedding is generated by averaging the features from the
video, patches, and question. Then, the similarity between this embedding and
all answer embeddings is computed. The answer with the highest similarity
score is selected.

• SF-QA (obj) is a variant of SF-QA, with visual features extracted also from
active objects detected by [43].

• Semantic QA (S-QA) uses off-the-shelf captioners to generate a semantic
summary of our video. We use the egocentric video captioner, i.e. LaViLa [68]
at 1 fps, as in [68], and an image captioner, BLIP-2 [20], for generating cap-
tions of both the video and of the query patches. Increasing the captioning
rate for video would only introduce redundancy in the resulting textual sum-
mary. Then, we input captions into an LLM and prompt it with the question.
We use LLaMA-2-7B [49] because of its public availability, ensuring the re-
producibility of our results. Due to the limited context window, we uniformly
subsample textual summaries when they contain more than 4096 tokens.

• Multi-round semantic QA (LLoVi) [68] is similar to the previous one
but it queries the LLM twice. First to summarise the video captions given
the question, and then to answer the actual query based on the previously
generated summary.

We evaluate AMEGO alongside the baselines in a zero-shot setting, measuring
the accuracy over the queries provided in AMB.

5.2 Standalone performance

We first evaluate the effectiveness of the different AMEGO components against
the ground truth. To do so, we manually annotate temporal interactions of ob-
jects and locations for two long videos: a 20-minute video from EPIC-KITCHENS
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Table 2: Standalone evaluation for HOI tracklets (left) and location (right) segments

AIoU P ↑ AIoU GT ↑ ∆N → 0

so = 1 0.08 0.49 3249
eo = 1 0.13 0.34 537
Track w/o hand detections 0.19 0.38 222
No tracker 0.19 0.39 218

AMEGO 0.20 0.41 210

AIoU P ↑ AIoU GT ↑ ∆N → 0

sl = el = 1 0.14 0.48 163
No flow filter 0.35 0.35 -1
No hand filter 0.34 0.49 27

AMEGO 0.36 0.50 44

[5] (which is not included in AMB) and a 10-minute video from Ego4D [11]. Our
annotations identify 22 distinct location instances and 67 different objects, al-
lowing for a temporal comparison with the capabilities of AMEGO in defining
interaction intervals.

We evaluate AMEGO using three metrics: (i) AIoU P, Average Intersection
over Union between each predicted segment and its best-matching ground truth
segment, indicating the precision of the predicted tracklets; (ii) AIoU GT, Av-
erage Intersection over Union between each temporal ground truth segment and
its best-matching predicted segment, evaluating the recall of AMEGO; (iii) ∆N,
the difference between the number of predicted and ground truth segments. Per-
formance is improved when this number is closer to 0 ∆N → 0; Tab. 2 show the
results for the both object and location interactions. In particular, it is possible
to see the negative effect of noisy detections either at the beginning (so = 1) or
at the end (eo = 1) of the HOI tracklet. While AIoU GT is high for so = 1, this
is due to the large number of segments predicted (∆N > 3K). Without using the
hand detections, the tracking is stopped after eo consecutive missing matches,
regardless of hand presence. Accordingly, leveraging hand detections as a proxy
to terminate the tracklet helps in detecting long interactions. Without using the
tracker, the method performs worse as it is unable to track the object when
the hands exits the field of view. Similar results for location segments show the
importance of the various design decisions. It can be noticed how both flow and
hand detection help to detect visited locations and, they are complementary.

5.3 Results on Active Memories Benchmark

To query AMEGO on AMB, we follow simple processes. As an example, to
answer temporal grounding queries (Q7-8), we compare the query patch with in-
stances in E, as explained in Sec. 3.3, then extract the intervals in E correspond-
ing to the matched instance. Additional details can be found in the Supplemen-
tary material. We report results on AMEGO- S, and AMEGO- L, depending on
the size of the visual feature extractors adopted (ViT-S/B vs ViT-L).

Tab. 3 shows the main results on Active Memories Benchmark. All the base-
lines struggle to perform slightly better than random among the five answers.
Particularly, it is noticeable that despite reaching high results on high-level un-
derstanding datasets [29], Semantic-QA approaches show limited understanding
of fine-grained details on long videos. All the baselines show better results on
concurrency-related questions (wrt the other reasoning proposed), which may
hint at the fact that they might leverage training patterns, e.g. a pan often used
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Table 3: Accuracy results (%) over the different queries of AMB. Best in bold.

Method SQ CO TG TotalQ1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Random 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0

SF-QA 13.7 21.6 22.5 26.8 22.1 31.9 23.7 26.2 22.0
SF-QA (obj) 13.1 23.4 22.6 23.2 21.7 26.1 23.8 25.2 21.2

S-QA (LaViLa) 20.9 20.6 21.2 24.6 24.9 27.1 21.4 22.6 22.4
S-QA (BLIP-2) 23.9 22.0 22.5 23.3 27.5 27.0 20.2 24.1 23.6
S-QA (LaViLa+BLIP-2) 22.8 22.2 21.4 22.6 25.1 26.1 21.4 24.5 22.9

LLoVi (LaViLa) 21.1 20.2 20.8 21.0 21.2 20.3 20.5 21.6 20.8
LLoVi (BLIP-2) 22.3 21.4 21.8 22.2 25.6 26.7 18.1 22.2 22.4
LLoVi (LaViLa+BLIP-2) 22.8 21.9 21.5 24.6 25.3 26.5 18.5 19.8 22.6

AMEGO - S 32.0 35.1 34.8 35.8 24.7 37.8 33.6 44.3 33.8
AMEGO - L 33.7 36.3 37.2 38.3 27.6 44.3 34.7 48.9 36.3

at the cooktop. The semantic-free QA baseline performs the worst, demonstrat-
ing that features by themselves, without a proper representation, are not enough.
On average, BLIP-2 performs better on object-related queries. Indeed, differently
from LaViLa, it has been trained on object-centric datasets and therefore shows
superior capability to recognise them. Finally, we observe that multi-stage LLM
pipelines, such as [68], perform worse than standard-QA. This likely depends
on the fact that directly processing the textual summary reduces the amount of
information at subsequent stages for correctly answering the query.

SQ CO TG
SF-QA S-QA SF-QA S-QA SF-QA S-QAAMEGO AMEGO AMEGO

Accuracy (%)

10
20
30
40
50

Short
Medium
Long

Fig. 5: Quantitative results depending on the tem-
poral duration of the queried video.

AMEGO achieves good
results on the whole set of
queries, outperforming base-
lines by a large margin
(+12.7%). It can be noticed
that Q5 is the question where
AMEGO struggles the most.
This difficulty arises from cur-
rent hand-object interaction
detectors facing obstacles in

predicting concurrent objects interacting with the same hand of the subject.
Hence, despite our initialisation and tracking process allowing multiple objects
to interact with the same hand, further improvements are needed in this regard.
Does video duration impact performance? We separately evaluate short
(<3min), medium (3-10min) and long (>10min) videos. Fig. 5 compares the
best performing semantic-free QA, semantic QA and AMEGO - L. In general,
concurrency and temporal grounding questions are the ones that create more
difficulty in long videos for SF-QA and AMEGO. This is reasonable as tempo-
rally locating objects and locations in longer videos is intuitively harder.
Qualitative results Fig. 6 shows two examples of concurrency and sequencing
queries with the answers obtained querying AMEGO (in green) against the ones
obtained via Semantic-QA (in red). AMEGO can understand the correct order
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“What is the 
correct sequence 
of objects I have 
interacted with?”

“Where did I use 

        
             ?”

For reference: above -> 'Q1_000463’
Below -> Q6_001347 

Fig. 6: Qualitative results are presented with sequencing and concurrency queries. Cor-
rect answers obtained from querying AMEGO have green background, while incorrect
answers from Semantic-QA have red background.

of usage of items. Indeed it is possible to observe the steps performed by the
camera wearer for preparing a coffee (upper part). The S-QA approach is not
able to capture all fine-grained details in the video and is limited only to part of
the sequence. In the bottom query, instead, it is possible to observe the training
biases of LLMs preferring a cupboard (typically used to store a pan) rather than
a washing machine.

6 Conclusion
In this work, we introduce AMEGO, an innovative Active Memory approach
tailored for egocentric videos. By dynamically organising interactions and ac-
tivities into a structured representation, in an online manner, AMEGO mimics
the episodic memory cognition. Through semantic-free querying, AMEGO of-
fers a powerful solution for efficient video comprehension without the need for
exhaustive reprocessing.

We evaluate AMEGO on a newly proposed Active Memories Benchmark
which underscores the effectiveness of AMEGO, showcasing its superior perfor-
mance over common Video QA baselines. This highlights its ability to capture
and represent intricate interactions within egocentric videos, paving the way for
enhanced video understanding and analysis.
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